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Dynamics and decoherence in nonideal Thouless quantum motors
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Different proposals for adiabatic quantum motors (AQMs) driven by DC currents have recently attracted
considerable interest. However, the systems studied are often based on simplified models with highly ideal
conditions where the environment is neglected. Here, we investigate the performance (dynamics, efficiency, and
output power) of a prototypical AQM, the Thouless motor. To include the effect of the surroundings on this type of
AQMs, we extended our previous theory of decoherence in current-induced forces (CIFs) to account for spatially
distributed decoherent processes. We provide analytical expressions that account for decoherence in CIFs, friction
coefficients, and the self-correlation functions of the CIFs. We prove that the model is thermodynamically
consistent, and we find that decoherence drastically reduces the efficiency of the motor mainly due to the
increase in conductance, while its effect on the output power is not much relevant. The effect of decoherence on
the current-induced friction depends on the length of the system, reducing the friction for small systems while
increasing it for long ones. Finally, we find that reflections of the electrons at the boundary of the system induce
additional conservative forces that affect the dynamics of the motor. In particular, this results in the hysteresis of
the system and a voltage dependent switching.
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I. INTRODUCTION

In recent years, there has been an increasing interest in
electronic transport through nanoelectromechanical systems
(NEMS) where electronic degrees of freedom couple directly
to the mechanical ones [1–6]. Advances in the experimental
control and fabrication of NEMS [7,8] as well in the theory
describing current-induced forces (CIFs) [9,10] has fueled a
great variety of proposals in the field, such as nanocoolers,
nanorefrigerators, and nanomotors among others [11–15].
An interesting example of these are the so-called adiabatic
quantum motors (AQMs) [15]. They are nanoscopic motors
driven by the recoil forces of a flux of quantum particles. There,
quantum mechanics can be used for example to boost their
efficiency by enhancing electronic reflectance. Essentially, this
class of devices works as quantum pumps operated in reverse.
While in a quantum pump, the periodic movement of some
parameters pumps quantum particles from one reservoir to
another; in a quantum motor a DC current of particles induces
the cyclic motion of the device. The adjective “adiabatic”
in this context refers to the limit when the dynamics of the
mechanical degrees of freedom is slow compared with the
dwell time of electrons passing through the device. In this
regime it is commonly assumed that the mechanical degrees
of freedom behave classically.

An interesting example of AQMs is the one based on the
Thouless pump [16,17]. In this system, a mechanical degree
of freedom couples to electrons through a periodic potential.
For large but finite conductors, a “band gap” arises reducing
dramatically the transmission of electrons within an energy
range. As previously shown, this fact can be used in the
so-called Thouless motor to increase the efficiency of the
engine [15]. Since quantum interferences play a crucial role in
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the high performance of such systems, it is natural to wonder
about the role of decoherent effects [18,19]. However, in this
system, decoherent events can occur anywhere along the long
conductor, and this should be properly taken into account.
Besides that, in the ideal Thouless motor, based on a linearized
Hamiltonian which also neglects the effect of the boundaries
of the system, conservative forces are negligible. It is then
relevant to study the deviations from the linearized model,
the appearance of conservative forces, and their interplay with
nonconservatives ones in the dynamics of the system.

In the present work, we use a tight-binding model to
investigate the performance of AQMs based on the Thouless
pump. We also include in our analysis the role of decoherence
and the effect of the mismatching between the system and
the leads. In Sec. II we present the theoretical framework
used to describe the dynamics of mechanical systems subject
to current-induced forces in the presence of decoherence. In
Sec. II D we extend our previous theory of CIFs in the presence
of decoherence to account for spatially distributed decoherent
processes. In Sec. II E we specify the models used to describe
the Thouless motor and define its efficiency and output power.
The main results are discussed in Sec. III. In subsection III A
we study the deviations of Thouless motors with respect to
their ideal description. In Sec. III B we discuss the interplay
of conservative and nonconservative forces in the dynamics of
the system. Finally, in Sec. III C we investigate the effect of
decoherence on the performance of these AQMs.

II. THEORY

A. Langevin dynamics

In this work we will treat the mechanical degrees of freedom
of the system as classical fields acting on the electrons, treated
as quantum spinless noninteracting particles. The dynamics of
the classical fields are assumed to be slow compared to that of
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the electrons. In this context of mechanical modes embedded
in an electronic environment, it is natural to describe the
dynamics of the classical system by a set of coupled Langevin
equations,

Mνẍν + ∂U

∂xν

= Fν −
∑
ν ′

γν,ν ′ ẋν ′ + ξν, (1)

where in the left hand side Mν is the mass associated with
coordinate xν , and dU/dxν accounts for any force not included
in the right hand side of the equation, which could be external
forces or even internal forces but not classifiable as CIFs. The
right hand side of Eq. (1) accounts for the CIFs [9] where F is
the mean adiabatic reaction force, or the Born-Oppenheimer
force, and it is the result of the mean value of the force operator,
Fν = 〈∂νĤel〉, for the frozen electronic Hamiltonian Ĥel . The
coefficients γν,ν ′ are associated with dissipative friction forces,
for ν = ν ′, and effective “Lorentz” forces, for ν �= ν ′, while
ξν accounts for the force fluctuations. The dissipative term
of the CIFs arises from the first adiabatic correction to the
Born-Oppenheimer force, while fluctuations are given by the
thermal and nonequilibrium contributions of the quantum
fluctuations of the force. All these terms have a quantum origin
and expressions in terms of scattering matrices or Green’s
functions are given in Refs. [9,20]. The mean adiabatic reaction
force can be written as

Fν =
∑

α

∫
dε

2π i
fα

(
S† ∂S

∂xν

)
α,α

, (2)

where S is the scattering matrix and fα is the Fermi function
of the conduction mode or channel α associated with some
lead with chemical potential μα . We will be interested only in
the first order expansion of CIFs close to equilibrium. Then, it
is enough to consider only the equilibrium contribution to γ ,
which is given by [20]

γ
eq

ν,ν ′ = 1

2

∫
dε

2π

∂f

∂ε

∑
α,β

(
S† ∂S

∂xν

)
α,β

(
S† ∂S

∂xν ′

)
β,α

, (3)

where f is the equilibrium Fermi function. Provided that
electronic fluctuations occur at short time scales, ξν is locally
correlated in time and its variance Dν,ν ′ can be written as
〈ξν(t)ξν ′(t ′)〉 ≈ Dν,ν ′δ(t − t ′), where its equilibrium value is
given by

Dν,ν ′ = 2kBT γ
eq

ν,ν ′ . (4)

B. Current

Suppose a system is connected to an arbitrary number of
conduction channels α with chemical potential μα and subject
to the movement of an arbitrary number of classical degrees
of freedom xν coupled somehow to the electronic degrees of
freedom. Then, the total current at channel α, in the adiabatic
limit with respect to the movement of the (xν)s, in the low bias
regime, and for noninteracting particles, can be evaluated by

Iα = I bias
α + I pump

α + δIα, (5)

where I bias
α is the bias current consequence of the chemical

potential differences among the channels, I pump
α is the pumped

current due to the adiabatic movement of the classical degrees
of freedom, and δIα is the noise in the current.

The bias current at channel α is given by [21,22]

I bias
α = − e

h

∑
β

Tαβδμβ, (6)

where e is the electron charge, h the Planck constant, Tαβ is
the probability of transmission between channels α and β,
i.e., an adimensional conductance [23], Tαα = −∑

β �=α Tαβ ,
and δμβ = μβ − μ0, with μ0 being the equilibrium chemical
potential. Note that we are not including the factor 2 in the
current as we are considering that electrons with different spins
belong to different conduction channels of the same lead.

The pumped current at channel α can be evaluated by
[24,25]

I pump
α = e

∑
ν

dnα

dxν

ẋν, (7)

where dnα/dxν is the emittance of channel α due to a change
in the parameter xν [26]. At equilibrium, it can be evaluated
from

dnα

dxν

=
∫

dε

2π i

(
−∂f

∂ε

)(
∂S

∂xν

S†
)

α,α

. (8)

Deviations from the mean current given by δIα are
provided by thermal (Johnson-Nyquist) noise and shot noise
[27]. It is assumed that they consist of rapid fluctuations
of the current where their current-current correlations are
given by 〈δ �Iα(t − t ′)δ �Iβ(t ′)〉 = D

(I )
α,βδ(t − t ′). The shot noise

contribution to δIα vanishes at equilibrium but thermal noise
remains finite, resulting in [27]

D
(I )
α,β = −2kBT

e2

h
Tαβ, (9)

where kBT is the thermal energy.

C. Decoherence

The type of decoherence modeled in this work considers
that at any time interval dt electrons are locally removed
from a site i and with probability 2�φdt/h̄ from the coherent
beam propagating through the system. Each lost electron is
then instantaneously reinjected with a random phase at the
same position [28–31]. In principle, the rate of decoherent
processes, 1/τφ = 2�φ,i/h̄, can be estimated from the system-
environment interaction through the Fermi golden rule (FGR).
The interaction of electrons with phonons or other processes
not included in the original Hamiltonian not only renormalizes
the electron’s energy but also produces their decay towards
an unbounded region of Hilbert’s space. This results in an
imaginary self-energy correction �φ,i which we use as a free
parameter.

As first noticed by Büttiker [21], a voltmeter connected to
site i, being a classical apparatus, imposes the collapse of the
wave function and results in a source of decoherence. In the
low bias limit, such a voltmeter is susceptible to be modeled
by a multichannel scattering matrix supplemented with the
condition of particle conservation imposed by the Kirchhoff’s
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laws that define the measured voltage, i.e., Iφ,i = 0. D’Amato
and Pastawski [32] noticed that local decoherent processes
described by the FGR, and hence by a Hamiltonian description,
can be modeled as leads attached to specific sites. In this case,
the escape rate toward those fictitious leads is precisely the rate
at which decoherent events occur, 2�φ,i/h̄, and this must be
supplemented by the condition Iφ,i = 0. Current conservation
is ensured by a local chemical potential at the fictitious voltage
probes calculated self-consistently from the multiterminal
Landauer-Büttiker equations. The advantage of this approach
is that the values of (�φ,i)s can be estimated from the specific
Hamiltonian model that describes the system-environment
problem [33].

Later on, Pastawski proved that the fictitious probes
approach results from the linear response approximation of
the Keldysh-Kadanoff-Baym integrodifferential formulation
of quantum transport [28,29]. In this local description, the
energy of electrons is preserved but not its momentum which
leads, in the limit of high decoherence rate, to a random-walk-
like dynamics for long conductors. This, in turn, provides
the correct asymptotic limit for large conductors compatible
with Ohm’s law, I ∝ L−1 where L is the length of the
system [28,29,32]. Note that this can be used to estimate the
value of �φ,i from experiments [33]. Direct comparison with
dynamical simulations also showed that this steady state model
of decoherent transport can also be seen as the effect of fast
random fluctuations of local energies [31].

In a previous work, we extended the above mentioned
method to account for decoherence in CIFs [18]. The key
in this case is to consider all the terms of the current in
Eq. (5). This result is consistent with the positivity of friction
coefficients in equilibrium, Onsager reciprocity relations, as
well as the fluctuation-dissipation theorem. Such consistency
is fundamental to prevent unphysical results. In the following,
we will further extend the method originally formulated for a
two channel system of zero dimension, to include decoherence
in a wider class of systems, those connected to an arbitrarily
large number of reservoirs and subject to spatially distributed
decoherent processes.

D. Currents and current-induced forces for spatially
distributed decoherent processes

1. Currents

In what follows, we will make a distinction between the
real conduction channels and fictitious probes labeling them
as � and φ, respectively. In this notation, the vector containing

the total current at each channel, �I = ( �I�, �Iφ)
T

, results in( �I�

0

)
= − e

h

(
T�� T�φ

Tφ� Tφφ

)(
δ �μ�

δ �μφ

)
+ e

∑
ν

(
d�n�/dxν

d�nφ/dxν

)
ẋν +

(
δ �I�

δ �Iφ

)
, (10)

where we have used Eqs. from (5) to (8) and have included
the null current condition through fictitious leads �Iφ ≡ 0
[19,34]. Explicit formulas for the calculation of T are given in
references [19] and [33] among others. By solving Eq. (10) by

blocks, we obtain the δ �μφ that satisfy charge conservation,

δ �μφ = δ �μneq
φ + δ �μpump

φ + δ �μfluc
φ

= (−Tφφ)−1Tφ�δ �μ�

−
∑

ν
h(−Tφφ)−1 d�nφ

dxν

ẋν

−h

e
(−Tφφ)−1δ �Iφ. (11)

We consider that the last term δ �μfluc
φ fluctuates with a fast

timescale, compared with that of the mechanical degrees
of freedom. Replacing δ �μφ into Eq. (10), we obtain the
expression for the electronic currents corrected by decoherent
processes,

�I� = − e

h
{T�� + T�φ(−Tφφ)−1Tφ�}δ �μ�

+ e
∑

ν

{
d�n�

dxν

+ T�φ(−Tφφ)−1 d�nφ

dxν

}
ẋν

+ δ �I� + T�φ(−Tφφ)−1δ �Iφ. (12)

The first term is the “bias” current that includes decoherent
corrections, also derived in Ref. [19]. The second one is the
pumped current in the presence of decoherence which results in
an extension of the expression derived in Refs. [35,36]. Finally,
the third term of Eq. (12) accounts for the currents fluctuations
due to thermal noise and can be evaluated using Eq. (9).

2. Current induced forces

We start by splitting the Fermi function as fα = f + �fα .
Then, the force can be expressed as

Fν = Feq
ν + �Fν. (13)

The equilibrium force F
eq
ν , which is conservative, is given by

�Feq = −∇Ueq, (14)

where

Ueq = −
∫

dε

2π i
f Tr(ln S). (15)

The other term of the force, �Fν , is

�Fν =
∑

α

∫
dε

2π i
�fα

(
S† ∂S

∂xν

)
α,α

. (16)

Taking the limit of low temperatures and small bias, one can
rewrite Eq. (16) as

�Fν =
(

d�n(∗)

dxν

)T

· δ �μ, (17)

where d�n(∗)/dxν = (d�n(∗)
� /dxν,d�n(∗)

φ /dxν)T , δ �μ =
(δ �μ�,δ �μφ)T , and the injectance (d�n(∗)/dxν), is given by
[26]

dn(∗)
α

dxν

( �B) =
∫

dε

2π i

(
−∂f

∂ε

)(
S†( �B)

∂S( �B)

∂xν

)
α,α

= dnα

dxν

(− �B), (18)
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where �B represents some external magnetic field. In
the last step we have used the reciprocity relation Sα,β ( �B) =
Sβ,α(− �B), which is a consequence of particle conser-
vation, S†S = I, and time reversal for spinless particles
S(− �B)S∗( �B) = I [37].

By replacing δ �μφ from Eq. (11) into Eq. (17), we obtain

�Fν = Fne
ν −

∑
ν ′ γ

φ

νν ′ ẋν ′ + ξφ,ν, (19)

where the first term represents the nonequilibrium forces, the
second gives the dissipative forces induced by decoherence,
and the third provides the force fluctuations induced by
decoherence. These last two terms add to the dissipative forces
and force fluctuations already present in the system, Eqs. (3)
and (4).

The nonequilibrium forces are

Fne
ν =

{
d�n(∗)

�

dxν

+
(

d�n(∗)
φ

dxν

)T

(−Tφφ)−1Tφ�

}
δ �μ�. (20)

These forces are not necessarily conservative, and its line
integral over one cycle is proportional to the number of
particles pumped over each channel,

W = �N · δ �μ, (21)

where W is the work per cycle performed by CIFs in the low
bias limit and for an infinitesimally slow motion. The vector
�N contains the number of particles pumped per cycle over

each conduction channel. This expression, which essentially
reflects energy conservation, can be seen as the generalization
of similar relations discussed in previous works [15,18,38]
to multichannel systems with spatially distributed decoherent
processes.

The coefficients of the decoherence-induced dissipative
forces γ

φ

νν ′ are given by

γ
φ

νν ′ = h

(
d�n(∗)

φ

dxν

)T

(−Tφφ)−1 d�nφ

dxν ′
. (22)

It can be proved that the matrix γ φ , whose elements are γ
φ

νν ′ , is
positive definite in our case, spinless particles in the absence
of magnetic fields, see Appendix A.

Finally, the third term of Eq. (19) is the decoherence-
induced fluctuating forces which are characterized by its
self-correlation 〈ξφ,ν(t)ξφ,ν ′(t ′)〉 = D

φ

νν ′δ(t − t ′), where

D
φ

νν ′ = h2

e2

(
d�n(∗)

φ

dxν

)T

(−Tφφ)−1

×〈δ �Iφ ⊗ δ �Iφ〉[(−Tφφ)−1]T
d�n(∗)

φ

dxν ′
. (23)

Using Eq. (9) in Eq. (23) and assuming the absence of external
magnetic fields, yields

D
φ

νν ′ = 2kBT γ
φ

νν ′ . (24)

This completes the fluctuation-dissipation relation between γ

and ξ , now including decoherence.
Now, let us neglect fluctuations in the CIFs and currents.

This should be equivalent to consider their average value over

several realizations of the same experiment. Then, we can put
Eq. (12) and the right hand side of Eq. (1) in the form(

−−→
F−→
I

)
=

(
−−→

F eq

−→
I eq

)
+

(
L11 L12

L21 L22

)(−→̇
x−→
δμ

)
. (25)

We can consider the forces
−→
F and the currents

−→
I as

generalized fluxes and velocities
−→̇
x and chemical potentials−→

δμ as generalized forces in a thermodynamic sense. The
coefficients L12 and L21 can be identified with Onsager’s
coefficients, which in our system should accomplishLνα( �B) =
−Lαν(− �B), see Ref. [38,39]. This can be readily verified in
Eqs. (12) and (20)

∂Fν

∂(δμα)

∣∣∣∣
eq, �B

= −Lν,α( �B) = Lα,ν(− �B) = ∂Iα

∂ẋν

∣∣∣∣
eq,− �B

.

(26)

Finally, one can check that the model is consistent with the
second law of thermodynamics. As shown in Ref. [40] the rate
of entropy production Ṡdiss for a driven quantum electronic
system is

T Ṡdiss = −( �F − �Feq) · �̇x + 1

e
�I · �δμ. (27)

In our case, this results in

T Ṡdiss = �̇xT (γ eq + γ φ) �̇x + �δμT
(

−e

h̄
T

)
�δμ

+
∑
αν

(
dnα

dxν

− dn(∗)
α

dxν

)
δμαẋν. (28)

Using (3), (22), and (26), together with Appendix A one can
readily check that for the case of interest, spinless particles in
the absence of magnetic fields, the rate of entropy production
Ṡdiss is always positive.

E. Thouless quantum motor

1. General model

A Thouless quantum motor is basically the reverse of a
Thouless pump. In principle, this can be accomplished in
several ways. One possible realization of it is schematized
in Fig. 1. In our proposal the Thouless motor consists of just

FIG. 1. Scheme of a possible Thouless motor made out of
charges periodically arranged on the surface of a rotational piece
and interacting with a wire coiled around it. Rotation of the cylinder
changes the potential sensed by the electrons in the wire.
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a conducting wire, which could be a conducting polymer for
example, coiled around a rotational piece with periodically
arranged charges on its surface. For simplicity, in the following
we will consider a single-channel wire where the potential of
the conduction electrons traversing the wire is given by

U (x) = 2� cos(2πx/λ − θ ). (29)

Here � is the coupling strength with the classical coordinate,
λ is the period, and θ varies according to the angular position
of the rotor. The mechanical rotation is described uniquely by
the coordinate θ , which we assume slow with respect to the
dwell time of the electrons inside the wire. The dynamics of
the rotor will be described by the angular Langevin equation

Mθθ̈ = Fθ − γθ θ̇ + ξθ . (30)

Here Mθ is the moment of inertia of the rotor, Fθ is the mean
adiabatic reaction force, which is a torque in the present case,
γθ θ̇ is the friction force where γθ is the friction coefficient
in units of “Energy × time/radians2,” and ξθ is the noise
component of the CIFs, also a torque.

2. Tight-binding model

To calculate all the terms of the CIFs, we will resort to a
tight-binding model. The electronic Hamiltonian of the wire
is

ĤS =
N∑

n=1

{Enĉ
†
nĉn − V0[ĉ†nĉn−1 + ĉ

†
n−1ĉn]}, (31)

where ĉ
†
n and ĉn are the creation and annihilator operators at

site n, V0 is the hopping, and En = U (x) is the site energy,
being x = na with a the lattice constant and n the site index.
We will include the leads through self energies, �, acting on
the first and last sites, 1 and M , where

�(ε) = lim
η→0+

ε + iη

2
− sgn(ε)

√(
ε + iη

2

)2

− V 2
0 . (32)

Then, the effective Hamiltonian results in

Ĥeff = ĤS + �(ε)[ĉ†1ĉ1 + ĉ
†
MĉM ]. (33)

Note that this Hamiltonian presents a jump in the site
energies En between the leads and the system. Such an abrupt
change of the potential energy can cause the scattering of the
incoming or outgoing wave functions which in turn may affect
CIFs. This effect, not previously discussed for AQMs, should
be present in almost any device acting as an AQM and, as we
will discuss in the next section, it can dramatically affect the
dynamics of the system.

In order to account for different system-lead junctions we
use a linear function f (n) that multiplies the site energies En

of the Ml first and last sites. The term “Ml” in the figures
stands for f (x) = x/Ml , where x = an or x = a(Ml − n) for
the first or last sites, respectively. In this way the larger the Ml

the smoother the lead-system transition; Ml = 1 correspond
to the “abrupt” transition, see Fig. 2.

Decoherence is included in this model by adding fictitious
leads to every tight-binding site with a self-energy given
by �φ = −i�φ . The final effective Hamiltonian including

Ml = 1

Ml = 25

Ml = 50

FIG. 2. Scheme showing how the site energies change for
different system-lead transitions. See Sec. II E, Tight-binding model.

decoherence yields

ˆ̃H eff = ĤS + �(ε)[ĉ†1ĉ1 + ĉ
†
MĉM ] +

N∑
n=1

�φĉ†nĉn. (34)

The elements of the T matrices in Eqs. (10), (15), (20), and
(22) are then calculated using the Fisher and Lee formula, see
Refs. [19] and [22].

3. Ideal model

The Thouless motor has been studied previously using
what we call here the “ideal model” [15]. In this model
the Hamiltonian is linearized with respect to the momentum
of the electrons, resulting in an effective Hamiltonian with
counterpropagating linear channels and backscattering due to
the periodic potential,

Ĥ = vF pσ z + �(σx cos θ + σy sin θ )�(L/2 − |x|). (35)

Here L is the length of the system, � is the step function,
the momenta are measured from ±k0 and energies from
h̄2k2

0/2m with k0 = π/λ, the (σ i)s denote the Pauli matrices
in the space of the counterpropagating channels, and the
real electron spin is not included for simplicity. Using this
Hamiltonian and assuming a perfect system-lead matching one
can solve analytically the scattering matrix and its derivatives
for the Thouless motor. In the limit L → ∞ and for electron’s
energies within the band gap, one finds that the charge pumped
per cycle and the efficiency are one while the equilibrium
forces and the transmittance are zero [15].

4. Work and efficiency

To avoid confusion we will define some magnitudes in
the stationary regime that will be discussed in the following
sections. The adiabatic work of CIFs, limθ̇→0 W = W (a)(θ ), is

W (a)(θ ) =
∫ θ

0
F (θ ′)dθ ′. (36)

The total work per cycle W (total) is

W (total) = W (a) − W (load) −
∫ τ

0
γ (t ′)θ̇2dt ′, (37)

where W (load) is the work exerted by some external force
against which one wants to move the system, and τ is the
period of the motor. The output power per cycle Ẇ (load) can
be obtained from the steady state condition W (total) = 0, while
the input power is simply the total current times the applied
voltage. Then, the thermodynamic efficiency, calculated as the
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average output power per cycle over the average input power
per cycle, results in

ηT D = Nδμ − ∫ τ

0 γ (t ′)θ̇2dt ′

τ 〈TLR〉δμ2 + Nδμ
. (38)

Here, we have used Eq. (21) and assumed a two leads system
with an arbitrary number of conduction channels. 〈TLR〉 is the
sum of the average transmittances (averaged over time) that
connects all channels of one lead with all channels of the other,
N is the total charge pumped per cycle to one lead through any
channel of it, and δμ = |μL − μR| is the chemical potential
difference among the leads.

The evaluation of ηT D requires the integration of the
equation of motion of the problem. However, this can be
circumvented by assuming a terminal velocity approximately
constant. Then, the thermodynamic efficiency yields

ηT D ≈ N − 4π2〈γ 〉/(τδμ)

τ 〈TLR〉δμ + N
, (39)

where 〈γ 〉 is the average friction coefficient, and the value of τ

is left as a free parameter which depends ultimately on W (load).
If we assume F (load)(θ ) independent of θ̇ , the period is given
by

τ ≈ 4π2 〈γ 〉
Nδμ − W (load)

. (40)

Alternatively, if we assume F (load)(θ ) proportional to θ̇ , one
can write

τ ≈ 4π2 〈γ + γ (load)〉
Nδμ

. (41)

As shown in Appendix B of Ref. [18] and in panel (c)
of Fig. 6, taking θ̇ constant in the steady state results in a
good approximation for a large momentum of inertia. This
approximation will be used in Figs. 8, 9, and 10 of the next
section.

III. RESULTS

The Thouless motor has shown to be an optimal candidate
for the realization of an AQM since its maximum theoretical
efficiency is one [15]. In this section we will evaluate its
performance under nonideal conditions such as nonlinear
dispersion relations, nonideal system-lead matchings, external
friction sources, and decoherence of the electrons responsible
for the motor’s motion.

A. Deviations from the ideal model

The proposal of the Thouless motors given in Ref. [15]
involves several simplifications to obtain an analytical solution
of the CIFs. One of these simplifications consists of neglecting
the scattering of electrons entering the system. However, the
potential profile inside the system is periodic, and it changes
with the coordinate of the mechanical degree of freedom while
the potential profile in the leads is constant and fixed. Then,
there must be some θ -dependent scattering of electrons and
consequently, CIFs must be affected by the details of the
junctions. It is worth mentioning that this effect prevails at
equilibrium (δμ = 0) and is a consequence of the quantum

π 2π

−W
( a

)
(θ

)/
δμ

θ

Ml = 1
Ml = 25
Ml = 50

FIG. 3. Effect of the border conditions on the adiabatic work
W (a). The line labeled ‘ideal’ corresponds to the expected result from
the ideal model.

nature of the particles driving the motion of the system.
Figure 3 shows an example of the emergence of corrections
to the CIFs in the Thouless motor as a consequence of the
“edge mismatching.” There, the work performed as a function
of the coordinate shows oscillations that decrease with the
softening of the system-lead transition. The strength of this
edge effect will depend, of course, on the details of the
system-lead interface but also on the coupling strength � as
can be seen in Fig. 4. According to this figure one way to reduce
this edge mismatching is to reduce the coupling strength �.
However, this cannot be done without consequences as it is
always necessary that a gap makes the transmittance zero and
drives the efficiency towards one. For this reason a smaller
value of � will require a larger wire, which could bring its
own consequences such as a larger decoherence rate.

Taking into account that the ideal model of the Thouless
motor is based on a linearized Hamiltonian, some deviations
are expected from the results with respect to the energy of the
electrons, especially at energies far from the center of the band
gap. However, as can be seen in Fig. 5 the differences are not
significant, at least at small values of the coupling strength �.

B. Dynamics

One of the key parameters that affect the dynamics of
the studied system is the friction coefficient γ . In realistic
situations dissipation of the mechanical energy can arise from
different sources not only from the CIFs. Therefore, there is a
minimal value of γ , that arising from CIFs, but not a maximum

π 2π

−W
( a

)
(θ

)/
δμ

θ

Δ = 0.001
Δ = 0.005
Δ = 0.010

FIG. 4. Effect of � (in units of V0) on the adiabatic work W (a).
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W
(a

)
/
δμ

ε/Δ

FIG. 5. Comparison of the adiabatic work W (a) per cycle calcu-
lated from the tight-binding model (T.B.) and the ideal model (ideal).
Fermi energy ε measured from the center of the band gap.

one. In order to study the effect of different parameters on
the dynamics, we solved the equation of motion of Thouless
motors using Eq. (30) for a wide range of different conditions.
The results are summarized in the phase diagram shown in
Fig. 6. In the calculations we took for simplicity γ as constant,
an arbitrary moment of inertia Mθ = 1018h̄2/(V0rad2), and the
low temperature limit T ≈ 0. In Appendix B we discuss the

(a)

(b)

FIG. 6. (a) Phase diagram of different steady state dynamics as a
function of δμ and γ , assumed constant for simplicity, for W (load) =
0. Insets of the regions I and II show typical dynamics for these
regions (θ̇ vs time). The typical dynamics of the region III is shown
in panel (c). (b) Scheme of how W (a)(θ ) changes with δμ. (c) Average
terminal velocity 〈θ̇〉 versus δμ for a typical hysteresis cycle where
the dynamics can fall into the cases shown in the insets of the regions
I or II depending on the initial conditions. Panel (c) was calculated
with the value of γ shown as a horizontal line in panel (a). The
vertical line in (a) corresponds to the value of δμ to which W (a)(θ ) vs
θ does not show a minimum. Dashed green line in panel (a) showed
the transition between the regions II and III but for twice the moment
of inertia.

parameters used in this section and the role of Mθ on the
dynamics.

As previously shown, the system-lead mismatching intro-
duces corrections to the CIFs, and one of the consequences is
the oscillatory behavior of W (a)(θ ). This effect induces, under
the appropriate conditions, a dependence of the final state on
the initial conditions. This can be understood considering the
following example. Suppose W (total) possesses a minimum, as
the case labeled “small δμ” in panel (b) of Fig. 6. Then, let
us assume the motion starts from the first maximum to the
left of that minimum with a temperature close to zero and
with a small velocity pointing to the right. Additionally, let
us assume the energy dissipated as friction is lower than the
energy gained by reaching the first maximum to the right.
Under this condition, the system will keep moving to the right
accelerating its motion until the energy dissipated becomes so
large that W (total) = 0. This dynamics will look much like that
shown in the inset of the region I of Fig. 6. If we start from the
minimum under the same condition, the system will follow a
damped oscillatory dynamics as that shown in the inset of the
region II of Fig. 6. Both situations are present in the region III
of Fig. 6. There, if the rotor is still, it will remain still, but if it
is already rotating, it will continue to turn.

The above mentioned effect is not present at larger δμ,
where W (a)(θ ) does not present a minimum. In this case,
independently of the initial condition, the system will move
until the stationary condition is reached, W (total) = 0, at a high
enough average terminal velocity. This situation corresponds
to the region I of the phase diagram of Fig. 6, and its typical
dynamics looks like that of its correspondent inset. The other
possibility is that W (a)(θ ) does present a minimum, but γ

is so large that the energy gained after one period does not
compensate the energy lost through friction, even if the initial
velocity is infinitesimally small. This situation corresponds to
the region II of the phase diagram of panel (a) of Fig. 6. Its typ-
ical dynamics looks like that of its correspondent inset. Panel
(c) of Fig. 6 shows the average terminal velocity resulting from
different dynamics calculated by varying the applied voltage
progressively. We first increase the voltages from zero (lower
red arrow) and then, starting from a high voltage, we decrease
it (upper blue arrow). Note the hysteresis cycle that occurs in
the region III and the linear dependence of 〈θ̇〉 on δμ which is
consistent with θ̇(θ ) approximately constant, see Eq. (40).

The effect of a load coupled to the motor will be like
that of an additional friction or a constant force. The first
case occurs, for instance, when the motor has to drag a mass
against an external friction source. The second one occurs, for
example, when the motor is lifting up a mass against gravity.
In both cases, the behavior of the system will be much like
that described above, but with either a corrected value of γ or
a corrected value of δμ, respectively.

In this section, our intention was to highlight the importance
of the boundary induced CIFs in the dynamics. For this
reason, we only discussed the zero temperature limit of the
dynamics, where the difference between dynamical regimes
is clearer. At finite temperatures, crossing a barrier becomes
just a matter of probabilities or waiting enough time. Under
this condition, the discussed behaviors are still present but
blurred by temperature, and the transitions from one regime
to the other are smoother. If the temperature is high enough,
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the dynamics looks like that of a random walk where even
backward motion is allowed and the average velocity results
from the difference in the probabilities of moving in one or the
other direction (see Ref. [41] and references therein).

C. Effect of decoherence

In an ideal Thouless motor, all electrons incoming to
the wire with energy within a certain range are reflected.
Conservation of momentum imposes that electron back-
scattering should move the rotor. As transmittance is close to
zero within the band gap, I total ≈ I pump, Onsager’s relations,
Eq. (26), imply that all electrons passing through the system
contribute to the work per cycle. The result of this is that the
efficiency goes towards one in the limit of small velocities,
see Eq. (38). Since the suppression of the transmittance is
a consequence of the quantum nature of the electrons, its is
natural to wonder about the performance of the motor under
dephasing environments.

Let us assume the rate of decoherence, 2�φ/h̄ = 1/τφ , is
constant along the wire but negligible within the leads. Then,
electrons crossing a wire of total length L and decoherent
length Lφ = 2vf �φ/h̄ have a probability P ∝ e−L/Lφ of
traversing the system without undergoing a decoherent event
[32]. If the total length of the system L is close to Lφ then it
will be necessary to include the effect of decoherence on CIFs
according to the theory developed in Sec. II.

Figure 7 shows the effect of decoherence and the length
of the system on the total current-induced friction coefficient
γtotal = γ eq + γ φ . First, note that there is a saturation of γtotal

at large L. This is reasonable since the Fermi energy is
within the band gap and then electrons possess a penetration
depth beyond which the system is not further explored. This
penetration depth is increased by decoherence, and this, in
turn, increases the value of L at which γtotal saturates. The
other interesting feature to be noticed is the change in the
behavior of γtotal with or without decoherence for systems of
different lengths. Note that for short systems, decoherence
always reduces the friction, while for long systems it is the
opposite. This can be understood as two competing effects of
decoherence on γ . First, the type of decoherence described
by our model does preserve energy but not momentum, which
in turn induces a random-walk-like dynamics of electrons, in
a semiclassical picture. This phenomenon should increase the

γ
to

ta
l

h̄
/
ra

d
2

L [a]

Γφ/V0 = 0
Γφ/V0 = 3.10−5

FIG. 7. Effect of decoherence and the system’s length L on the
averaged total friction coefficient 〈γtotal〉. Here, γ stands for the
current-induced friction coefficient.

FIG. 8. Effect of decoherence on the thermodynamic efficiency
ηT D for different values of the Fermi energy, measured from the center
of the band gap. We assumed an external dissipative mechanism with
γext = 108h̄/rad2. Each curve was calculated using the value of τ that
maximizes ηT D for ε = 0, see Eq. (15) of Ref. [15].

noise and then γtotal with �φ . Second, for small systems, adding
reservoirs or increasing the connection to them tends to reduce
the noise in the currents, which on the other hand is the source
of noise of CIFs [34,42]. Then it is expected for small systems
a decrease of γtotal with �φ . As can be seen in Fig. 7, the first
effect dominates at large (L)s while the second one dominates
at small (L)s.

Let us note that in Fig. 7, the analyzed friction coefficient
stands for the minimum possible energy dissipation that the
system may suffer, i.e., when any external sources of friction
are suppressed. In Figs. 8, 9, and 10, we assume that the
current-induced friction is much lower than external sources
of friction. The value used in the figures of the external friction
coefficient γext was taken such as the terminal velocity falls
close to that of experimental nanomotors, see Appendix B. In
Fig. 10 we analyze the effect of γ and the system’s length on
the efficiency and the output power.

FIG. 9. Effect of decoherence on the thermodynamic efficiency
ηT D and the output power Ẇ (load) (in arbitrary units) for different
operational frequencies of the motor τ−1 (in arbitrary units). We
assumed an external dissipative mechanism with γext = 108h̄/rad2.
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FIG. 10. Effect of γ and the system’s length L on the thermo-
dynamic efficiency ηT D and the output power Ẇ (in arbitrary units).
L0 = 2000a and γ0 = 108h̄/rad2.

In Fig. 8 we plot the efficiency for different values of �φ/V0.
For the pure coherent case, �φ/V0 = 0, one can see a strong
oscillatory behavior of the efficiency outside the band gap.
This feature was already present in the analytic solution of the
model proposed in Ref. [15]. They are just a consequence of
resonances of the reflection coefficients for certain values of
the Fermi energy and the length of the system, similarly to
the Fabry-Perot resonances. As expected, decoherence has a
profound influence on the efficiency. For a decoherence rate of
3 × 10−5 V0, the efficiency smoothes notably its resonances
and drops its maximum value in two orders of magnitude.
To put this value of �φ into context, a tight-binding chain
of the same length but without the periodic potential gives
L/Lφ = 0.5. This implies that almost half of the electrons
suffer a decoherent event while passing through the sample. It
is interesting that some memory of the quantum nature of the
Thouless motor remains even at high decoherence rates. The
effect of the band gap on the efficiency is still noticeable even
for �φ/V0 = 63 10−5. This decoherence rate, for the same
system but without the periodic potential, gives L/Lφ = 10,
which implies that only 1 out of 22 000 electrons pass the
system without suffering a decoherent event.

It is interesting to study the effect of the period of the
motor τ on the efficiency ηT D and the output power Ẇ . This
is done in Fig. 9, where we compare the coherent and the
decoherent cases. From the figures, it is clear that ηT D results
are much more sensitive to decoherence than Ẇ . This shows

that the decrease in the efficiency due to decoherence is just
a consequence of the increase of the transmittance and not of
the decrease in W , see Eq. (38).

Before discussing the last figure, first note that the values
of ηT D in Figs. 8 and 9 are far from the optimal value
predicted by the ideal model, ηT D = 1 [15]. This is only
a consequence of the transmittance not being small enough
for the value of γ used. In Eq. (38) one can check that for
TLR strictly zero, one gets ηT D = 1 in the limit of τ → ∞,
independently of the value of γ . However, for finite TLR the
larger the value of γ , the smaller the value of ηT D . Regretfully,
due to numerical limitations, we were not able to evaluate
the effect of decoherence on ηT D for larger systems, which
implies smaller TLR . However, in Fig. 10 we show the effect
of L and γ on ηT D and Ẇ for the coherent case. There
one can see that doubling the length of the system has a
strong influence on ηT D , for τ−1 ≈ 0 ηT D ≈ 1. Decreasing
γ also affects favorably ηT D , but its effect is not too strong.
Finally, note that the conditions that maximize ηT D and Ẇ

do not necessarily coincide, especially for highly efficient
motors. This is reasonable after analyzing Eq. (38). There, it is
clear that for I bias = 0, τ → ∞ maximize ηT D by minimizing
the energy dissipated as friction, while this condition makes
〈Ẇ 〉 = W/τ → 0. The consequence of this is that one has to
choose between maximizing the output power or the efficiency
in a Thouless motor.

IV. CONCLUSIONS

We have extended our previous theory of decoherence in
CIFs to account for spatially distributed decoherent processes
providing analytical expressions for the CIFs, friction coeffi-
cients, and the self-correlation functions of the forces. We have
proved that our model is thermodynamically consistent, ful-
filling fluctuation-dissipation theorem, Onsager’s reciprocity
relations, and the first and the second laws of thermodynamics.

We have confirmed that decoherence drastically reduces
the efficiency of the motor mainly due to the increase in
conductance, while its effect on the output power is not too
important. The effect of decoherence on the current-induced
friction depends on the length of the system, reducing the
friction for short systems while increasing it for long ones.

We have found that the conditions that maximize the
efficiency do not necessarily coincide with those that maximize
the output power. This could have important consequences for
the implementation of the motor.

We have shown that the system-lead mismatching produces
conservative forces that can dramatically alter the dynamics
of motors. At high dissipation, these forces set a minimum
voltage that allows the operation of the motor. At low
dissipation, the boundary-induced forces cause hysteresis with
two limiting voltages that switch on-off the movement of the
motor depending on its previous history.
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APPENDIX A: POSITIVITY OF T, γ eq , AND γ φ MATRICES

Gauge invariance of the bias current implies that a constant
shift of the chemical potentials must not yield additional
currents through the system. This condition is encoded in
the relation

∑
β �=α Tαβ = ∑

β �=α Tβα and forces the definition
Tαα = −∑

β �=α Tαβ . This is the central property that in the
end guarantees the positivity of the γ φ and T matrices and in
turn the positivity of the entropy production with or without
decoherence, Eq. (28).

The Gershgorin’s circle theorem [43] applied to our
problem, T symmetric, establishes that

λ ∈
⋃
α

Dα where Dα =
⎧⎨⎩x ∈ R : |x − Tαα| �

∑
β �=α

Tαβ

⎫⎬⎭,

where λ is an eigenvalue of T. The above implies that all x in
the interval Dα satisfies

−2 < Tαα −
∑
β �=α

Tαβ � x � Tαα +
∑
β �=α

Tαβ � 0.

Thus, in particular,

x � 0.

The union of all sets Dα does not contain positive values, and
then (−T) is a positive semidefinite matrix.

The positivity of the matrix γ φ depends on that of the
matrix (−Tφφ)−1. We start by first noticing that Tφφ and T−1

φφ

are symmetric for the case of interest. Then, the diagonal
elements of Tφφ satisfy the following condition

|[Tφφ]αα| =
∑

β �=α,β∈�,φ

Tαβ >
∑

β �=α,β∈φ

Tαβ, (A1)

where Tαα < 0, and Tαβ > 0 for α �= β. Unlike the previous
case with the matrix T, the diagonal elements of Tφφ are
strictly greater than

∑
β �=α,β∈φ Tαβ . By applying the Gershgorin

circle’s theorem to this case, we conclude that all λφ’s,
eigenvalues of Tφφ , are strictly negative. This implies that
(−Tφφ)−1 is positive definite, which ensures the positivity of
the matrix γ φ .

Given the unitarity of the S matrix, which is a conse-
quence of particle conservation, one can readily prove that
[S†∂S]α,β = −[S†∂S]∗βα . Then, using the reciprocal relation
for the case of interest in this work, Sαβ = Sβα , and the fact
that −∂f/∂ε � 0 one arrives to

γ eq
ν,ν = 1

2

∫
dε

2π

(
−∂f

∂ε

) ∑
α,β

∣∣∣∣S† ∂S

∂xν

∣∣∣∣2

α,β

� 0. (A2)

Positivity of �̇xT γ eq �̇x is obvious by considering a change of
basis where γ eq is diagonal. Combining the three previous
results we conclude that the rate of entropy production given
by Eq. (28) is always greater or equal to zero, as required by
Thermodynamics.

APPENDIX B: PARAMETERS USED AND FEASIBILITY

In all the figures shown in body text, the total size of the
system L considered is 2000 sites (except in Fig. 10), the

period λ is 25 sites, the coupling strength � is 0.001V0 (except
in Fig. 4), the value of Ml used is 25 (except in Fig. 3), the
Fermi energy is taken at the center of the gap (except in Figs. 5
and 8), and the value of δμ is 10−4 (except in Fig. 6).

Although the aim of this work is to study general charac-
teristics of the Thouless motors, we consider important to add
a brief discussion about the relation between the parameters
used and possible experimental scenarios. For this reason, let
us consider a concrete example, a Thouless motor made of
some conducting polymer rolled around a cylinder made of
SiO2. With that in mind, we will take the coupling of the
tight-binding model V0 approximately equals to that of a π -π
bond, V0 = −3.6 eV [33]. Considering the separation between
neighboring carbon atoms in a double bond, we will take the
lattice constant a as a = 0.14 nm. Then, the total length of the
conducting wire results in 280 nm.

The moment of inertia used in Fig. 6, Mθ = 1018h̄2/V0,
is roughly that of a cylinder of radius r = 65 nm and height
d = 4r made of SiO2. Anyway, the particular value of Mθ

only determines the scale of the y axis in the figure. Note, that
Eq. (30) can be rewritten as

∂2θ

∂t ′2
= Fθ − γθ√

Mθ

∂θ

∂t ′
+ ξθ , (B1)

where t ′ = t/
√

Mθ . Therefore, the energy dissipated and then
the line dividing the regions II and III of Fig. 6 scales with√

Mθ .
The value of γ used in Figs. 8 and 9 implies a terminal

velocity of about 1/τ = 3 × 102 Hz at δμ = 2 × 10−4V0.
This was estimated from Eq. (37) with W total = 0, as-
suming a constant terminal velocity, and W(load) = 0. This
velocity is the same as that of the nanomotor reported in
Ref. [14].

Considering the size of the system, L = 2000a, the value
of λ used, λ = 25a, ensures many periods of the potential
within the system. Under this condition a gap arises for
Fermi energies ε between E0 ± �, where the energy of
the center of the gap results E0 = 2V0 − 2V0 cos(πa/λ). In
finite systems and for energies within the band gap, the
transmittance decays exponentially according to T ≈ e−2L/�,
where � = h̄vF /� [15]. The Fermi velocity can be estimated
for the tight-binding model at the center of the gap as
vF = (2V0a/h̄) sin(πa/λ) [22]. Then, the decay length yields
� ≈ 250a, for � = 1 × 10−3V0.

The dwell time τD of electrons is not direct to evaluate
as in the case of quantum dots, where this can be done from
the width of the resonances. In the present case, electrons
pass through the system by quantum tunneling and assessing
tunneling times is a controversial and longstanding topic.
However, just for the sake of comparing orders of magnitude
we will use the definition of τD due to Smith [44,45],

τD = 1

vF (k)

∫ L

0
dx|�S(x,k)|2, (B2)

where �(x,k)S is the wave function inside the system. We
assume the wave function of the left lead �L is �L = eikx +
re−ikx , where the reflection coefficient r results in r = −ieiθ ,
according to the ideal model of the Thouless motor, for an
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energy at the center of the gap and assuming L → ∞ [15].
The wavelength k is in this case k = π/λ. For simplicity,
let us also assume �S ∝ e−x/�, where � is the decay length.
Then, the maximum value of the dwell time, which depends
on the motor’s coordinate θ , is τD = 2�/vF . A similar result is

obtained for the tunneling through a rectangular barrier in the
limit of L → ∞, τD = 2�

vF

1
1+1/(� k)2 [45]. With both formulas

the dwell time gives τD ≈ 3 × 10−14 s, which is completely
negligible compared with the period of the motor rotating at
maximum speed estimated above, τ ≈ 3 × 10−3 s.
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