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We study the Casimir friction phenomenon in a system consisting of two flat, infinite, and parallel
graphene sheets, which are coupled to the vacuum electromagnetic (EM) field. Those couplings are
implemented, in the description we use, by means of specific terms in the effective action for the EM
field. They incorporate the distinctive properties of graphene, as well as the relative sliding motion
of the sheets. Based on this description, we evaluate two observables due to the same physical
effect: the probability of vacuum decay and the frictional force. The system exhibits a threshold for
frictional effects, namely, they only exist if the speed of the sliding motion is larger than the Fermi
velocity of the charge carriers in graphene.
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I. INTRODUCTION

Under propitious circumstances, quantum vacuum fluctuations produce macroscopically observable consequences.
Such is the case when a quantum field, and hence its fluctuations, satisfy non-trivial boundary conditions. One of the
most celebrated physical realizations of this is the Casimir force between two neutral bodies having non-trivial EM
response functions (which, in some cases, behave as approximate realizations of idealized boundary conditions). This
effect has been predicted and experimentally measured for several different geometries [1–6].

Qualitatively different effects, also due to the vacuum fluctuations, may arise when the bodies are set into motion
or, more generally, when some external agent renders the boundary condition(s) time-dependent. The resulting effect
may involve dissipation and, when the boundary conditions experiment non-vanishing accelerations, real photons
can be excited out of the quantum vacuum. This embodies the most frequently considered version of the so called
dynamical Casimir effect (DCE) [7], also known as ‘motion induced radiation’.

A more startling situation appears when a purely quantum, dissipative, frictional force arises between bodies moving
with constant relative speed. Here, the effect is due to the quantum degrees of freedom, living on the moving media,
which are excited out of the vacuum, while the EM field is nevertheless required as a mediator for those fluctuations.
The resulting effect, termed Casimir friction has been extensively studied and some of the issues involved in its
calculation have spurred some debate [8–11].

We recall that Casimir friction predictions have been obtained mostly for dielectric materials. In this paper, we
study the same effect, but for two graphene sheets. We argue that graphene has unusual properties which render
its theoretical study more interesting. Indeed, because of graphene’s low dimensionality and particular crystalline
structure, its low-energy excitations behave as massless Dirac fermions (with the Fermi velocity vF playing the
role of light’s speed). This yields an unusual semi-metallic behavior [12], as well as peculiar transport and optical
properties [13–15].

In natural units (which we adopt here) the mass dimensions of the response function of graphene in momentum
space can only be given by the momentum itself. Indeed, the only other ingredients: vF and the effective electric
charge of the fermions, are dimensionless. And, when a sheet is moving at a constant speed v, another dimensionless
object, v itself, enters into the game (see below). Thus the non-trivial dependence of the macroscopic, Casimir friction
observables, will exhibit the remarkable property of being a function of v and vF , the overall (trivial) dimensions of
the respective magnitude being determined purely by geometry: size and distance between sheets, like in the static
Casimir effect between perfect mirrors.

A somewhat related but different effect, also termed ‘quantum friction’, has been studied for graphene in Ref. [16].
Note, however, that in that work the system consists of a single static graphene sheet over an SiO 2 substrate. The
frictional force acts, in this case, on graphenes charge carriers, which are assumed to have a constant drift velocity v
with respect to the substrate.

In our study below, we start from a consideration of the microscopic model for two graphene sheets coupled to
the EM field. Those microscopic degrees of freedom correspond to Dirac fields in 2 + 1 dimensions which, in a
functional integral formulation, are integrated out. That integration, plus the free gauge field action, produces an
in-out effective action for the latter. Integrating the gauge field, we finally get an effective action for the full system,
the imaginary part of which accounts for the dissipative effects in the system, a procedure we have followed in our
previous works [17, 18].

We perform our calculations within a functional integral formalism [19, 20], and after evaluating the probability of
vacuum decay, we relate the imaginary part of the in-out effective action to the frictional force on the plates, and plot
the latter as a function of the velocity v.

The structure of this paper is as follows: in Section II, we introduce the microscopic model considered in this
article. Then we derive an ‘effective action’ for the EM field, namely, an Euclidean action which, in our description,
is a functional of Aµ, the gauge field corresponding to the vacuum EM field. In order to achieve that, we need to find
the form of the vacuum polarization tensor for moving graphene (as seen from rest) assuming relativistic effects can
be neglected.

In Section III, we calculate the full effective action resulting from the integration of the EM field. That effective
action, when rotated to Minkowski space, is applied to the calculation of the probability of vacuum decay, as a function
of the velocity of the sliding graphene sheet. In Section IV, we relate the imaginary part of the in-out effective action
to the dissipated power, and thereby to the frictional force on the moving plate. Section V contains our conclusions.

II. THE MODEL

We first introduce the Euclidean action S, for the EM field plus the two graphene sheets, one of them static, the
other moving at a constant velocity (which is assumed to be parallel to the sheets). The action depends on the gauge
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field and on the Dirac fields, the latter confined to the mirrors. S naturally decomposes into three terms:

S[A; ψ̄, ψ] = S(0)
g [A] + S(0)

d [ψ̄, ψ] + S(int)
dg [ψ̄, ψ,A] , (1)

where S(0)
g is the free (i.e., empty-space) action for the EM field:

S(0)
g [A] =

1

4

∫
d4xFµνFµν , (2)

with Fµν = ∂µAν−∂νAµ, whilst S(0)
d and S(int)

dg are the actions for the free Dirac matter fields and for their interactions

with the gauge field, respectively. Indices from the middle of the Greek alphabet (µ, ν, . . .) run from 0 to 3, with
x0 ≡ ct.

Both S(0)
d and S(int)

dg are localized on the regions occupied by the two sheets, which we denote by L and R (each

letter will be used to denote both a mirror and the spatial region it occupies). Our choice of Cartesian coordinates is
such that L is defined by x3 = 0 and R by x3 = a. We adopt conventions such that ~ = c = 1.

We introduce Γ, the effective action for the full system defined in (1) by S. It can be written in terms of Z, the
zero-temperature partition function, which may be represented as a functional integral:

e−Γ ≡ Z ≡
∫

[DA]Dψ̄Dψe−S[A;ψ̄,ψ] , (3)

where [DA] is the gauge field functional integration measure including gauge fixing.
The effect of the Dirac fields on the gauge field is taken into account by integrating out the former, we introduce

Seff, as follows:

e−Seff[A] ≡
∫
Dψ̄Dψ e−S[A;ψ̄,ψ] , (4)

so that:

e−Γ ≡
∫

[DA] e−Seff[A] . (5)

Recalling our previous discussion and conventions, we write the effective action as

Seff[A] = S(0)
g [A] + S(int)

g [A] . (6)

In the next two subsections, we deal with the determination of S(int)
g , which is the result of the integration of the

fermionic degrees of freedom.

A. Effective action contribution due to the static sheet

As in [21], the effective interaction term for the gauge field in the presence of graphene sheets stems from two

essentially 2 + 1 dimensional theories, coupled to the 3 + 1 dimensional gauge field. Therefore, S(int)
g = S(L)

g + S(R)
g ,

where each term is due to the respective plate. The fact that one of the sheets is moving is irrelevant to the
dimensionality of those theories, since the surface it occupies is invariant under the sliding motion.

Let us first consider S(L)
g [A], due to the static sheet at x3 = 0. Up to the quadratic order in the gauge field,

following [21], we write such contribution as follows:

S(L)
g [A] =

1

2

∫
d3x‖

∫
d3y‖Aα(x‖, 0) Παβ(x‖, y‖)Aβ(y‖, 0) , (7)

where indices from the beginning of the Greek alphabet (α, β, . . .) are assumed to take the values 0, 1, 2 and are
used here to label spacetime coordinates on the 2 + 1 dimensional world-volume of each sheet. Those coordinates
have been denoted collectively by x‖. Regarding the corresponding 2 + 1 dimensional Fourier momentum, we use
k‖ ≡ (k0, k1, k2), and kq ≡ (k1, k2) for its spatial part.

The tensor kernel Παβ is the vacuum polarization tensor (VPT) for the matter field on the L plane. Under the
assumptions of time-independence, as well as invariance under spatial rotations and translations, this tensor can be
conveniently decomposed in Fourier space into orthogonal projectors. Indeed, since it has to verify the Ward identity:

kαΠ̃αβ(k) = 0 , (8)
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(the tilde is used to denote Fourier transformation) the irreducible tensors (projectors) along which Π̃αβ may be
decomposed must satisfy the condition above and may be constructed using as building blocks the objects: δαβ ,

kα, and nα = (1, 0, 0). By performing simple combinations among them, we also introduce: k̆α ≡ kα − k0nα, and

δ̆αβ ≡ δαβ − nαnβ .

Since we cannot guarantee that the VPT will be proportional to P⊥αβ ≡ δαβ − kαkβ
k2 , we construct two independent

tensors satisfying the transversality condition (8), Pt and P l, defined as follows:

Ptαβ ≡ δ̆αβ −
k̆αk̆β

k̆2
(9)

and

P lαβ ≡ P⊥αβ − Ptαβ . (10)

Defining also:

Pq
αβ ≡

kαkβ
k2

, (11)

we verify the algebraic properties:

P⊥ + Pq = I , Pt + P l = P⊥

PtP l = P lPt = 0 , PqPt = PtPq = 0 ,

PqP l = P lPq = 0 ,

(
P⊥
)2

= P⊥ ,
(
Pq)2 = Pq ,

(
Pt
)2

= Pt ,
(
P l
)2

= P l . (12)

Note that δαβ , P⊥αβ , and Pq
αβ are second order Lorentz tensors. The other projectors, Pt and P l are not: they

explicitly single out the time-like coordinate in their definition. On the other hand, Lorentz tensors will tend to
Galilean ones in the low speed limit.

For a general medium, one has:

Π̃αβ(k‖) = gt
(
k0,k‖

)
Ptαβ + gl

(
k0,k‖

)
P lαβ , (13)

where gt and gl are model-dependent scalar functions.
If the matter-field action were relativistic, we would have gt = gl ≡ g, a scalar function of k‖, and the VPT would

be proportional to a single projector:

Π̃αβ(k‖) = g(k‖)P⊥αβ . (14)

On the other hand, for the case of graphene, we may present the well-known results for its VPT [12], as follows:

Π̃αβ(k‖) =
e2N |m|

4π
F
(k2

0 + v2
Fk‖

2

4m2

)[
Ptαβ +

k2
0 + k‖

2

k2
0 + v2

Fk‖
2P

l
αβ

]
(15)

where:

F (x) = 1− 1− x√
x

arcsin[(1 + x−1)−
1
2 ] , (16)

m is the mass (gap), N the number of 2-component Dirac fermion fields, and vF the Fermi velocity (in units where
c = 1).

Here we will consider gapless graphene (m = 0) and define αN ≡ e2N
16 , so that

Π̃αβ = αN

√
k2

0 + v2
Fk‖

2
[
Ptαβ +

k2
0 + k‖

2

k2
0 + v2

Fk‖
2P

l
αβ

]
= αN

√
k2

0 + k‖
2
[√k2

0 + v2
Fk‖

2

k2
0 + k‖

2 Ptαβ +

√
k2

0 + k‖
2

k2
0 + v2

Fk‖
2 P

l
αβ

]
. (17)
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We see explicitly that the mass dimension of the VPT is given by the momentum, as mentioned in the Introduction.

We conclude the discussion on S(L)
g (we work at the second order in the coupling constant) by writing it in a 3 + 1

dimensional looking form,

S(L)
g [A] =

1

2

∫
d4x

∫
d4y Aα(x)V

(L)
αβ (x, y)Aβ(y) , (18)

where V
(L)
αβ (x, y) is given by

V
(L)
αβ (x, y) = δ(x3) Παβ(x‖, y‖) δ(y3) . (19)

B. Effective action due to the moving graphene sheet

We already know the expression for the effective action due to the static mirror at x3 = 0; let us see now how
to derive from it the corresponding object for the moving sheet at x3 = a. We assume that its constant velocity
is much smaller than c, so that the form it adopts in two different inertial systems may be derived using Galilean
transformations. Besides, the material media descriptions are usually restricted to the same regime, namely, small
speeds with respect to the laboratory system (the response functions are usually defined in a comoving system).

Since we need to write the effective action in one and the same system, we need to write the gauge field appearing

in S(R)
g in the laboratory system, the one used in the previous subsection. We also need to refer them to the same

choice of coordinates. Thus,

S(R)
g [A] =

1

2

∫
d4x

∫
d4y Aα(x)V

(R)
αβ (x, y)Aβ(y) , (20)

where

V
(R)
αβ (x, y) = δ(x3 − a)Π′αβ(x‖, y‖)δ(y3 − a) , (21)

where the prime in an object denotes its form in the comoving system. To write the expression above more explicitly,

we need to introduce the transformations x′‖ = Λ(v)x‖, where x‖ is the column vector x‖ =

 x0

x1

x2

.

Those transformations can be obtained by keeping the first non-trivial term in an expansion in powers of v. Since
we have adopted conventions such that c = 1, and our metric is Euclidean, we see that:

Λ(v) =

 1 v 0
−v 1 0
0 0 1

 (22)

(i.e., they are rotation matrices expanded for small angles). We have only kept the three spacetime coordinates
corresponding to the sheets, since the role of the x3 coordinate is irrelevant here. Note that the matrix includes the
transformation of the time coordinate, while Galilean transformations do not include that transformation and are
given by:

ΛG(v) =

 1 0 0
−v 1 0
0 0 1

 . (23)

The EM field, on the other hand, transforms as A′α(x′) = ΛαβAβ(x). Regarding the VPT, we have

Π′αβ(x′‖, y
′
‖) = ΛαγΛβδ Πγδ(x‖, y‖) . (24)

Thus,

Π′αβ(x‖, y‖) = ΛαγΛβδ Πγδ(Λ
−1x‖,Λ

−1y‖) . (25)

Then we see that:

V
(R)
αβ (x, y) = δ(x3 − a) ΛαγΛβδ Πγδ(Λ

−1x‖,Λ
−1y‖) δ(y3 − a) , (26)

In momentum space, we can write

Π̃′αβ(k‖) = ΛαγΛβδ Π̃γδ(Λ
−1k‖)

= ΛαγΛβδ Π̃γδ(k0 − vk1, k1 + vk0, k2) . (27)
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C. The full effective action S(int)
g for graphene

Putting together the previous results, we have that:

S(int)
g =

1

2

∫
d4x

∫
d4y Aα(x)

[
V

(L)
αβ (x, y) + V

(R)
αβ (x, y)

]
Aβ(y) , (28)

or

S(int)
g [A] =

1

2

∫
dx3

∫
dy3

∫
d3k‖
(2π)3

Ã∗α(k‖, x3)
[
δ(x3)Π̃αβ(k‖)δ(y3) + δ(x3 − a)Π̃′αβ(k‖)δ(y3 − a)

]
Ãβ(k‖, y3) , (29)

with Π̃′αβ(k‖) as defined in (27).

Let us now study in more detail the form of Π̃′αβ(k‖). We have:

Π̃′αβ(k‖) = gt
(
Λ−1k‖

)
P ′tαβ + gl

(
Λ−1k‖

)
P ′lαβ . (30)

Now, we will see that the two projectors remain invariant under Galilean transformations. Indeed, we first note
that the Lorentz projectors, which enter into the definition of the Galilean ones, are indeed invariant (we use the
approximate Lorentz form for the transformation matrix):

P ′⊥αβ(k‖) = Λαγ ΛβδP⊥γδ(Λ−1k‖) = P⊥αβ(k‖) (31)

P ′qαβ(k‖) = Λαγ Λβδ Pq
γδ(Λ

−1k‖) = Pq
αβ(k‖) , (32)

while for the Galilean tensor P t we verify explicitly that:

P ′tαβ(k‖) = (ΛG)αγ (ΛG)βδPtγδ((ΛG)−1k‖) = Ptαβ(k‖) . (33)

Since P l is defined in terms of the previously considered three projectors, we see that:

P ′lαβ = P lαβ . (34)

Thus, we conclude that:

Π̃′αβ(k‖) = gt
(
Λ−1k‖

)
Ptαβ + gl

(
Λ−1k‖

)
P lαβ . (35)

We are interested in small relative velocities between the plates, so we are able to use the simpler expression

Π̃′αβ(k‖) = gt
(
k0 − vk1, k1 + vk0, k2

)
Ptαβ + gl

(
k0 − vk1, k1 + vk0, k2

)
P lαβ . (36)

where

gt(k‖) = αN

√
k2

0 + v2
Fk

2
‖ (37)

gl(k‖) = αN

√
k2

0 + v2
Fk

2
‖

k2
0 + k2

‖
k2

0 + v2
Fk

2
‖

III. EFFECTIVE ACTION

With all the previous considerations, we are now in a position to write the total action for the gauge field, containing
the effective influence of the graphene plates. In Fourier space:

Sg[A] =
1

2

∫
dx3

∫
dy3

∫
d3k‖
(2π)3

Ã∗α(k‖, x3)Mαβ(k‖, x3, y3)Ãβ(k‖, y3) (38)

where the kernel Mαβ(k‖, x3, y3) can be written as

Mαβ(k‖, x3, y3) = M0
αβ(k‖, x3, y3) +M int

αβ (k‖, x3, y3) (39)
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where M0 is the free kernel for the vacuum EM field

M0
αβ(k‖, x3, y3) = −∂2

3δ(x3 − y3)P‖αβ + (−∂2
3 + k2

‖)δ(x3 − y3)
[
P lαβ + Ptαβ

]
, (40)

and M int contains the effective interaction with the plates’ internal degrees of freedom

M int
αβ (k‖, x3, y3) = Ṽ

(L)
αβ (k‖, x3, y3) + Ṽ

(R)
αβ (k‖, x3, y3) . (41)

The generating functional for the system is defined by

Z =

∫
[DA] e−Sg[A] (42)

where [DA] is gauge-fixed. Formally, it is equivalent to writting

Z =
[
det
(
Mαβ(k‖, x3, y3)

)]− 1
2 (43)

Now, since we have chosen a complete set of projectors
{
P‖,Pt,P l

}
, we can uniquely decompose the gauge field

in their directions Ãα ≡ Ã
‖
α + Ãtα + Ãlα, thus writing the functional integral over A as three independent functional

integrals

[DÃ] = DÃ‖DÃtDÃl . (44)

This means that the integrating functional for the system can be written as the direct product of three independent
integrating functionals:

Z =
[

det
(
M‖(k‖, x3, y3)

)]− 1
2
[
det
(
M t(k‖, x3, y3)

)]− 1
2
[
det
(
M l(k‖, x3, y3)

)]− 1
2 ≡ Z‖ZtZ l (45)

where we have defined the kernels:

M‖(k‖, x3, y3) = −∂2
3δ(x3 − y3)P‖ , (46)

M l(k‖, x3, y3) =
{

(−∂2
3 + k2

‖)δ(x3 − y3) + gl(k0, k1, k2)δ(x3)δ(y3)

+ gl(k0 − vk1, k1 + vk0, k2)δ(x3 − a)δ(y3 − a)
}
P l , (47)

and

M t(k‖, x3, y3) =
{

(−∂2
3 + k2

‖)δ(x3 − y3) + gt(k0, k1, k2)δ(x3)δ(y3)

+ gt(k0 − vk1, k1 + vk0, k2)δ(x3 − a)δ(y3 − a)
}
Pt . (48)

Given Eq. (46), it is easy to see that Z‖ is a free contribution that does not account for the presence of the plates.
It is thus simply a normalization factor, and we shall not take it into account in the following. The remaining factors
Zt and Z l are formally equivalent but different, except for relativistic materials.

Regarding the effective action, it is easy to see that it shall have two independent contributions

Γ ≡ Γt + Γl =
1

2
tr logM t +

1

2
tr logM l . (49)

We shall now work out the formal expression for Γt; the corresponding expression for Γl is obtained by the substi-
tutions gt → gl, Pt → P l. As in previous works [17, 20], we will perform a perturbative expansion in the coupling
constant, e� 1, and keep only the lowest-order non-trivial term.

Explicitly taking the trace over all discrete and continuous indices in this term we get a TΣ global factor, T denoting
the elapsed time and Σ the sheets’ area (this is a reflection of the time and (parallel) space translation invariances of
the system). Since Γt is extensive in those magnitudes, we work instead with γt ≡ Γ

TΣ , which is given by

γt = −1

4

∫
d3k‖
(2π)3

∫
dx3

∫
dy3

∫
du3

∫
dv3Gαγ(k‖, x3, y3)V tγδ(k‖, y3, u3)Gδβ(k‖, u3, v3)V tβα(k‖, v3, x3) . (50)
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Here, Gαγ(k‖, x3, y3) denotes the respective components of the free Euclidean propagator for the gauge field, and we
have introduced

V t ≡ [gt(k0, k1, k2)δ(x3)δ(y3) + gt(k0 − vk1, k1 + vk0, k2)δ(x3 − a)δ(y3 − a)]Pt . (51)

We only consider in what follows the ‘crossed’ terms, namely, those involving both gt(k0, k1, k2) and gt(k0− vk1, k1 +
vk0, k2), since they are the only ones that lead to friction (the others can be shown to be v-independent).

Taking into account that, in the Feynman gauge:

Gαβ(k‖, x3, y3) ≡ δαβG(k‖, x3, y3) = δαβ

∫
dk3

2π

eik3(x3−y3)

k2
‖ + k2

3

, (52)

and the properties of the projectors, we see that

γt = −1

2

∫
d3k‖
(2π)3

G(k‖, a, 0)G(k‖, 0, a)gt(k0, k1, k2)gt(k0 − vk1, k1 + vk0, k2) . (53)

The procedure and outcome for the Γl contribution are entirely analogous, thus we may write (s = t, l):

γs = −1

2

∫
d3k‖
(2π)3

G(k‖, a, 0)G(k‖, 0, a)gs(k0, k1, k2)gs(k0 − vk1, k1 + vk0, k2) . (54)

Thus,

γs = − 1

8 a3

∫
d3k‖
(2π)3

e−2
√
k20+k21+k22

k2
0 + k2

1 + k2
2

gs(k0, k1, k2)gs(k0 − vk1, k1 + vk0, k2) , (55)

where we have rescaled the momenta akα → kα in order to factorize the dependence of the effective action with
the distance between sheets. Note that γs is the effective action per unit time and area, and therefore has units of
(length)−3.

Before evaluating the imaginary part of the real time (in-out) effective action, we would like to stress that the
Euclidean effective action γ, when evaluated at v = 0, gives the usual Casimir interaction energy per unit area EC
between the graphene sheets. As described in the Appendix A, the result is

EC ≈ −
α2
N

128π

1

a3

1

vF
. (56)

As expected, due to the absence of dimensionful constants in the microscopic description of graphene, the Casimir
energy has the usual 1/a3 dependence of the static vacuum interaction energy for perfect conductors. Eq. (56) is
quadratic in the coupling constant αN , while the Casimir force found in [23] is linear. The reason is that we calculate
the force between two graphene plates, while in [23] the interaction between a perfect conductor and a graphene sheet
is considered.

A. Imaginary part of the effective action

In order to compute the imaginary part of the in-out effective action, we have to rotate the Euclidean result to real
time. To that end, we will rewrite each contribution in a way that simplifies the forthcoming discussion. Note that
we can write the two functions gt and gl as follows:

gt(k‖) = αN

∫ +∞

−∞

dk3

π

k2
0 + v2

Fk
2
‖

k2
0 + v2

Fk
2
‖ + k2

3

(57)

gl(k‖) = αN

∫ +∞

−∞

dk3

π

k2
0 + k2

‖
k2

0 + v2
Fk

2
‖ + k2

3

. (58)

Then we see that,

γt = − α
2
N

8 a3

∫
dk3

π

∫
dp3

π

∫
d3k‖
(2π)3

e−2
√
k20+k21+k22

k2
0 + k2

1 + k2
2

k2
0 + v2

Fk
2
‖

k2
0 + v2

Fk
2
‖ + k2

3

(k0 − k1v)2 + v2
F [(k1 + k0v)2 + k2

2]

(k0 − k1v)2 + v2
F [(k1 + k0v)2 + k2

2] + p2
3

, (59)
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and

γl = − α
2
N

8 a3

∫
dk3

π

∫
dp3

π

∫
d3k‖
(2π)3

e−2
√
k20+k21+k22

k2
0 + k2

1 + k2
2

k2
0 + k2

‖
k2

0 + v2
Fk

2
‖ + k2

3

k2
0 + k2

‖
(k0 − k1v)2 + v2

F [(k1 + k0v)2 + k2
2] + p2

3

. (60)

In real-time, the longitudinal contribution to the effective action is

γl =
iα2
N

8 a3

∫
dk3

π

∫
dp3

π

∫
d3k‖
(2π)3

e
2i
√
k20−k2

‖+iε

k2
0 − k2

‖ + iε
×

k2
0 − k2

‖
k2

0 − v2
Fk

2
‖ − k2

3 + iε
×

k2
0 − k2

‖
(k0 − k1v)2 − v2

F [(k1 − k0v)2 + k2
2]− p2

3 + iε
.

(61)
We shall be concerned first with the integral along k0, which may be first conveniently written as follows:

∫ ∞
0

dk0
e

2i
√
k20−k2

‖+iε

k2
0 − k2

‖ + iε
[f1(k0)f2(k0) + f1(−k0)f2(−k0)] (62)

where

f1(k0) ≡
k2

0 − k2
‖

k2
0 − v2

Fk
2
‖ − k2

3 + iε
(63)

f2(k0) ≡
k2

0 − k2
‖

(k0 − k1v)2 − v2
F [(k1 − k0v)2 + k2

2]− p2
3 + iε

.

In order to perform this integral, we proceed along a similar line to the one followed in [17], namely, to study the
analytical structure of the functions f1 and f2 in order to perform a Wick-rotation by means of a Cauchy integration
on the quarter of a circle located in the first quadrant. Note that the rest of the integrand is the same as the one
dealt with in [17]: it presents two branch-cuts and two poles, none of them in the first quadrant, hence they do not
contribute to the Cauchy integral. Let us then consider the poles of f1(k0) = f1(−k0); they are located at:

k0 = ±
√
v2
Fk

2
‖ + k2

3 − iε ≈ ±
√
v2
Fk

2
‖ + k2

3 ∓
iε

2
√
v2
Fk

2
‖ + k2

3

. (64)

Since none of them is located in the first quadrant, they will not contribute to the Cauchy integral either. For the
f2(k0) function, they are located at:

k
(±)
0 =

1

(1− v2
F v

2)

{
vk1(1− v2

F )±
√
v2k2

1(1− v2
F )2 + (1− v2

F v
2) [(v2

F − v2)k2
1 + v2

F k
2
2 + p2

3 − iε]
}

(65)

It can be seen that only k
(−)
0 may have a positive imaginary part (and thus be located in the first quadrant). We

shall denote its position by ΛA ≡ k(−)
0 . The condition for it to belong to the first quadrant is ReΛA > 0. We first note

that, if k1 < 0, then ReΛA < 0 and there is no pole located on the first quadrant. On the other hand, for positive
values of k1, one can show that:

ReΛA > 0⇔ −(v2
F − v2)k2

1 − (v2
F k

2
2 + p2

3) > 0 .

Clearly, when v < vF , the LHS of the last equation is negative-definite, and the inequality can never be fulfilled. Hence,
for velocities smaller than the Fermi velocity of the material, this pole can never be located in the first quadrant.
Finally, when v > vF , we will have a pole in the first quadrant when

k1 >

√
v2
F k

2
2 + p2

3

v2 − v2
F

. (66)

Proceeding in a completely analogous way for the f2(−k0) term, one can also check that just one pole may belong
to the first quadrant when v > vF . The position of that pole is given by:

ΛB = ΛA − 2vk1
1− v2

F

1− v2
F v

2
. (67)
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The pole is located on the first quadrant for momenta such that

k1 < −

√
v2
F k

2
2 + p2

3

v2 − v2
F

. (68)

Based on the previous analysis, we are now ready to perform the Cauchy-integral along the quarter of a circle, in
a rather similar fashion as we did in [17]. The result is:

γl =
iα2
N

8 a3(2π)3

∫
dk3

π

∫
dp3

π

∫
dk2

∫
dk1

{
−i
∫ ∞

0

dp0
e−2k‖

k2
‖
f1(ip0) [f2(ip0) + f2(−ip0)]

+ 2 πiθ(v − vF )

[
θ

(
k1 −

√
v2
F k

2
2 + p2

3

v2 − v2
F

)
Res(FA(k0),ΛA) + θ

(
−k1 −

√
v2
F k

2
2 + p2

3

v2 − v2
F

)
Res(FB(k0),ΛB)

]}
,

(69)

where

FA(k0) = FB(−k0) =
e

2i
√
k20−k2

‖+iε

k2
0 − k2

‖ + iε
f1(k0)f2(k0) . (70)

Since we are interested in computing the dissipative effects on the system, we shall take the imaginary part of the
effective action. It is easy to see that f1(p0) ∈ R and that f2(ip0) + f2(−ip0) ∈ R also. Hence, the imaginary part of
the longitudinal contribution to the effective action will be given by

Imγl = − α2
N

16π2 a3
θ(v − vF )

∫
dk3

π

∫
dp3

π

∫
dk2

∫
dk1Im

{
Res(FA(k0),ΛA) θ

(
k1 −

√
v2
F k

2
2 + p2

3

v2 − v2
F

)}
. (71)

From this equation, we see that there is no longitudinal contribution to the quantum friction for plates moving with
a relative velocity smaller than the Fermi velocity of the material.

Regarding the transversal contribution to the effective action, let us first rotate it back to real time:

γt =
iα2
N

8 a3

∫
dk3

π

∫
dp3

π

∫
d3k‖
(2π)3

e
2i
√
k20−k2

‖+iε

k2
0 − k2

‖ + iε
×

k2
0 − v2

Fk
2
‖

k2
0 − v2

Fk
2
‖ − k2

3 + iε
× (k0 − k1v)2 − v2

F (k1 − k0v)2 − v2
F k

2
2

(k0 − k1v)2 − v2
F [(k1 − k0v)2 + k2

2]− p2
3 + iε

.

(72)
The calculation is entirely similar to the previous case. The imaginary part of the transversal contribution to the
in-out effective action reads

Imγt = − α2
N

16π2 a3
θ(v − vF )

∫
dk3

π

∫
dp3

π

∫
dk2dk1Im

{
Res(FC(k0),ΛA) θ

(
k1 −

√
v2
F k

2
2 + p2

3

v2 − v2
F

)}
, (73)

with

FC(k0) =
e

2i
√
k20−k2

‖+iε

k2
0 − k2

‖ + iε
f3(k0)f4(k0) , (74)

and

f3(k0) =
k2

0 − v2
Fk

2
‖

k2
0 − v2

Fk
2
‖ − k2

3 + iε
(75)

f4(k0) =
(k0 − k1v)2 − v2

F (k1 − k0v)2 − v2
F k

2
2

(k0 − k1v)2 − v2
F [(k1 − k0v)2 + k2

2]− p2
3 + iε

.

Hence we arrive to the important conclusion that there will not be quantum friction between two graphene plates
unless they move at a relative velocity larger than the Fermi velocity of the internal excitations in graphene. Note
that a velocity threshold effect has also been shown to appear in dielectric materials [22], as a consequence of a
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different, Cerenkov-like effect.

The remaining integrals and the limit ε → 0, needed to obtain the imaginary part of the effective action, can be
performed with some analytical and numerical calculations that are detailed in the Appendix B. The results are shown
in Fig. 1, where it may be seen that the transverse contribution is much smaller than the longitudinal one. Then, the
first plot on Fig. 1 shows the behavior of the leading contribution to the imaginary part of the effective action as a
function of the relative velocity v, for a Fermi velocity of vF = 0.003.

0 0.02 0.04 0.06 0.08 0.1
0

20

40

v

Im
γ
l
/
A

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4
·10−4

v

Im
γ
t
/
A

FIG. 1. Imaginary part of the effective action per unit of time and area, as a function of the relative velocity of the plate, for

a typical graphene Fermi velocity vF = 0.003, in units of A =
α2
N

32π2
1
a3

.

IV. FRICTIONAL FORCE

In order to quantify the dissipation, a rather convenient observable is the dissipated power (and its related dissipative
force). Let us see how that power is related to the imaginary part of the in-out effective action.

Dissipation arises here when the Dirac vacuum becomes unstable against the production of a real (i.e., on shell)
fermion pair. The probability P of such an event, during the whole history of the plates, is related to the effective
action by

2ImΓ = P = T

∫
d3k‖p(k‖) , (76)

where p(k‖) is the probability per unit time of creating a pair of fermions on the plates with total momentum k‖.
The result is proportional to the whole time elapsed T , since we are in a stationary regime (we assume this time to
be a very long one after the mirror was set to motion). Note that k‖ is the three-momentum injected on the system
by the external conditions, i.e. the motion of the R-mirror. The explicit expression for p(k‖) can be read from Eqs.
(61) and (72). It can be written as

p(k‖) =

∫
dk3

∫
dp3 δ(k0 − ΛA)h(k‖, k3, p3) , (77)

for some function h. The presence of the δ-function highlights the fact that the integration in the k0-complex plane
captures the contribution of a single pole at k0 = ΛA.

On the other hand, the total energy E accumulated in the plates due to the excitation of the internal degrees of
freedom is given by

E = T

∫
d3k‖|k0|p(k‖) . (78)
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FIG. 2. Modulus of the transversal and longitudinal contributions to the force per unit of area Ffr acting on the plate as a
function of its relative velocity, for a typical graphene Fermi velocity vF = 0.003. The force is normalized by the static Casimir
force between the plates.

This energy is provided by the external source that keeps the plate moving at a constant velocity, against the frictional
force (per unit area) Ffr. The energy balance is

E

TΣ
= vFfr . (79)

From the reasoning above, it is easy to see that in order to obtain the dissipated power we can simply insert |k0| in
Eqs. (61) and (72), repeat the procedure of the last section, and multiply the result by 2/v. Note that the insertion
of |k0|does not spoil the discussion about the position of the poles, that remains unchanged. The results for the
longitudinal and transverse contributions to the force are shown in Fig. 2. We plot the frictional force normalized by
the static Casimir force between the graphene sheets FC , given in Eq. (56).

vF 2vF

0 0.003 0.006
0

2

4

6

·10−3

v

F
fr
/
F

C

FIG. 3. Modulus of the force per unit of area acting on the plate as a function of its relative velocity, for velocities close to
the Fermi velocity of graphene, vF = 0.003. The force is normalized by the static Casimir force between the plates.

In Fig. 3 we show the force for velocities close to the Fermi velocity. There, it can be seen that the system undergoes
three different regimes regarding dissipation. For v < vF , as already mentioned, there are no dissipative effects on
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the system, and the total frictional force vanishes. For velocities vF < v < 2vF , a frictional force appears, but it
grows comparatively slow with the velocity. For v > 2vF , however, the frictional force starts growing rapidly when
the velocity increases.

The existence of a threshold may be justified as follows. Let us consider the momentum and energy balance in a
small time interval δt, assuming that both the frictional force and the dissipated energy are driven by pair creation.
The only relevant component of the total momentum P of the pair for the (momentum) balance is the one along the
direction of the velocity v. Relating that component of P to the frictional force, we see that:

Ffr δt = Px . (80)

On the other hand, the energy balance reads

Ffr v δt = E (81)

where E is the energy of the pair. But, since the fermions are both on-shell, we have

E ≥ vF |Px| (82)

(the equal sign corresponds to a pair with momentum along the direction of v). Dividing Eq.(81) and Eq.(80), and
taking into account Eq.(82), we see that a necessary condition for friction to happen is:

v ≥ vF . (83)

V. CONCLUSIONS

In this paper we computed the vacuum friction between graphene sheets subjected to a sidewise motion with constant
relative velocity. The interaction between the 2+1 Dirac fields in the graphene sheets and the electromagnetic field has
been taken into account using the known results for the comoving vacuum polarization tensor, properly transformed
to the laboratory system in the case of the moving sheet. We have seen that this interaction generates an imaginary
part in the effective action, that in the nonrelativistic limit can be interpreted as due to the excitation of the internal
degrees of freedom produced by the relative motion between sheets. Therefore, dissipation effect arises due to the fact
the Dirac vacuum becomes unstable against the production of a real (i.e., on shell) fermion pair. We also computed
the frictional force between plates using a slight modification of the calculation of the imaginary part of the effective
action.

The results for the imaginary part of the effective action and for the frictional force show an interesting phenomenon:
there is a threshold for quantum friction effects, that is, there is no quantum friction when the relative velocity between
sheets is smaller than the Fermi velocity. We have presented a simple argument that justifies the existence of this
threshold.

The frictional force computed in this paper is much smaller than the usual Casimir force between graphene sheets,
which in turn is smaller than the Casimir force between perfect conductors (at least when considering gapped graphene,
see Ref. [23]). However, one may envisage situations in which the frictional force could be more relevant. Indeed, it
has been pointed out that, at high temperatures, the Casimir force between a graphene sheet and a perfect conductor
becomes comparable with that between perfect conductors [24]. Moreover, doping can strongly enhance the Casimir
force between graphene sheets [25]. It would be of interest to generalize the results of the present paper to compute
the frictional force in those situations, and discuss whether the enhancement of the Casimir force have a corresponding
effect in the frictional force or not.

On the other hand, we have found that the frictional force vanishes identically for speeds smaller than vF . From
the point of view of applications, graphene has been regarded as one of the most promising new materials, both for
its electronic and mechanical properties. Our results imply, for example, that when graphene is used in a micro-
mechanical device, Casimir friction, and its concomitant energy dissipation, will not be present below the threshold,
which presumably will be the best scenario for most applications.
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Appendix A: Static Casimir force between two graphene sheets

In absence of dissipative effects (i.e., for v = 0), the Euclidean vacuum persistence amplitude is

Z = e−E0T (A1)

where T is the elapsed time, and E0 is the zero-point energy of the EM field. This means that the Casimir energy per
unit of area EC = E0/Σ can be obtained from the Euclidean effective action of the plates when their relative velocity
vanishes, that is EC = γEucl(v = 0).

Taking v = 0 in Eq. (55), and recalling the definitions of gt and gl of Eq. (37), the transversal contribution to the
zero-point energy results

EtC = − 1

8 a3

∫
d3k‖
(2π)3

e
−2

√
k20+k2‖

k2
0 + k2

‖
g2
t (k0, k‖) = − 1

48

α2
N

(2π)2

1

a3
(1 + 2v2

F ) . (A2)

Analogously, the longitudinal contribution is given by

ElC = − 1

8 a3

∫
d3k‖
(2π)3

e
−2

√
k20+k2‖

k2
0 + k2

‖
g2
l (k0, k‖) = − 1

16

α2
N

(2π)2

1

a3

arccos(vF )

vF
√

1− v2
F

. (A3)

Considering that typical Fermi velocities are much smaller than the velocity of light, the leading contribution to
the static Casimir energy between two graphene sheets comes from the longitudinal effective action and reads

EC ≈ −
α2
N

128π

1

a3

1

vF
. (A4)

Therefore the Casimir attractive force acting on the sheets results

FC ≈
3α2

N

128π

1

a4

1

vF
. (A5)

Appendix B: Details of the calculation of the imaginary part of the effective action

In order to obtain a final expression for the imaginary part of the effective action, it is necessary to compute the
desired residues. We will repeat the proceadure we did in [17]. Let us start with the longitudinal part:

Res(FA(k0),ΛA) ≡ lim
k0→ΛA

(k0 − ΛA)FA(k0)

=
e

2i
√

Λ2
A−k2

‖+iε

Λ2
A − k2

‖ + iε
×

Λ2
A − k2

‖
Λ2
A − v2

Fk
2
‖ − k2

3 + iε
×

Λ2
A − k2

‖

−2
√
v2
F k

2
1(1− v2)2 + (1− v2

F v
2)(v2

F k
2
2 + p2

3)
, (B1)

where in the last factor we have explicitly used the fact that the denominator is positive-definite and thus the limit
ε→ 0 can be taken with no further harm.

It could be shown that Λ2
A−k

2
‖ is definite-negative in all the integration region (that is, for k1 >

√
v2
F k

2
2 + p2

3/(v
2 − v2

F )).
This can be easily seen when explicitly taking both v and vF � 1, but the relation still holds for arbitrary values of
v, vF < 1. This means that we can set ε = 0 everywhere except in the second factor of (B1), that can be written as:

1

Λ2
A − v2

Fk
2
‖ − k2

3 + iε
=

1

g(k1) + iε
, (B2)

with

g(k1, k2, k3, p3) = Λ2
A − v2

Fk
2
‖ − k2

3 . (B3)

Now we can explicitly take the limit ε→ 0,

1

g(k1, k2, k3, p3) + iε
→ p.v.

(
1

g

)
− iπδ (g(k1, k2, k3, p3)) . (B4)
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Therefore, the longitudinal contribution to the imaginary part of the effective action reads

Imγl =
α2
N

32π a3
θ(v − vF )

∫
dk3

π

∫
dp3

π

∫
dk1

∫
dk2δ (g(k1, k2, k3, p3) θ

(
k1 −

√
v2
F k

2
2 + p2

3

v2 − v2
F

)
(B5)

× e−2
√

k2
‖−Λ2

A
k2
‖ − Λ2

A√
v2
F k

2
1(1− v2)2 + (1− v2

F v
2)(v2

F k
2
2 + p2

3)
. (B6)

Note that we have is a 4-dimensional integration of a function multiplied by the Dirac-delta function composed with
g: ∫

d4κF(κ)δ(g(κ)) =

∫
S/g(κ)=0

dσ
F(κ)

|∇g(κ)|
, (B7)

where in our case κ = (k1, k2, k3, p3). The second hand is an integration over the 3-dimensional surface defined
by g(k1, k2, k3, p3) = 0. We can think this surface as the one defined by the equations k1 = x1(k2, k3, p3) and
k1 = x2(k2, k3, p3), with

x1(k2, k3, p3) =

√√√√ u(k2, k3, p3)− 2
√
w(k2, k3, p3)

v2 (v2
F − 1)

2
(vv2

F + v − 2vF ) (vv2
F + v + 2vF )

(B8)

x2(k2, k3, p3) =

√√√√ u(k2, k3, p3) + 2
√
w(k2, k3, p3)

v2 (v2
F − 1)

2
(vv2

F + v − 2vF ) (vv2
F + v + 2vF )

(B9)

where

u(k2, k3, p3) =v2
(
1− v2

F

) {
p2

3

(
v2
F + 1

)
+ k2

2v
2
F

[
v2
F

(
v2
(
v2
F + 1

)
− 2
)

+ 2
]

+ k2
3

[
1 + v2

F

(
v2
(
v2
F + 1

)
− 3
)]}

w(k2, k3, p2) =v2
(
1− v2

F

)2 {
k4

3v
2
F

(
v2 − 1

)2
+ k2

3

[
k2

2v
2v2
F

(
2
(
v2 − 2

)
+ v4

F + 1
)

+ p2
3

(
v2
(
v4
F + 1

)
− 2v2

F

)]
+ k4

2v
2v4
F

[
1 +

(
v2 − 2

)
v2
F + v4

F

]
+ k2

2p
2
3v

2v2
F

(
v4
F + 1

)
+ p4

3v
2
F

}
. (B10)

Then we have

Imγl =
α2
N

32π a3
θ(v − vF )

∫
dk3

π

∫
dp3

π

∫
dk2

∫
dk1

∑
i=1,2

δ (k1 − xi)
|∇g(k1, k2, k3, p3)|k1=xi

θ

(
k1 −

√
v2
F k

2
2 + p2

3

v2 − v2
F

)
(B11)

× e−2
√

k2
‖−Λ2

A
k2
‖ − Λ2

A√
v2
F k

2
1(1− v2)2 + (1− v2

F v
2)(v2

F k
2
2 + p2

3)
. (B12)

The result of the integration over k1 can be written as a Heaviside step-function of a rather involved expression
depending on the rest of the integration variables. This, and the remaining integrals have been performed numerically.

The calculation of γt proceeds in a similar way.
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