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ABSTRACT

10 examples
- 70-85% yield

The surprisingly facile conversion (isomerization) of 2-formyl-arylketones into 3-substituted phthalides, as observed for the marine natural
product pestalone and its per-O-methylated derivative, was investigated using a series of simple 2-acylbenzaldehydes as substrates. The
transformation generally proceeds smoothly in DMSO, either in a Cannizarro—Tishchenko-type reaction under nucleophile catalysis (NaCN) or

under photochemical conditions (DMSO, 350 nm).

Phthalides, i.e. 1(3H)-isobenzofuran-1-ones, represent a
relevant class of compounds because this structural motif
is found in a large number of natural products,’ synthetic
pharmaceuticals,” and building blocks for the synthesis of
more complex molecules.® Of particular importance are C3-
substituted phthalides as exemplified by the natural prod-
ucts cytosporone E (1),** fuscinarin (2),*" isopestacin (3),%
and cryphonectric acid (4)*! (Figure 1). Not surprisingly, a
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number of methods for the synthesis of 3-substituted phtha-
lides have been developed, most of them exploiting either the
cylization of an 1-hydroxyalkyl-substituted benzoic acid
derivative’ or the alkylation of a preformed phthalide in the
3-position.® Other established methods are based on the
carbonylative or carboxylative ortho-functionalization of
benzylic alcohols.” In recent years, several new transi-
tion-metal-catalyzed phthalide syntheses such as the Pd-
or Rh-catalyzed reaction of phthalaldehyde with arylboron
reagents,® the Ru-catalyzed cross-dehydrogenative C—H
bond alkenylation of benzoic acids,” or the Ru- or Rh-
catalyzed intramolecular hydroacylation of 2-acylyl-
benzaldehydes'® have been developed.
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Figure 1. Selected phthalide natural products.

In the course of our recent synthesis of the marine anti-
biotic pestalone (5a)'' we observed a surprising tendency
of the permethylated analog 5b to isomerize (dispropor-
tionate) to the 3-arylphthalide rac-6b, for instance on
treatment with LiSEt as a nucleophilic reagent (usually
used for the cleavage of methyl aryl ethers).'> We also
found that 5a is cleanly converted into pestalalactone
(rac-6a) by simple irradiation of a DMSO solution with
UV light at 350 nm (Scheme 1).

Scheme 1. Facile Isomerization of Pestalone (5a) and Its Per-
methylated Derivative 5b to Phthalides of Type rac-6 under the
Action of UV Light or LiSEt (As a Nucleophile)
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The surprising tendency of 5a/b to convert to the cor-
responding phthalides under different conditions prompted
us to probe the generality of this type of transformation
using a set of 2-acylbenzaldehydes (7), which were readily
prepared as described before'? following the procedure of
Kotali.'*

At first, we studied the nucleophile-induced phthalide
formation starting from 2-formylbenzophenone (7a) as
a model substrate. We found that catalytic amounts
(10 mol %) of a nucleophile are sufficient to achieve the
desired transformation. As the results shown in Table 1
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reveal, we identified NaCN as a convenient and inexpen-
sive nucleophilic catalyst that is more effective than the
originally employed LiSEt. Also, DMSO gave better re-
sults in comparison to DMF. Under the optimized condi-
tions (10 mol % NaCN, DMSO, 4 h, 50 °C) the reaction of
7a proceeded smoothly to afford pure rac-8a in 70%
isolated yield after chromatography.

Table 1. Optimization of the Reaction Conditions”

Ph
Ph 0 nucleophile Q
CHO (10 mol %) o)
7a rac-8a

entry nucleophile solvent temp yield®
1 LiSEt DMF 25 32%
2 LiSEt DMSO 25 35%
3 LiSEt DMSO 50 39%
4 LiSEt DMSO 100 39%
5 NaCN DMF 50 45%
6 NaCN DMSO 50 70%
7 NaCN DMSO 100 60%

“Conditions: substrate 7a (0.5 mmol) and nucleophile (10 mol %) in
dry solvent (1.5 mL), 4 h, under argon. * Isolated yield.

The scope and the general efficiency of the method was
then demonstrated by reacting a set of nine different ortho-
acylbenzaldehydes under the optimized conditions. The
results shown in Table 2 show that the protocol tolerates a
range of functional groups, including nitro-phenyl, pyr-
idyl, bromophenyl, anisyl, and a free phenolic OH func-
tion. The electronic properties of the substituent at the
central arene unit of the substrates (7) had little effect on
the reaction yield.

Mechanistically, we assume that the nucleophile-cata-
lyzed transformation follows a Cannizzaro—Tishchenko-
type pathway''®!'® involving a primary attack of the
nucleophilic catalyst at the aldehyde function of the sub-
strate 7 (Scheme 2). The resulting intermediate 9 then
undergoes an intramolecular hydride transfer (dispropor-
tionation) to form an alkoxide intermediate (10). In the
final step, the lactone ring is established through a 5-exo-
trig attack of the alkoxide at the carbonyl function under
release of the nucleophilic catalyst.'®

In the second part of the study, we investigated the light-
induced isomerization of ortho-formyl-arylketones using
the same set of substrates (7a—i). And indeed, on irradia-
tion of a DMSO solution with UV light (350 nm) for 3
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Scheme 2. Nucleophile-Induced Conversion of 2-Formyl-ar-
ylketones (7) to Phthalides (8) through a Cannizar-
ro—Tishchenko-Type Mechanism

days, all compounds cleanly afforded the corresponding
isobenzofuranones (rac-8a—i) in good isolated yields
(71—85%) after chromatographic purification (Table 2).
By performing the photolysis experiments in NMR tubes
(employing ds-DMSO) the reaction progress could be
monitored by "H NMR (compare Figure 2) and no inter-
mediate species could be detected this way. A control
experiment in the dark ensured the necessity of light to
induce the phthalide formation. In all cases, the photo-
chemical protocol gave rise to the phthalide products (rac-
8a—i) in slightly higher yields as compared to the NaCN-
catalyzed reactions (Table 2).

A plausible mechanism for the light-induced process
(Scheme 3) starts with a Norrish II type reaction and a
concomitant formation of a photoenol, i.e. an enol-ketene
of type 11."7 Assumably, this intermediate then cyclizes
through intramolecular addition of the OH function to the
ketene to give a 1-hydroxy-isobenzofurane (12) which
finally tautomerizes to the more stable phthalide rac-8.

As mentioned above, the work described herein was
triggered by some surprising observations made in the
course of our synthesis of pestalone (5a).!'® Therefore,
we were in the position to probe the developed protocols
once more using a sample of synthetic Sa. To our satisfac-
tion, treatment of Sa with 10 mol % of NaCN in DMSO
proceeded smoothly to give pure pestalalactone (rac-6a) in
62% yield after recrystallization (Scheme 4)."

The photochemical isomerization of 5a into rac-6a was
carefully monitored by means of '"H NMR spectroscopy.
Figure 1 shows the very clean conversion as indicated, for
instance, by the disappearance/reappearance of the olefinic
signal (H2'). An interesting observation is the doubling of
certain signals (e.g., H3 and HY) in the product (rac-6a) as
a consequence of a hindered rotation of the 3-aryl sub-
stituent on the NMR time scale (generation of atrop-
diastereomers).

(17) (a) Sato, T.; Tamura, K.; Maruyama, K.; Ogawa, O.; Imamura,
T. J. Chem. Soc., Perkin Trans. 1 1976, 779-783. (b) Netto-Ferreira,
J. C.; Scaiano, J. C. Can. J. Chem. 1993, 71, 1209-1215. (c) Plistil, L.;
Solomek, T.; Wirz, J.; Heger, D.; Klan, P. J. Org. Chem. 2006, 71, 8050—
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Table 2. Conversion of Various 2-Acyl-benzaldehydes (7) into
the Isomeric Phthalides (rac-8)“
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Scheme 3. Proposed Mechanism of the Light-Induced Conver-
sion of 2-Formyl-arylketones (7) to Phthalides of Type 8
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Scheme 4. NaCN-Catalyzed Conversion of Pestalone (5a) into
Pestalalactone (rac-6a)
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Figure 2. Monitoring the photolysis of 5a by '"H NMR (in
ds-DMSO).

In conclusion, we have developed two complementary
protocols for the nucleophile- or light-induced synthesis of
3-substituted phthalides from 2-formylarylketones under

(19) For other natural products with an ortho-formylbenzophenone
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P.S.; Gurnett, A.; Nare, B.; Liberator, P.; Singh, S. B. J. Nat. Prod. 2005,
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mild conditions. The smooth transformations and, in
particular, the ease of conversion of 5a into rac-6a even
raises the question whether the biosynthesis of natural
phthalides* (compare Figure 1) might proceed (at least in
certain cases) in a related fashion via ortho-formyl aryl-
ketone precursors,'” which (in principle) could be isomer-
ized into the corresponding phthalides under the action
of a thiamine- (vitamine B;-) derived nucleophilic car-
bene.'®®* An interesting aspect of the photochemical
method developed is the proposed emergence of an enol-
ketene (11) and an isobenzofuran (12) intermediate, which
could possibly be trapped by an appropriate dienophile in
a Diels—Alder-type reaction.”!

The methods described here for the synthesis of phtha-
lides can also be be classified as a redox-neutral intercon-
version (fusion) of two functional groups.””> Due to the
mild reaction conditions the methodology may prove of
value in the context of the synthesis of more complex and
highly functionalized molecules. A remaining challenge, of
course, is to render the process enantioselective, for in-
stance by employing chiral nucleophilic catalysts instead of
NaCN.”
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