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Caixa Postal 19044, 81531-990 Curitiba, Brazil

devecchi@fisica.ufpr.br, kremer@fisica.ufpr.br

(Dated: July 30, 2007)

Form invariance transformations can be used for constructing phantom cosmologies starting with
conventional cosmological models. In this work we reconsider the scalar field case and extend the
discussion to fermionic fields, where the “phantomization” process exhibits a new class of possible
accelerated regimes.

I. INTRODUCTION

The issue of form invariance symmetries [1] has been
invoked recently to extract different evolution regimes
from Friedmann-Robertson-Walker (FRW) and Bianchi
type V cosmologies [2]. This is the case when we ob-
tain the so-called phantom cosmologies [3]-[6] from or-
dinary regimes like universes filled with barotropic flu-
ids [7]. These phantom models generate solutions that
contain negative pressure situations, therefore promot-
ing positive accelerated expansions [8],[9]. The case were
the gravitational source is a bosonic field was investi-
gated in [1],[3],[5], and the question that follows would
be what happens when the field promoting the universe
expansion is a fermion whose dynamics is described by
Dirac equations. These kind of models has been ana-
lyzed in several works [10], [11] where it was shown that
regimes with ordinary matter/dark energy transitions are
possible solutions of Einstein and Dirac equations. Tak-
ing into account these ideas, the main point of discus-
sion of this work is to investigate the form invariance
transformations (FIT) when the Klein-Gordon dynamics
is replaced by the Dirac equations in a FRW space-time.
The manuscript is structured as follows: in section II we
review the basic ideas behind the FIT in cosmology; in
section III we focus on the scalar field case. In section IV
we analyze the symmetries behind the fermionic formula-
tions. In section V we introduce the dual transformation
and the associated ”phantomization” process. Finally in
section VI we display our conclusions.

II. INTERNAL SYMMETRY IN FRW

An interesting method to obtain new exact solutions
for the Einstein equations from already existing ones, by
using the FIT, has been shown in a series of papers [1]-[6],
[12]-[14].

In spatially flat perfect fluid FRW cosmologies, such
transformations can be viewed as a prescription relating

the quantities a, H , ρ and p in a given initial scenario to
quantities ā, H̄ , ρ̄ and p̄ corresponding to a new cosmo-
logical model.

As a starting point we present a quick review of this
internal symmetry with the purpose of investigating it
in bosonic and fermionic cases. As is well-known, the
Einstein equations for a flat FRW cosmological model
with scale factor a, and filled with a perfect fluid with
energy density ρ and pressure p, are

3H2 = ρ, (1)

ρ̇+ 3H(ρ+ p) = 0, (2)

where H = ȧ/a. The correspondent FIT is given by [1]

ρ̄ = ρ̄(ρ) , (3)

H̄ =

(

ρ̄

ρ

)1/2

H , (4)

p̄ = −ρ̄+

(

ρ

ρ̄

)1/2

(ρ+ p)
dρ̄

dρ
, (5)

where ρ̄ = ρ̄(ρ) is an invertible arbitrary function and
the set of transformations (3)-(5) give rise to the form
invariance symmetry (FIS) group . For the perfect fluid
case, p = (γ − 1)ρ, the barotropic indexes of the original
and transformed fluid are related by

γ̄ =

(

ρ

ρ̄

)3/2
dρ̄

dρ
γ. (6)

For later application it will useful to investigate the trans-
formation rule for the quantities which characterize the
geometry and the fluid when the transformation is gen-
erated by [1]

ρ̄ = n2ρ, (7)

where n is the constant parameter of the FIS group.
Hence, for the geometrical quantities we get

H̄ = nH, → ā = an, (8)
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and

w̄ = γ̄ − 1 =
γ

n
− 1, (9)

p̄ = w̄ρ̄ =
(γ

n
− 1

)

ρ̄, (10)

for the state parameter w and the pressure of the fluid.
Let us analyze the equation of state (10) generated

by transformation (7) when the seed fluid represents a
normal fluid with γ > 0. We can infer: (i) when 0 <
n < γ it follows that w̄ > 0 and the cosmological fluid
behaves as a normal fluid; (ii) when n > γ it follows that
−1 < w̄ < 0 and the cosmological fluid behaves as a
quintessence constituent; (iii) when n < 0 it follows that
w̄ < −1 and the cosmological fluid behaves as a phantom
constituent.

III. THE BOSONIC CASE

In this section we analyze the transformation rules for a
scalar field φ, self-interacting through a potential V (φ),
under the simple transformation generated by (7) [1].
Applying Eqs. (4) and (5) on the dynamical quantities
associated with the scalar field, i.e., its energy density
ρφ = φ̇2/2 + V (φ) and pressure pφ = φ̇2/2 − V (φ), we
obtain

˙̄φ 2 = nφ̇2, (11)

V̄ (φ̄) = n(n− 1)
φ̇2

2
+ n2V (φ). (12)

In order to study the action of the group, below, we will
generate the set of power law solution starting for a par-
ticular seed one.

A. Bosonic power law group

Let us solve the Einstein-Klein-Gordon equations for a
free scalar field, V = 0. The solutions of those equations
are given by

a(±) = (± t)1/3, φ = ±
√

2

3
ln |t|, V = 0. (13)

where the branches a(+) and a(−) are defined for t > 0
and t < 0 respectively. Now, we use the latter as a seed
set for the FIS group. To do that first we calculate the
transformed quantities when the group is acting on the
above solutions

˙̄φ 2 = nφ̇2, (14)

V̄ (φ̄) = n(n− 1)
φ̇2

2
. (15)

Finally combining the seed set (13) with the above equa-
tions we obtain the power law solutions together with the

scalar fields and corresponding potentials

ā(±) = (± t)n/3, (16)

φ̄ = ±
√

2n

3
ln |t|, (17)

V̄ (φ̄) =
n

3
(n− 1)e∓

√
6/n φ̄. (18)

For the identical transformation, n = 1, the latter equa-
tions (16)-(18) reduce to the seed solution (13). We con-
clude that power law solutions can be generated starting
from that, corresponding to the free scalar field.

IV. THE FERMIONIC CASE

In this section we extend the FIT to a fermionic field sat-
isfying the Dirac equation in curved space time. As re-
quired by equations (1) and (2) we must calculate the en-
ergy density and the hydrostatic pressure of the fermionic
field. We have [11]

ρψ = m(ψψ) + V, (19)

pψ =
dV

dψ

ψ

2
+
ψ

2

dV

dψ
− V, (20)

where ψ and ψ = ψ†γ0 are the spinor field and its adjoint,
respectively.

To obtain the transformation properties of ρψ and pψ
we express the potential in terms of the scalar invari-
ant X = (ψψ)2 and the pseudo-scalar invariant Y =
(iψγ5ψ)2. To this end, we suppose a generic potential
V = V (X,Y ), that include, among others, the Nambu-
Jona-Lasinio potential [11]. For this kind of potential the
hydrostatic pressure becomes

pψ = 2X
∂V

∂X
+ 2Y

∂V

∂Y
− V. (21)

Applying the transformation rules (3)-(5), (7) to the
energy density (19) and the hydrostatic pressure (21) we
find that

m̄
√

X̄ + V̄ = n2(m
√
X + V ), (22)

2X̄
∂V̄

∂X̄
+ 2Ȳ

∂V̄

∂Ȳ
+ m̄

√

X̄

= n

[

2X
∂V

∂X
+ 2Y

∂V

∂Y
+m

√
X

]

. (23)

Inserting V̄ , from Eq.(22), into Eq.(23) we obtain the
following equation

(

m

2
√
X

+
∂V

∂X

) [

X̄
∂X

∂X̄
+ Ȳ

∂X

∂Ȳ
− X

n

]
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+
∂V

∂Y

[

X̄
∂Y

∂X̄
+ Ȳ

∂Y

∂Ȳ
− Y

n

]

= 0. (24)

All transformations satisfying the last condition (24) rep-
resent internal symmetries of the Einstein equations with
a fermionic source, provide that condition becomes an
identity for any potential and particle mass. Then the
two square brackets must vanish

X̄
∂X

∂X̄
+ Ȳ

∂X

∂Ȳ
=
X

n
(25)

X̄
∂Y

∂X̄
+ Ȳ

∂Y

∂Ȳ
=
Y

n
. (26)

In addition, by imposing the condition

m̄(n = 1, X̄ = X, V̄ = V ) = m, (27)

on the transformed fermionic mass, the Eq. (22) becomes
an identity for the identity transformation n = 1, X̄ = X
and V̄ = V . Hence, any solution of the coupled system of
partial differential equations (25) and (26), satisfying the
condition (27), is a FIS transformation of the Einstein-
Dirac dynamic.

For the general massive fermionic field whose potential
depends only on X , the solution of (25) along with (22)
lead to the general FIT

X̄ = Xn, (28)

V̄ = n2V + n2m(
√
X −Xn/2), (29)

m̄ = n2m. (30)

Also, from Eqs. (2), (19) and (21) we get X ∝ a−6

and ā = an.

A. Fermionic power law group

Following the same methodology as the bosonic scalar
field, let us investigate the two simple cases, (i) the free
massive fermionic particle and (ii) the massless fermionic
particle with a polynomial potential.

In the free case, the energy density (19) and pressure
(21) of the fermionic particle are given by

ρ = m
√
X, p = 0, V = 0. (31)

Solving the Einstein equations we obtain

a(±) = a0(± t)2/3, X =
16

9m2

(a0

a

)6

, (32)

where a0 is an integration constant. Suppose now that
we are interested in comparing this cosmological model
with other one driven by a potential, which is assumed
to be dependent only on X . This can be done by insert-
ing the seed configuration (31)-(32) into the transforma-
tions (5), (7), (8) and (28)-(30). Then, we find the full

set of power law solutions along with the potential, en-
ergy density and pressure characterizing the transformed
fermionic configuration:

ā(±) = ā0(± t)2n/3, ā0 = an0 , (33)

X̄ =
(

16
9m2

)n (

ā0

ā

)6
, (34)

V̄ = m̄(X̄1/2n − X̄1/2), m̄ = n2m, (35)

ρ̄ = m̄X̄1/2n, p̄ =
(

1
n − 1

)

ρ̄. (36)

The Dirac equations in a FRW background for the seed
and transformed configurations read

ψ̇ +
3

2
Hψ + ımγ0ψ + ıγ0 dV

dψ
= 0, (37)

˙̄ψ +
3

2
H̄ψ̄ + ım̄γ0ψ̄ + ıγ0 dV̄

dψ̄
= 0, (38)

along with the corresponding equation for the adjoint ψ

and ψ̄. In order to preserve the own characteristics of the
fermionic particles, we assume that the Dirac matrices
remain invariants under a FIS transformation.

Solving the Dirac equation (38) for the new configura-
tion (33)-(36), we obtain the spinor field solution

ψ̄(t) =
1

tn









b̄1 e
−ım̄τn

b̄2 e
−ım̄τn

d̄∗1 e
ım̄τn

d̄∗2 e
ım̄τn









, (39)

where

|b̄1|2 + |b̄2|2 − |d̄1|2 − |d̄2|2 =

(

4n2

3m̄

)n

> 0, (40)

and

τn =
1

n

(

4n2

3m̄

)1−n ∫

t2(n−1) dt. (41)

For n = 1 the latter becomes the spinor field correspond-
ing to the seed solution (31)-(32). In addition, the Ein-
stein equations for the new configuration are

3H̄2 = ρ̄, −2 ˙̄H = ρ̄+ p̄, (42)

so, the new solution (33)-(36) can be associated with a
fermionic barotropic fluid whose equation of state is γ̄ =
1 + p̄/ρ̄ = 1/n. When n = 1, identical transformation,
the solution (33)-(36) become the seed solution (31)-(32),
which can be identified with some kind of fermionic dust
matter.

Now, we consider the massless case and investigate a
spinor field driven by a potential V = V (X) depending
on X . Here, the energy density ρ and the pressure p
associated with the spinor field are given by:

ρ = V, p = 2X
dV

dX
− V. (43)
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The imposition of the energy density transformation ρ̄ =
n2ρ reduces the transformation rules (28)- (30) to

X̄ = Xn, V̄ = n2V, m̄ = 0. (44)

By choosing the seed potential V =
√
X we obtain

ρ =
√
X, p = 0, (45)

and from the Einstein equations it follows

a(±) = a0(± t)2/3, X =
16

9

(a0

a

)6

. (46)

Actually, from the mathematical point of view, this solu-
tion and the corresponding spinor field may be obtained
from the above seed solution (31)-(32) and the general
spinor field (39)-(41) respectively by making m = 1.
However, both cases, m 6= 0 and m = 0, are absolutely
different because a FIT that relates them does not exist,
as can be seen from Eq. (27). In fact, for the m = 0 case,
the solution for the transformed fermionic configuration
read

ā(±) = ā0(± t)2n/3, ā0 = an0 , (47)

X̄ =
(

16
9

)n (

ā0

ā

)6
, (48)

V̄ = n2X̄1/2n, (49)

ρ̄ = n2X̄1/2n, p̄ =
(

1
n − 1

)

ρ̄. (50)

Thus, comparing the transformed configurations (33)-
(36) with (47)-(50) for m = 1, we see that both potential
are different and the dynamics too.

V. DUALITY AND PHANTOM COSMOLOGIES

The “phantomization” process means that the energy
density of the expanding cosmological model under anal-
ysis must satisfy ρ̇ > 0 or equivalently the weak energy
condition (WEC), (ρ + p) < 0, must be violated. In a
FRW background the previous conditions become H > 0
and Ḣ > 0. Therefore, one can infer two cases, namely,
(a) ρ has an asymptote ρ→ Λ for t→ ∞, or (b) ρ grows
without limit. In the first case the scale factor tends to a
de Sitter solution a → exp

√

Λ/3 t. For the second case
by supposing the following asymptotic behavior for the
energy density ρ → ρ0a

k with k > 0, the asymptotic
solution of Friedmann equation reads

a(−) →
[

2
√

3

k
√
ρ0 (t0 − t)

]2/k

, t < t0, (51)

a(+) →
[

2
√

3

k
√
ρ0 (t− t0)

]2/k

, t > t0. (52)

The expanding solution a(−) is defined for t < t0 and
ends in a big rip at t = t0, since the scale factor diverges
at the finite time t0 resulting into a singularity in the

future. Unlike the former, the contracting solution a(+)

begins from a singularity in the past at t = t0. To sum
up, a(−) is the “phantomization” of the solution 1/a(−)

which ends in a big crunch at t = t0. In terms of FIS the
“phantomization” process means that there is a duality
between two solutions of the Friedmann equation, i.e.,
between 1/a(−) and a(−) [12]-[16]. In fact, the class of
FIT generated by n = −1:

ρ→ ρ̄ = ρ, p+ ρ→ p̄+ ρ̄ = −(p+ ρ), (53)

with

H → H̄ = −H, a→ ā = 1/a, (54)

transforms a contracting scale factor, H < 0, satisfying
the WEC, ρ+p > 0 into an expanding one, H̄ > 0, which
violates the WEC, ρ̄ + p̄ < 0. The latter, dubbed dual
transformation, is crucial because of their applicability
as a method of transforming a conventional cosmological
model into a phantom one by performing a FIT.

In the bosonic case the expressions (11) and (12) be-
come

˙̄φ 2 = −φ̇2, (55)

V̄ (φ̄) = φ̇2 + V (φ). (56)

and this implies into φ̄ = iφ. That is, the transformed
scalar field is related to the original one by a Wick rota-
tion, and we finally have

ρ̄ =
1

2
˙̄φ 2 + V̄ (φ̄). (57)

The sign in the kinetic part of the energy density, ˙̄φ 2 =
−φ̇ 2 < 0, indicates that what we actually have now is
a phantom cosmology, with a phantom field φ̄, driven by
the potential V̄ (φ̄), which is a real function of φ. Finally
we see that the relationship H̄ = −H , gives in turn for
the scale factor the transformation law ā ∝ a−1.

For the fermionic matter, in the case of having a poten-
tial depending of X , the “phantomization” induces the
following transformation rules for the variables X and V

X̄ =
1

X
, (58)

V̄ = m
√
X

(

1 − 1

X

)

+ V. (59)

and

γ̄ = −γ, (60)

for the barotropic index of the spinor field. Hence, there
is a duality between a contracting universe filled with an
ordinary spinor field, γ > 0, and an expanding universe
filled with a phantom spinor field γ̄ < 0.
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VI. CONCLUSION

We have found the symmetry transformations under
which the Einstein equations, for a spatially flat FRW
space-time filled with bosonic and spinor fields, preserve
their form. This group of transformation has been used
to obtain power-law solutions from a seed one, for bosonic
and fermionic fluids. We have given special attention
to the n = −1 case, which express the duality between
non-accelerated and accelerated scenarios and viceversa.
Thus, starting from a contracting spatially flat FRW cos-
mological models we get, after using the dual transfor-
mation, a super-accelerated spatially flat FRW cosmo-
logical models, i.e., the “phantomization” of the model.
We have shown that bosonic and fermionic fields behave
differently under a dual transformation, the former be-

comes imaginary, whereas the latter changes the sign of
the phase and inverts its asymptotic limits.
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