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Limiting the stroke of a Schmitt trigger with multiplicative noise
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We have devised an experiment whereby a bistable system is confined away from its deterministic attractors
by means of multiplicative noise. Together with previous numerical results, our experimental results validate the
hypothesis that the higher the slope of the noise’s multiplicative factor, the more it shifts the stationary states.

DOI: 10.1103/PhysRevE.95.052143

I. INTRODUCTION

Stochastic modeling is by now a usual methodology in
almost every quantitative discipline. A grand subclass of these
models follows the paradigm set forward more than a century
ago by Langevin [1], who supplemented the Newtonian one
by forcing the dynamic equations with random increments
that obey certain statistics. The disposal of enough computing
power triggered some 30 years ago the widespread application
to the factual sciences of this methodology (well suited in fact
to the increasing parallelism of computational architectures).

The role of fluctuations in the dynamics of lumped and
extended [2–4] nonlinear deterministic systems has been from
the outset a central topic in nonequilibrium statistical physics.
They clearly decide the fate of the system at instabilities (exam-
ples being spontaneous symmetry breakdown and the simplest
forms of pattern formation [5]), but even activation phenomena
(nucleation, first-order phase transitions, and chemical and
nuclear reactions [6]) are disabled in their absence (we refer to
these multistability problems as noise-assisted phenomena).

Given the high diversity of the nonlinear world (beyond our
efforts to cast bifurcations into normal forms), the repertoire
of noise effects on nonlinear systems is also large. As a rule,
the (nonrigorous albeit effective in simpler cases) mean-field
approximation, whereby one replaces a fluctuating variable
by its mean, gives wrong results in more complex cases. It
has become customary to speak of constructive effects of the
noise, a field which continues to amaze us with counterintuitive
results after decades of intensive research.

The simplest instances of some of these noise-induced
phenomena rely on properties of the nonlinear deterministic
systems to which they apply (bifurcations and characteristic
lengths in pattern formation, characteristic times in stochastic
and coherence resonance [7], and explicit bias in noise-induced
transport [8]), so they occur even with additive noise. Others—
typically, noise-induced transitions [9] and phase transitions
(featuring ergodicity breakdown) [10–12]—usually need the
system to be subjected to multiplicative noise in order to take
place (first-order noise-induced phase transitions may occur
under additive noise [13]). The multiplicative noise may result
either from intrinsic fluctuation of some parameter or from
coupling some function of the system’s dynamical variables to
external noise.

The subject of this work is akin to noise-induced transitions
(and under the definition given in Ref. [14], it is to be
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considered as such), but its motivation arose from the context
of noise-induced phase transitions, which we refer to in the
next paragraph. For the time being, recall that among the
traits of multiplicative noises is their ability to compete with
the deterministic forces (see Appendix A). The bid between
forces of deterministic and stochastic origins can lead to a
reorganization of the system (which is called constructive
effects of the noise).

The first class of noise-induced phase transitions to be
discovered was that of those driven by a short-time instability
[10,15,16], which curiously ruled out those systems displaying
noise-induced transitions. This transition is reentrant with
noise intensity and for colored noise it turns out to be also
reentrant with the self-correlation time [17–20]. A second class
was discovered not much later on, supported by the so-called
entropic mechanism [11,12,21–23] (see Appendix B). Besides
being compatible with noise-induced transitions, it provides a
handy tool for stabilizing nanopatterns [24–26]—and inducing
pinning states and dissipative solitons [27]—in adsorbed
monolayers, as well as in models from ecology [28,29]. In
all the cases, the following crucial hypothesis was explicitly
used with positive results: “The noise’s multiplicative factor
�1/2(u) will affect more the solutions of Qeff(u) = 0 the higher
its slope” [24–30] (see Appendix B for definitions).

A numerical test of this hypothesis in d = 0 (as defined
in the Appendix B) was performed in Ref. [31]. In a simple
system whose deterministic dynamics is governed by a cubic
normal form, a multiplicative noise was introduced with the
specific purpose of confining the system between prefixed
bounds, away from its deterministic attractors. According
to the hypothesis, the expectation was that a noise intense
enough would drive the system toward the region where the
multiplicative factor (and hence the noise) is minimal.

In accordance with our previous results [24–29,31], we
interpret that the possible stationary solutions are defined by
a bid between deterministic and stochastic forces. The former
push the system toward their attractors (their stable zeros) and
the latter push it toward the minima of the multiplicative factor.
In the numerical simulations [31], the stationary solutions for
moderate noise intensities were located within the confinement
region but their distance to the multiplicative factor’s minima
was still appreciable. However, as the noise intensity continued
to increase, they became coincident for all practical purposes.

In the following we describe an electronic circuit devised
to recreate the situation considered in Ref. [31] and report
experimental results supporting the hypothesis. A Schmitt
trigger is used as a metaphor for the cubic normal form, and
external Gaussian wideband noise from an analog source is

2470-0045/2017/95(5)/052143(7) 052143-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.052143


ZARZA, MANGIONI, ACEVEDO, AND DEZA PHYSICAL REVIEW E 95, 052143 (2017)

multiplicatively incorporated through a specifically designed
circuit. In the following section we introduce the model, find
its analytical stationary probability density function (SPDF),
and compare it with the one found in simulations [31]. In the
next sections we describe the experimental setup and results,
and summarize our conclusions.

II. MODEL AND PREVIOUS RESULTS

The model considered in Ref. [31] is described by

u̇ = Q(u) + �1/2(u) η(t), (1)

with Q(u) = u(1 − u2) and 〈η(t)η(t ′)〉 = 2λ2 δ(t − t ′). It is
our purpose to confine its stationary states away from the
deterministic solutions u = ±1 (i.e., between u = ±ul , with
ul < 1) using a suitable multiplicative noise. In order to
achieve that goal, we propose

�1/2(u) := 1 − �(ul − |u|){1 − exp[b(|u| − ul)]}

=
{

exp[b(|u| − ul)] if |u| < ul

1 if |u| > ul.
(2)

Thus the effect of the noise decreases exponentially within the
confinement region and is maintained at its maximum intensity
level in the forbidden region [32]. For Q(u) = u(1 − u2), u ↔
−u symmetry is expected.

The SPDF can be calculated using either Eq. (A5) (with
α = 1/2, corresponding to Stratonovich’s interpretation) or
Eq. (B2). For |u| < ul we obtain

N P <
th (u) = exp

{
− e2bul

4b2λ2

[
H (u) − 1 + 3

2b2

]
− b(|u| − ul)

}

(3)

(N is the normalization factor), with H (u) = S(u) e−2b|u| and

S(u) =
[

2b|u| + 1 − 4b3|u|3 + 6b2|u|2 + 6b|u| + 3

2b2

]
,

whereas for |u| > ul ,

P >
th (u) = P <

th (ul) exp

[
u2 − u2

l − (
u4 − u4

l

)
/2

2λ2

]
. (4)

Figure 1 displays Pth(u) in Eqs. (3) and (4), for λ = 5
and b = 20 (inside the bounds: thin line). As seen, P >

th (u)
in Eq. (4)—lying outside the vertical lines that indicate the
boundaries of the confinement region—is vanishingly small.
This is in accordance with the numerically calculated SPDF
[33] (inside the bounds: thick line). For additive noise (λ =√

.02) instead, the SPDF has its maxima outside the bounds
and is vanishingly small inside [34].

In Ref. [31], Eq. (1) was numerically integrated using a
Heun scheme with time step �t = 10−5 (results not shown
here). The confinement is seen to improve as λ increases.
Moreover, past some threshold value of λ, the curves display
transitions between the two possible solutions localized within
the region of confinement. If the system starts with u < 0, the
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FIG. 1. Shape of the SPDF Pst(u) in three instances. Constant-u
lines indicate the boundaries of the confinement region ul = ±0.7.
For additive noise (λ = √

.02), the SPDF has its maxima outside the
bounds. For λ = 5 and b = 20 instead, it becomes confined (inside
the bounds: thin line, analytical calculation; thick line, numerical
calculation) [31].

curves are the mirror image of the ones obtained when it starts
with u > 0.

III. EXPERIMENTAL SETUP

It is clear from Eq. (1) that an experimental setup to test
the validity of our proposal will consist of three main blocks:
the function Q(u), the function �1/2(u), and the noise η(t).
However, the global structure of the circuit is better appreciated
by recasting Eq. (1) in a form that resembles the Ornstein-
Uhlenbeck equation, namely,

τ u̇ = −u + F (t ; u), (5)

with F (t ; u) := u + Qe(u) + �
1/2
e (u) η(t) [35]. Equation (5)

highlights the fact that τ governs the system’s dynamics
around the attractors for λ → 0 and, hence, it determines
the cutoff frequency in the spectral density of u. In the
following, the state-dependent noise F (t ; u) is denoted simply
as F (u). Moreover, Qe(u) and �

1/2
e (u) denote the experimental

counterparts of τQ(u) and τ�1/2(u).
Figure 2 shows a schematic block diagram of the devised

electronic circuit. Besides the obvious passive components, the
main components are AD826 operational amplifiers. Referring
now to Eq. (5), the crucial element that organizes the picture
in Fig. 2 is the adder circuit, which implements the noise
F (u). It is represented by a circle containing three plus signs,
toward which three arrows converge. The upper arrow inputs
Qe(u), the one at the left inputs the variable u under study, and
the lower one inputs �

1/2
e (u). The remaining block is just a

resistor-capacitor (RC) filter (clearly, τ = RC)—submitted to
the noise source F (u) as described by Eq. (5)—whose output
is plotted in Figs. 3, 5, and 6.

Function Qe(u). The function Qe(u) is emulated by a
Schmitt trigger (a positive-feedback operational amplifier with
decision thresholds), so designed that its output voltage is
centered around 0 V, it varies across ±10 V, and its stationary
solutions are ±us = ±5 V [36].

Figure 3 shows the output u of the RC filter (the input
voltage of the Schmitt trigger) in the absence of multiplicative
noise (i.e., λ = 0). Internal electronic noise causes transitions
over ±us . The apparent regularity of the output is not due to
an external regular signal, but to the fact that switchings due
to fluctuations have a characteristic frequency (the inverse of
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FIG. 2. Schematic block diagram of the electronic device. u is
the output voltage of the feedback system; the noise’s multiplicative
factor �1/2

e (u) is the input-output function of the exponential ampli-
fier; Qe(u) is the input-output function of the Schmitt trigger, which
mimics the cubic nonlinearity; η(t) is the external Gaussian noise;
and F (u) = u + Qe(u) + �1/2

e (u) η(t).

the mean lifetime between transitions) [37], and the circuit’s
time constant τ is large enough to filter out higher frequencies
that would make the response look more irregular.

Function �
1/2
e (u). Referring to Eq. (2), the operations to be

performed on u are (i) taking its absolute value by means
of a precision rectifier, (ii) comparing the latter with the
prefixed bound ul (again, an adder), and (iii) exponentiating

FIG. 3. Time window on the 2-ms scale of u(t)—the system’s
output voltage and Schmitt trigger’s feedback input—without mul-
tiplicative noise (λ = 0 V). The transitions are due to the internal
(additive) electronic noise, which is always present in these devices.
Constant-u lines indicate the boundaries of a confinement region for
ul = ±3 V.

FIG. 4. Scope screen shots of the electronically synthesized
input-output function �1/2

e (u) of the exponential amplifier, for (a)
ul = ±2 V and (b) ul = ±3 V. Oscilloscope use mode, XY; channel
A, 1.00 V; channel B, 2.00 V; and sampling frequency, 1 Ms/s.

the result by means of an exponential amplifier, which uses
the characteristic Id -Vd curve of a 1N4148 diode [38].

Figure 4 shows scope screen shots of the input-output
function of the exponential amplifier �

1/2
e (u), for ul = ±2

and ±3 V. The curves can be reinterpreted as dips in noise
intensity as a function of u, designed to confine the system
[i.e., to force u(t) to remain inside the well].

Noise η(t). Gaussian noise—generated by an analog source
and filtered by a sixth-order Sallen-Key filter with −3 dB
cutoff frequency at 10 kHz—is injected together with �

1/2
e (u)

into an analog multiplier in the device. So even though it is
colored (its spectral density decays as f −6) for f > 10 kHz,
it can be safely regarded as white at the working frequencies
(around 1 kHz).

IV. EXPERIMENTAL RESULTS

In order to test the effectiveness of the mechanism, we have
recorded the time evolution of u for different noise intensities,
using an oscilloscope (Hantek DSO5062B).
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FIG. 5. Time window on the 10-ms scale of the output voltage
u(t) for ul = ±3 V (constant-u lines) and λ = 3.18 V, illustrating
switchings between two basically stationary solutions that lie inside
the confinement region. The detailed dynamics of the Schmitt trigger
is such that internal (additive) electronic noise succeeds in driving
the system outside the confinement region during very short periods
before each switching.

Figure 5 shows—on a somewhat longer time scale than
Fig. 3—u versus t for λ = 3.18 V and ul = ±3 V. Even though
each noise-driven switch is preceded by a short transient pulse
taking the system outside the prefixed bounds, the system
remains confined on time average (and also in probability, as
shown in Fig. 7). We conjecture that what these “runoffs” are
telling us is that the Schmitt trigger is not a totally faithful
representation of Qe(u).

Figure 6 is a close-up of time series like the one in Fig. 5,
focusing on periods during which the system remains near
+us(λ); i.e., neither the transitions nor the runoffs are seen.
The values of ul and λ are listed in Table I. In particular, the
lowest-lying curve in the lower frame has been extracted from
the same time series as Fig. 5.

Since the system is subjected all the time to both the
external multiplicative noise and the internal additive noise,
the mean lifetime between transitions depends in principle on
both. From Fig. 6, one can conclude that the former is pretty
effective in maintaining the system near +us(λ), so clearly
the lifetime is basically determined by the latter. However,
since apparently the system’s response to internal noise is in
the form of very short runoff pulses, it is not expected to
contribute largely to the SPDF.

Figure 7 completes the picture by showing the experimental
SPDF for the cases in Fig. 6. Starting from a stationary
state corresponding to given λ and ul , we recorded five long
(1 000 000 samples each, at a sampling frequency of 1.5 Ms/s)
time series of u(t). For each series, we calculated its SPDF
by dividing the variability range of u into 150 cells and
counting the number of times that u(t) entered each cell.
(N.B.: The data corresponding to undesired short pulses were
not filtered.) After that, we averaged together the five SPDFs.
The qualitative similarity of Fig. 7 with Fig. 1 is evident (the
maximum in Pst is displaced toward confinement region).

FIG. 6. Time windows on the 1-ms scale of the output voltage u(t)
between transitions, for the values of ul and λ in Table I: (a) ul = ±2 V
and (b) ul = ±3 V. As λ increases, the statistically stationary (before
runoff) states shift into the confinement region.

V. CONCLUSIONS

The fact that a multiplicative noise drives the system
toward a state that minimizes its multiplicative factor (if this
is positive) can be taken as a principle, and has theoretical
and practical implications. On the one hand, it allows one to
predict the outcome of a given situation just by looking at the
noise multiplicative factor. On the other hand, it is possible to
devise stochastic environments (e.g., by means of computer-
controlled masks in a photosensitive chemical reaction—at
least down to the pixel scale) that promote stationary states
other than the deterministic ones. As measured by its effects,

TABLE I. Parameters in Figs. 6 and 7.

Frame ul (V) λ (V)

(a) 2.00 0.00 (top) 0.54 (middle) 3.17 (bottom)
(b) 3.00 0.00 (top) 0.44 (middle) 3.18 (bottom)
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FIG. 7. Experimental SPDF for the cases in Fig. 6. Constant-u
lines indicate the boundaries of the confinement region: (a) ul = ±2 V
and (b) ul = ±3 V. As λ increases, the experimental SPDF changes
from peaking outside to peaking inside the confinement region.

the stochastic force—tending to minimize the effect of the
multiplicative noise and driven by the negative gradient of
its factor—might even be considered at an equal foot with
the a priori deterministic forces [39]. As mentioned in the
introduction, the hypothesis under test in this work has
given rise to several theoretical investigations. But until now,
no experiment corroborating this remarkable effect of the
multiplicative noise had been carried out. To our judgment,
the experiment described in this work gives full support to the
hypothesis stated in the introduction. Moreover, it is a robust
effect, as can be inferred from the fact that the Gaussian noise
used in our experiment is white only up to 10 kHz.

It is also worth remarking that this experiment is not an
analog simulation but a real physical setup. The noise is
ultimately produced by physical phenomena inside electronic
devices, and the used components can be regarded as concrete
examples of the abstract class of physical systems under
investigation. Incidentally, we have recently come to know
about an interesting experiment on noise-induced transitions
in a double-well oscillator with nonlinear dissipation (clearly
differing from ours in their objectives), of which the same can
be said [40].
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APPENDIX A: EFFECT OF THE MULTIPLICATIVE NOISE

We consider first n = 1 dynamical variables. The (con-
ditional) probability density function (PDF) P (x,t |x0,0) of
a Markov process x(t) that obeys the generalized Langevin

equation

ẋ = f (x) + g(x)η(t), (A1)

η being a Gaussian white noise with 〈η(t)η(t ′)〉 = 2λ2δ(t − t ′),
obeys in turn the Fokker-Planck equation (FPE)

∂tP (x,t |x0,0) + ∂xJ (x,t |x0,0) = 0.

In terms of the Kramers-Moyal coefficients [41],

J (x,t |x0,0) = D(1)(x)P − ∂x[D(2)(x)P ]. (A2)

Whereas the diffusion coefficient D(2)(x) = λ2g2(x) is well
determined, the drift one D(1)(x) involves the integral

I (t,dt) :=
∫ t+dt

t

g(x)η(u) du

which, at variance with∫ t+dt

t

η(u)du = dW (t) := W (t + dt) − W (t)

which holds uniquely (W being the Wiener process), must be
defined or interpreted.

Stratonovich regarded the highly singular white noise as
the limit of a physical noise with very large bandwidth. His
definition

I (t,dt) := g

(
x(t) + x(t + dt)

2

)
dW (t)

preserves the chain rule of calculus, but D(1) picks up a
contribution from the noise term:

D(1) = f (x) + λ2g(x)g′(x)

(the prime indicates total derivative). Itô’s definition I (t,dt) :=
g(x(t)) dW (t) (popular among mathematicians and arising
from handling the δ function otherwise) yields indeed D(1) =
f (x), but at the cost of changing the rules of calculus.

Even though we attach to Stratonovich’s interpretation,
we first show that the underlying phenomenon has little to
do with the interpretation of I (t,dt). After the immediate
generalization

I (t,dt) := g([1 − α]x(t) + αx(t + dt)) dW (t),

J (x,t |x0,0) in Eq. (A2) can be written as

J (x,t |x0,0) = [f (x) − 2λ2(1 − α) g(x)g′(x)]P (x,t |x0,0)

− λ2g2(x)∂xP (x,t |x0,0). (A3)

If the FPE admits a SPDF Pst(x) such that ∂tPst(x) = 0, then
Jst(x) = const, where Jst(x) in Eq. (A3) is evaluated for Pst(x).
For natural boundary conditions, it is

[ln Pst(x)]′ = 1

λ2g2(x)
[f (x) − 2λ2(1 − α) g(x)g′(x)], (A4)

which, if g > 0, can also be written as

[ln Pst(x)]′ = λ−2 f (x)

g2(x)
− 2(1 − α) [ln g(x)]′. (A5)

Isolating the second term on the right-hand side of Eq. (A4)
and regarding it as a dynamical flow we see that if g > 0, its
attractors are the minima of g. Hence, that term drives (pushes)
the system to a state in which the effect of multiplicative noise

052143-5



ZARZA, MANGIONI, ACEVEDO, AND DEZA PHYSICAL REVIEW E 95, 052143 (2017)

is minimized, much the same way as the attractors of f (x) are
the minima of V (x) = − ∫ x

0 f (y)dy. Clearly, the stationary
state in the presence of multiplicative noise will not be at the
attractors of f , but will result of a bid between both terms.
This may have dramatic consequences depending on the case,
as, e.g., noise-induced transitions.

For n > 1 it is ẋ = f(x) + G(x)H(t); dim H = n and
〈H(t)H(t ′)〉 = 2IDδ(t − t ′), but rank G need not be n. The
FPE is

∂tP (x,t |x0,0) + ∇ · J(x,t |x0,0) = 0,

and the Kramers-Moyal coefficients become

D
(1)
i (x) = fi(x) + 2λ2αGkj (x)∂kGij (x),

i.e., D(1) = f + 2λ2αL̂(x)GT with L̂(x) := (GT ∇)T , and

D
(2)
ij (x) = λ2Gik(x)Gjk(x) or D(2) = λ2GGT ,

so D(2) is symmetric, rank D(2) = n, and det D(2) > 0. Equa-
tion (A4) reads

[ln Pst(x)]′ = [D(2)]−1(x)[fi(x) − 2λ2(1 − α)Gjk(x)∂kGij (x)],

so the conclusions remain valid. Of course for n = 1 and
g > 0, we might have rewritten Eq. (A1) in terms of
y := ∫ x

0 dx ′/g(x ′) and h(y) := f [x(y)]/g[x(y)], to read ẏ =
h(x) + η(t). Even though the attractors of h will generically
differ from those of f , noise-induced transitions occurring in
terms of x may not show up in terms of y [14].

APPENDIX B: THE ENTROPIC MECHANISM

Originally, the entropic mechanism was introduced by
proposing, for a field u(x,t), a relaxational flow with field-
dependent kinetic coefficient �(u) in a free energy F[u], and
a noise term that fulfills the fluctuation-dissipation relation
[11,12]. The fluctuating field u(x,t) obeys the stochastic partial
differential equation

∂tu(x,t) = −�(u)
δF[u]

δu(x,t)
+ �1/2(u) η(x,t), (B1)

where η(x,t) is Gaussian, with 〈η(x,t)〉 = 0 and

〈η(x,t)η(x′,t ′)〉 = 2λ2 δd (x − x′) δ(t − t ′).

The virtue of this proposal is that it offers an analytic way of
finding the SPDF for fields [11,12], namely,

Pst[u] ∝ exp

{
−Feff[u]

λ2

}
, (B2)

with an effective potential functional (hereafter, we attach to
Stratonovich’s interpretation)

Feff[u] = F[u] + β

∫
R

dx ln �(u(x))

(with β ∝ λ2) for a finite region R. If R is made into a
d-dimensional square lattice with mesh size �x, then β =
λ2/(2�xd ) [11,12].

This idea can be extended to gradient flows (as, e.g.,
reaction-diffusion equations) by directly regarding �(u) as
the square of the noise multiplicative factor [24–29,31]. For
simplicity, we restrict the discussion to d = 1. Given

∂tu = Q(u) + ∂x[D(u)∂xu] + �1/2(u) η(x,t), (B3)

with Q(u) being the reaction term and D(u) a field-dependent
diffusion coefficient, we define the fictitious functional F[u]
from

δF[u]

δu
:= −Q(u) + ∂x[D(u)∂xu]

�(u)
.

We need not know F[u], but only assume it exists. Then by
calculating δFeff(u)/δu(x), we can describe the average effect
of the noise on the deterministic dynamics given by Q(u) +
∂x[D(u)∂xu]. The equation governing the average dynamics
in the presence of noise can be written as

∂tu = Qeff(u) + ∂x[D(u)∂xu]. (B4)

The effective reaction term Qeff(u) := Q(u) − β �′(u) allows
us to observe the average effect of the noise on the homo-
geneous stationary states (HSS). It is quite clear that the
higher the slope of the noise multiplicative factor, the more
the solutions of Qeff(u) = 0 will change with the noise; recall
the interpretation of the noise effect as a force displacing the
HSS toward values that minimize �(u). Then it would be
possible to devise—or discover by eliciting the parameters’
fluctuations [28,29])—a noise multiplicative factor able to
change the deterministic results completely, giving rise to more
complex solutions.
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