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D. Gómez Dumma,b, S. Noguerac and N.N. Scoccolab,d,e

a IFLP, CONICET − Departamento de F́ısica, Facultad de Ciencias Exactas,

Universidad Nacional de La Plata, C.C. 67, 1900 La Plata, Argentina

b CONICET, Rivadavia 1917, 1033 Buenos Aires, Argentina

c Departamento de F́ısica Teórica and IFIC,
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Abstract

We study the η and η′ distribution amplitudes (DAs) in the context of a nonlocal SU(3)L⊗SU(3)R chiral

quark model. The corresponding Lagrangian allows to reproduce the phenomenological values of pseu-

doscalar meson masses and decay constants, as well as the momentum dependence of the quark propagator

arising from lattice calculations. It is found that the obtained DAs have two symmetric maxima, which arise

from new contributions generated by the nonlocal character of the interactions. These DAs are then applied

to the calculation of the η-γ and η′-γ transition form factors. Implications of our results regarding higher

twist corrections and/or contributions to the transition form factors originated by gluon-gluon components

in the η and η′ mesons are discussed.

http://arxiv.org/abs/1611.08457v1


I. INTRODUCTION

In the last years, experiments carried out in B Factories have provided a large amount of data

for a great variety of processes [1]. Among them, measurements of exclusive meson production,

in particular, e+e− → M e+e− and e+e− → M γ reactions, where M = π, η, η′, have provided

information about the photon-to-pseudoscalar meson transition form factors (TFFs), FMγ (Q
2), in

the spacelike and timelike momentum transfer regions, respectively. High virtuality data for the

pion-γ TFF have been obtained by both BABAR [2] and BELLE [3] Collaborations, while BABAR

has also measured the eta- and eta prime-γ TFFs [4]. These data have to be added to those previously

reported by the CLEO Collaboration [5] for π-γ, η-γ and η′-γ TFFs, as well as those obtained by

the L3 Collaboration [6] for the η′-γ TFF and by the CELLO Collaboration [7] for the π-γ TFF.

The new experimental results have led to an intense theoretical work. In fact, from QCD it is seen

that the M-γ TFFs can be computed in terms of quark and gluon distribution amplitudes (DAs).

Moreover, one can determine the corresponding asymptotic Q2 → ∞ limits, which turn out to be

model independent quantities [8, 9]. In the case of the π-γ TFF, the new results —especially those

from the BABAR Collaboration— indicate that Fπγ (Q
2) grows with Q2, presumably crossing the

asymptotic QCD limit. The implications of this exciting result have been widely discussed in the

last few years (see [10–18] and references therein). On the other hand, being less controversial, η-γ

and η′-γ TFFs have received less theoretical attention. Phenomenological studies have been carried

out in Refs. [19–22], looking at the gluon content of the η and η′ mesons. Other approaches have

been followed in Refs. [23, 24], where the TFFs are analyzed in a model independent way through

the usage of rational Padé approximants, in Ref. [25], where the anomaly sum rule is used, and in

Ref. [26], where a formalism based on a chiral effective theory with two octet resonances is considered.

Regarding quark model approaches, calculations have been carried out within the light front quark

model [27] and, for the η-TFF, within the Nambu−Jona-Lasinio (NJL) model [28].

In a recent paper [13] we have studied the π-γ TFF in the framework of a two-flavor version of a

nonlocal NJL (nlNJL) quark model. We extend here our analysis to the case of η-γ and η′-γ TFFs

considering a SU(3) flavor version of this nonlocal effective approach [29, 30], which represents an

improvement over the local NJL model. In fact, nonlocality arises naturally in quantum field theory

when the interactions involve large coupling constants. It can be seen that nonlocal form factors

regularize the model in such a way that anomalies are preserved and charges are properly quantized,

and there is no need to introduce extra cutoffs. Moreover, our formalism ensures the preservation

of fundamental symmetries (chiral, Poincaré and local electromagnetic gauge invariances), which

guarantee the proper normalization of the quark DAs.

The quark propagator is taken as one of the main ingredients of our model, the reason being

that lattice QCD (LQCD) calculations allow to obtain information on this quantity directly from



the fundamental QCD theory. These calculations lead to a definite momentum dependence for both

the quark mass and the quark wave function renormalization [31, 32]. Our model represents, in fact,

the minimal framework that allows to incorporate the corresponding full momentum dependence by

choosing adequate nonlocal form factors [33–35]. On the other hand, as it is usual in quark models,

our nlNJL model neglects the explicit presence of gluons when describing the mesonic states, which

are driven by their quark content. Thus, the η and η′ states involve a qq̄ octet state (as in the case

of the π meson) and a qq̄ flavor singlet state. However, one can also build up a singlet state from

two gluons, and the qq̄ flavor singlet components in η and η′ mesons will actually become mixed

with the gg component by the Q2 evolution, inducing a two-gluon contribution at the leading twist

order. Consequently, whereas the π meson state is described in the TFF calculation by a single DA,

for the η-η′ sector one needs in general three different DAs, two of them corresponding to the quark

component and one to the gluon component.

One of our objectives will be to analyze the effect of this gluon component. If we remain faithful

to the philosophy of quark models, the latter has to be neglected. In that case octet and singlet

states evolve in a similar way, and we can perform the Q2 evolution at next-to-leading order (NLO)

to obtain the virtuality dependence of the TFFs. The quark DAs provide the dominant twist two

contribution to theM-γ TFFs, and corrections to this leading order can be introduced by considering

contributions that carry extra powers of 1/Q2 (we include here 1/Q4 and 1/Q6 terms). Therefore, in

this scheme we will fix the quark DAs as well as two free parameters (coefficients of the subleading

terms) in the M-γ TFFs. Alternatively, we can assume that gluons are present already at low

virtuality, which represents an additional ingredient to our model. In this second approach we will

fit the lowest Gegenbauer coefficients of the gluon DA using the experimental data.

The present paper is organized as follows. In Sec. II we develop our formalism: (A) we describe

the connection between M-γ TFFs and quark DAs, (B) we present the model Lagrangian and quote

our analytical results for the quark DAs, and (C) we discuss the virtuality dependence of the DAs

through the evolution equations. In Sec. III we show and discuss the numerical results for the quark

DAs obtained within our model for π, η and η′ mesons. In Sec. IV.A we analyze the results obtained

for the η-γ and η′-γ TFFs neglecting the presence of gluons. We also show that if we assume that no

gluons are present at low virtuality, the evolution equations do not generate a significant presence

of gluons at higher Q2 values. Then in Sec. IV.B we analyze the effect of the presence of gluons

at low virtuality on the description of the η-γ and η′-γ TFFs. Finally, in Sec. V we present our

conclusions. Details of the calculations, including some relevant analytical expressions, can be found

in Appendixes A and B.



II. FORMALISM

A. Theoretical framework

The transition form factors for the processes M → γγ∗, M = η, η′, at large virtuality Q2 are

basically determined by the quark and gluon distribution amplitudes Φ
(q)
M and φ

(g)
M . At the leading

order in powers of 1/Q2 one has

Q2 FMγ(Q
2) =

∫

dx
1

2
Tqq̄(x,Q

2, µ2) Φ
(q)
M (x, µ2)

+

∫

dx
1

2
Tgg(x,Q

2, µ2)
4

3
√
3
f 0
M φ

(g)
M (x, µ2) , (1)

where f 0
M is a weak decay constant and Tqq̄, Tgg are the amplitudes of the parton level subprocesses

qq̄ → γγ∗, gg → γγ∗ evaluated at next-to-leading order in perturbative QCD. These are given

by [20, 36, 37]

Tqq̄
(

x,Q2, µ2
)

=
1

x

{

1 + CF
αs (µ)

4π

[

ln2 x− x ln x

1− x − 9 + (3 + 2 lnx) ln
Q2

µ2

]}

+ (x→ 1− x) ,

Tgg
(

x,Q2, µ2
)

= CF
αs (µ)

4π

2 ln x

(1− x)2
[

3− 1

x
− 1

2
ln x− ln

Q2

µ2

]

− (x→ 1− x) , (2)

where CF = 4/3 is a color group factor. As usual, we will choose the scale µ2 = Q2, removing

ln(Q2/µ2) terms.

The function Φ
(q)
M (x, µ2) in Eq. (1) is given by a combination of quark DAs, which carry the soft,

nonperturbative contributions to the form factor. When studying the evolution of both quark and

gluon DAs it is convenient to write the operators using the SU(3)F Gell-Mann matrices λi, i = 1, . . . 8,

plus λ0 =
√

2/3 I, while to calculate the quark DAs within quark models it is usually preferable to

choose a flavor basis. Thus we define the matrix λℓ = (
√
2λ0 + λ8)/

√
3 = diag(1, 1, 0), which is the

identity in the (u, d) flavor subspace, and λs = diag(0, 0,
√
2) = (λ0 −

√
2λ8)/

√
3. In these two basis

Φ
(q)
M (x, µ2) is written as

Φ
(q)
M

(

x, µ2
)

=
4

3
√
3
f 0
M φ

(q0)
M

(

x, µ2
)

+

√
2

3
√
3
f 8
M φ

(q8)
M

(

x, µ2
)

=
5
√
2

9
f ℓ
M φ

(qℓ)
M

(

x, µ2
)

+
2

9
f s
M φ

(qs)
M

(

x, µ2
)

, (3)

where the quark DAs are given by

φ
(qi)
M (x) = − i√

2 f i
M

∫

dz−

2π
eiP

+z−(x− 1
2) 〈0| ψ̄

(

−z
2

)

γ+γ5 λ
i ψ
(

z
2

)

|M〉
∣

∣

z+=~zT=0
, (4)

with i = 0, 8 or i = ℓ, s, depending on the basis choice. We use here light-front spacetime coordinates

x± = (x0 ± x3)/
√
2, ~xT = (x1, x2). The meson weak decay constants f i

M are defined by

f i
M =

1

i
√
2P+

〈0| ψ̄ (0) γ+γ5 λ
i ψ (0) |M〉 , (5)



thus it is easy to see that the quark DAs satisfy the sum rule

∫ 1

0

dx φ
(qi)
M (x) = 1 (6)

for any scale µ. Moreover, the quark DAs are symmetric under the change x→ (1− x). Finally, the
gluon DA in Eq. (1) is given by

φ
(g)
M (x) =

2√
3 f 0

M

1

P+

∫

dz−

2π
eiP

+z−(x− 1
2) nµ nν 〈0|Gµα

(

−z
2

)

G̃ν
α

(

z
2

)

|P 〉
∣

∣

∣

z+=~zT=0
, (7)

where Gµν is the gluon field strength tensor and G̃µν = 1
2
ǫµναβ Gαβ . Notice that φ

(g)
M (x) is antisym-

metric under the change x→ (1− x), hence
∫ 1

0

dx φ
(g)
M (x) = 0 ,

and there is no natural way to normalize the gluon DA. The prefactor present in Eq. (7) is just

a convention, and other definitions can be found in literature (see the discussion in Ref. [20]). A

change in this prefactor can be compensated through a factor into the integrand in the second term

of Eq. (1).

In the case of the π → γγ∗ TFF the situation is simpler, since there is no singlet contribution.

One has

Q2 Fπγ(Q
2) =

√
2

3
fπ

∫

dx
1

2
Tqq̄(x)φπ(x, µ

2) , (8)

where the pion DA is given by

φπ(x) =
−i√
2 fπ

∫

dz−

2π
eiP

+z−(x− 1
2) 〈0| ψ̄(−z

2
) γ+γ5 λ

3 ψ( z
2
) |π〉

∣

∣

z+=~zT=0
. (9)

B. Neutral pseudoscalar meson distribution amplitudes in a nonlocal NJL model

We consider here the meson DAs within a nonlocal NJL (nlNJL) model. The corresponding

Euclidean effective action, in the case of SU(3)F flavor symmetry, is given by [30]

SE =

∫

d4x

{

ψ̄(x)(−i/∂ + m̂)ψ(x)− G

2

[

jSa (x)j
S
a (x) + jPa (x)j

P
a (x) + jr(x)jr(x)

]

−H
4
Aabc

[

jSa (x)j
S
b (x)j

S
c (x)− 3jSa (x)j

P
b (x)j

P
c (x)

]

}

, (10)

where ψ(x) is the SU(3)F fermion triplet ψ = (u d s)T , and m̂ = diag(mu, md, ms) is the current

quark mass matrix. We will work in the isospin symmetry limit, assuming mu = md. The model

includes flavor mixing through the ’t Hooft-like term driven by H , where the constants Aabc are

defined by

Aabc =
1

3!
ǫijkǫmnl(λ

a)im(λ
b)jn(λ

c)kl , (11)



with a = 0, . . . , 8. The fermion currents are given by

jsa(x) =

∫

d4z G(z) ψ̄
(

x+
z

2

)

λaψ
(

x− z

2

)

,

jpa(x) =

∫

d4z G(z) ψ̄
(

x+
z

2

)

ıλaγ5ψ
(

x− z

2

)

,

jr(x) =

∫

d4z F(z) ψ̄
(

x+
z

2

) ı
←→
/∂

2κ
ψ
(

x− z

2

)

, (12)

where the functions G(z) and F(z) are covariant form factors responsible for the nonlocal character

of the interactions. Notice that the relative weight of the interaction driven by jr(x), which leads to

quark wave function renormalization, is controlled by the parameter κ. In the mean field approxima-

tion (MFA), which will be used here in what follows, the quark propagator for each flavor f = u, d, s

can be expressed as

Sf(p) =
Z(p)

−/p+Mf (p)
, (13)

where Mf (p) and Z(p) stand for momentum dependent effective mass and wave function renormal-

ization (WFR), respectively. One has [30]

Mf (p) = Z(p)

[

mf + σ̄f g(p)

]

, Z(p) =

[

1 − ζ̄

κ
f(p)

]−1

, (14)

where g(p) and f(p) are Fourier transforms of G(z) and F(z), while σ̄f and ζ̄ are mean field values of

scalar fields associated with the corresponding currents in Eq. (12). Details of the procedure carried

out to obtain these quantities are given in App. A.

The momentum dependence of the interaction form factors can be now obtained from lattice QCD

results. Following the analysis in Ref. [32], the effective mass Mu(p) can be written as

Mu(p) = mu + αm fm(p) , (15)

where

fm(p) = 1/
[

1 + (p2/Λ2
0)

α
]

, (16)

with α = 3/2. From Eqs. (14) one has then αm = (muζ̄/κ + σ̄u)/(1 − ζ̄/κ). For the wave function

renormalization we use the parametrization [33, 35]

Z(p) = 1 − αz fz(p) , (17)

where

fz(p) = 1/
(

1 + p2/Λ2
1

)5/2
. (18)

Here the new parameter αz is given by αz = −ζ̄/(κ − ζ̄). The functions f(p) and g(p) can be now

easily obtained from Eqs. (14-18). As shown in Refs. [33, 35], for an adequate choice of parameters



these functional forms can reproduce very well the momentum dependence of quark mass and WFR

obtained in lattice calculations. We complete the model parameter fixing by taking as phenomeno-

logical inputs the values the of the pion, kaon and η′ masses and the pion weak decay constant [30].

The resulting model parameters are given in Table I.

mu (MeV) ms (MeV) GΛ2
0 −HΛ5

0 κ/Λ0 Λ0 (GeV) Λ1 (GeV)

2.6 64.9 16.65 202.8 10.34 0.795 1.510

TABLE I: Model parameters

Given this effective model for the strong interactions at low energies, one can explicitly evaluate

the quark DAs from Eq. (4). Since the amplitude involves a bilocal axial vector current, one should

introduce into the effective action in Eq. (10) a coupling to an external axial gauge field Aa
µ. For a

local theory this can be done just through the replacement

∂µ → ∂µ + i γ5 λ
a Aa

µ(y) . (19)

In the case of the above described nonlocal model, however, the situation is more complicated since

the inclusion of gauge interactions implies a change not only in the kinetic piece of the Lagrangian

but also in the nonlocal currents appearing in the interaction terms. If x and z denote the space

variables in the definitions of the nonlocal currents [see Eq. (12)], one has

ψ(x− z/2) →W (x, x− z/2) ψ(x− z/2) ,

ψ†(x+ z/2) → ψ†(x+ z/2) W (x+ z/2, x) . (20)

Here the function W (s, t) is defined by

W (s, t) = P exp

[

i

∫ t

s

drµ γ5 λ
a Aa

µ(r)

]

, (21)

where r runs over an arbitrary path connecting s with t.

This procedure has been analyzed in detail within nlNJL models, in particular regarding the

calculation of the pseudoscalar meson decay constants [29, 33, 38], see Eq. (5). The situation is

similar for the case of the bilocal axial current in the definition of the meson DA. In fact, the

basic physical idea beyond the factorization of the meson TFF into hard and soft contributions is

that for high Q2 the struck quark loses its high momentum before being able to interact with the

remaining quarks and gluons of the hadron (Q2 ∼ 1 GeV2 implies a time scale of the order of 10−24 s).

Therefore, the nonlocal interaction does not see the struck quark but only the quarks in the hadron

before and after the photon absorption-emission process. This can be effectively implemented by

introducing an external fictitious probe carrying the adequate quantum numbers, which in our case



is a gauge axial field (a similar situation has been studied in the case of the pion parton distribution,

see Refs. [33, 34]). Thus, the axial vertex in Eq. (4) will become dressed by the nonlocal interaction,

irrespective of whether the quark current is a local or a bilocal one (as in this case).

The steps to be followed in the explicit calculation of the quark DA within the nlNJL model are

detailed in Appendix A. We quote here the resulting expression. In the flavor basis (i.e. qi = qℓ, qs)

we have

φ
(qi)
M (x) =

2
√
2Nc gMqq

f i
M

∫

dw d2kT

(2π)4
Fi (w, x, kT ) , (22)

where gMqq stands for an effective quark-meson coupling constant [see Eq. (59) in Appendix A] and

the integration variables are related to the meson and quark Euclidean four-momentum P and k,

respectively. Considering the light front variables in the frame where the transverse component ~PT

vanishes, the invariants k2 and k · P can be written in terms of the variables w and kT as

k2 = −i w
(

x− 1

2

)

+m2
M

(

x− 1

2

)2

+ k2T , k · P = −i w
2
.

It is convenient to separate the integrand in Eq. (22) into two pieces,

Fi (w, x, kT ) = F
(1)
i (w, x, kT ) + F

(2)
i (w, x, kT ) . (23)

The explicit expressions for these functions are

F
(1)
i (w, x, kT ) =

g(k)

2

Z(k+)Z(k−)

Di(k+)Di(k−)

[

1

Z(k+)
+

1

Z(k−)

]

[(1− x) Mi(k+) + xMi(k−)] , (24)

F
(2)
i (w, x, kT ) = g(k)

Z(k+)Z(k−)

Di(k+)Di(k−)

{

[k+ · k− +Mi(k+)Mi(k−)] ν
(1)
i

− k · [k+Mi(k−)− k−Mi(k+)] ν
(2)
}

− Mi(k)Z(k)

Di(k) σ̄i
ν
(1)
i , (25)

where Mℓ = Mu = Md and σ̄ℓ = σ̄u = σ̄d. We have defined k± = k ± P/2 and Di(k) = k2 +Mi(k)
2,

while the functions ν
(1)
i and ν(2) in F

(2)
i are given by

ν
(1)
i =

(

x− 1
2

)

k · P
[Mi(k+)

Z(k+)
+
Mi(k−)

Z(k−)
− 2

Mi(k)

Z(k)
+m2

M σ̄i α
−
g

]

+ σ̄i α
−
g ,

ν(2) =

(

x− 1
2

)

k · P
[ 1

Z(k−)
− 1

Z(k+)
+m2

M ζ̄ α+
f

]

+ ζ̄ α+
f . (26)

Here α−
g and α+

f depend in general on the integration path in Eq. (21). For a straight line path one

has

α−
g =

∫ 1

0

dλ
λ

2
g ′(k − λP/2)−

∫ 0

−1

dλ
λ

2
g ′(k − λP/2) ,

α+
f =

∫ 1

−1

dλ
λ

2
f ′(k − λP/2) , (27)

where g′(k) ≡ dg(k)/dk2, and same for f ′(k).



It is important to mention that, even when our effective model leads to an adequate phenomeno-

logical pattern for low energy meson phenomenology, there are some differences between model

predictions and phenomenological values of the η and η′ decay constants (see Table XII in App. A).

In our numerical calculations, when evaluating the η and η′ DAs from Eq. (22) we will take the values

of f i
M arising from our model, in order to guarantee the proper normalization condition Eq. (6). On

the other hand, we will use the phenomenological values for f ℓ
M or f i

M when evaluating the flavor

mixing leading to the quark DAs, Eq. (3).

C. Distribution amplitude evolution

Let us analyze the evolution of the DAs with the energy scale. Firstly, notice that QCD evolution

equations mix the qq̄ singlet flavor component with the gg component in η and η′ DAs. Consequently,

after obtaining the low energy qq̄ flavor DAs φ
(qi)
M , i = ℓ, s, from the effective quark model, it is

convenient to change to the octet and singlet DAs

φ
(q8)
M (x) =

1√
3 f 8

M

[

f ℓ
M φ

(qℓ)
M (x)−

√
2 f s

M φ
(qs)
M (x)

]

,

φ
(q0)
M (x) =

1√
3 f 0

M

[√
2 f ℓ

M φ
(qℓ)
M (x) + f s

M φ
(qs)
M (x)

]

. (28)

Once the latter are known at a given µ0 scale, their evolution up to a higher scale µ can be obtained

from perturbative QCD. In order to study this evolution it is convenient to expand the DAs in series

of Gegenbauer polynomials:

φ
(qi)
M (x, µ) = 6 x (1− x)

∑

n=0,2,4,...

a
(qi)
Mn (µ) C

3/2
n (2x− 1) ,

φ
(g)
M (x, µ) = x2 (1− x)2

∑

n=2,4,...

a
(g)
Mn (µ) C

5/2
n−1 (2x− 1) , (29)

where i = 0, 8, and we have now explicitly denoted the µ dependence of the DAs. Notice that only

n-even terms contribute to the sums, due to the symmetric (antisymmetric) behavior of the quark

DAs (gluon DA) under the replacement x ↔ 1 − x. Moreover, since φ
(qi)
M (x, µ) (i = 0, 8) satisfy the

sum rule Eq. (6), the first coefficients a
(q0)
M0 (µ) and a

(q8)
M0 (µ) have to be equal to 1 for any value of

µ. Thus, all the information from the meson effective model is included in the remaining coefficients

a
(qi)
Mn(µ) and a

(g)
Mn(µ), with n = 2, 4, . . . .

From the orthogonality relations satisfied by the Gegenbauer polynomials one can obtain the

coefficients at the µ0 scale, namely

a
(qi)
Mn (µ0) =

2 (2n+ 3)

3 (n+ 1) (n + 2)

∫ 1

0

dx C3/2
n (2x− 1) φ

(qi)
M (x, µ0) , (30)

a
(g)
Mn (µ0) =

144 (2n + 5)

(n + 1) (n+ 2) (n+ 3)(n+ 4)

∫ 1

0

dx C5/2
n (2x− 1) φ

(g)
M (x, µ0) . (31)



Notice that Eq. (30) holds either if one is working in the flavor basis (i = ℓ, s) or in the SU(3)F

basis (i = 0, 8). At the LO the Gegenbauer polynomials are eingenfunctions of the evolution kernel,

therefore aMn coefficients of different order n do not mix with each other [21]. On the other hand,

as stated, QCD evolution equations mix the gluon and singlet quark components for n ≥ 2. The

evolution of these coefficients up to a scale µ is given by (see Refs. [20, 21])

a
(q0)
Mn (µ) = a

(+)
Mn (µ0)

(

αs (µ0)

αs (µ)

)γ
(+)
n /β0

+ ρ(−)
n a

(−)
Mn (µ0)

(

αs (µ0)

αs (µ)

)γ
(−)
n /β0

,

a
(g)
Mn (µ) = ρ(+)

n a
(+)
Mn (µ0)

(

αs (µ0)

αs (µ)

)γ
(+)
n /β0

+ a
(−)
Mn (µ0)

(

αs (µ0)

αs (µ)

)γ
(−)
n /β0

. (32)

Here β0 = 11− 2nf/3, nf being the number of active flavors at the scale of the process (in our case

we take nf = 4), and γ
(±)
n are the eigenvalues of the anomalous dimension matrix γn. These are

given by

γ(±)
n =

1

2

[

γqqn + γggn ±
√

(γqqn − γggn )2 + 4 γqgn γgqn

]

, (33)

where the (LO) matrix elements of γn read

γqqn = CF

[

3 +
2

(n+ 1) (n+ 2)
− 4

n+1
∑

i=1

1

i

]

,

γqgn = CF
n (n + 3)

3 (n+ 1) (n + 2)
, (34)

γgqn =
36

(n+ 1) (n + 2)
,

γggn = β0 +Nc

[

8

(n+ 1) (n+ 2)
− 4

n+1
∑

i=1

1

i

]

.

The coefficients ρ
(+)
n and ρ

(−)
n , which weight the presence of quarks in the gluon DA and gluons in

the singlet quark DA, respectively, are given by

ρ(+)
n = 6

γgqn

γ
(+)
n − γggn

,

ρ(−)
n =

1

6

γqgn

γ
(−)
n − γqqn

. (35)

Finally, the evolution of the strong coupling constant αs at the LO is given by

αs(µ) =
4π

β0 ln(µ2/Λ2)
, (36)

with Λ = 0.224 GeV.

In Table II we quote the values of the anomalous dimensions for the first values of n. Already for

n = 2 it is seen that γ(+) and γ(−) are close to γqq and γgg, respectively, and the differences become

even smaller for larger n. The numerical values for ρ(±) and the product ρ
(+)
n ρ

(−)
n for the first values

of n are given in Table III.



n 2 4 6 8 10 Asymptotic form

γ
(+)
n −5.379 −8.040 −9.759 −11.046 −12.078 −16

3 lnn

γ
(−)
n −11.84 −18.32 −22.37 −25.36 −27.73 −12 lnn

γqqn −5.556 −8.089 −9.781 −11.06 −12.09 −16
3 lnn

γggn −11.67 −18.27 −22.35 −25.35 −27.72 −12 lnn

TABLE II: Numerical values of the first γ
(±)
n , γqqn and γggn coefficients, and asymptotic values.

n 2 4 6 8 10 Asymptotic form

ρ
(+)
n 2.8627 0.7041 0.3063 0.1678 0.1045 162/(5n2 lnn)

ρ
(−)
n −0.0098 −0.0068 −0.0057 −0.0051 −0.0047 −1/(90 lnn)

ρ
(+)
n ρ

(−)
n −0.0281 −0.0048 −0.0017 −0.0008 −0.0005 −9/(25n2 ln2 n)

TABLE III: Numerical values of the first ρ
(±)
n coefficients, and asymptotic values.

In the case of the distribution amplitude φ
(q8)
M , at the LO the evolution is just governed by the

anomalous dimension γqqn . One has

a
(q8)
Mn (µ) = a

(q8)
Mn (µ0)

(

αs (µ0)

αs (µ)

)γqq
n /β0

. (37)

We will also take into account the effect of NLO corrections to the DAs. In general, at the

NLO the evolution equations for different coefficients a
(qi)
Mn get mixed, and the pattern becomes more

complicated. We will consider the NLO evolution for the octet component (see discussion in the next

section). The corresponding coefficients evolve according to [39]

a
(q8)
Mn

NLO
(µ) = a

(q8)
Mn(µ0)E

NLO
n (µ, µ0) +

αs(µ)

4π

n−2
∑

k=0

a
(q8)
Mk (µ0)

(

αs (µ0)

αs (µ)

)γqq

k
/β0

dkn(µ, µ0) . (38)

Explicit expressions for the renormalization factors ENLO
n (µ, µ0), as well as for the off-diagonal mixing

coefficients dkn(µ, µ0) in the MS scheme are collected in Appendix B. Usually the calculation of a few

coefficients a
(qi)
Mn(µ) is sufficient to get a good estimate of the πDA at the scale µ from Eq. (29).

III. DISTRIBUTION AMPLITUDES AND TRANSITION FORM FACTORS IN THE

NONLOCAL NJL MODEL

A. Quark DAs

From the numerical evaluation of the integrals in Eq. (22) one can obtain the quark DAs for π, η

and η′ mesons within the above described three-flavor nlNJL model. The corresponding curves are

displayed in Fig. 1, where for comparison we also include the asymptotic limit φasym(x) = 6x(1− x).
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FIG. 1: Quark distribution amplitudes for the π, η and η′ mesons. Left panel: π DA, φπ(x). Central panel:

η DAs, φ
(qℓ)
η (x) (solid line) and φ

(qs)
η (x) (dashed line). Right panel: η′ DAs, φ

(qℓ)
η′ (x) (solid line) and φ

(qs)
η′ (x)

(dashed line). The dotted lines correspond in all cases to the asymptotic limit φasym(x) = 6x(1 − x).

As stated in the previous section, our calculations have been performed in Euclidean space. The

consistency of our procedure has been discussed in Ref. [13], where the pion DA and TFF are

analyzed within a two-flavor version of the model. Our main test in this sense is the verification

that the sum rule Eq. (6) is satisfied. In the case of η and η′ mesons, however, the stringency of

this test becomes weakened owing to the numerical uncertainties in the calculations. In fact, when

computing the integrals in Eq. (22) one has to take into account that the functions Fi(w, x, kT )

show cuts in the complex w plane that require a deformation of the integration paths (see e.g. the

discussion in App. B of Ref. [40]). In addition, depending on the value of x these functions have poles

that also need to be compensated numerically. The normalization of quark DAs obtained from our

calculations in the present model are 1.0004 for φπ(x), 0.9989 and 0.9753 for φ
(qℓ)
η (x) and φ

(qs)
η (x),

respectively, and 1.027 and 0.870 for φ
(qℓ)
η′ (x) and φ

(qs)
η′ (x), respectively. It is worth mentioning that

the effect of poles and cuts gets increased for higher quark and meson masses, therefore numerical

uncertainties are particularly large in the case of the s quark DA in the η′ meson, where we find the

largest departure from the normalization condition (the effect of the error in the determination of

the η′ DAs is discussed above). All quark DAs shown in Fig. 1 have been renormalized so that they

satisfy the sum rule.

When using a quark model to describe the deep structure of hadrons it is crucial to establish

the chosen scale µ0 that will be associated with the results provided by the model. In our case the

scale should be the same as that used in lattice calculations, since we have taken into account lattice

results in order to fix the shape of the form factors in the quark propagators. Thus, from Ref. [31]

we take µ0 = 3 GeV, which is a rather large value in comparison with the scale µ0 ∼ 0.5 − 1 GeV

usually adopted in quark model calculations.

In the left panel of Fig. 1 we show the pion DA. Our result is pretty similar to that obtained within



the two-flavor nonlocal NJL model studied in Ref. [13]. Notice that this might not have been the

case, since the change from a two-flavor model to the present three-flavor model implies a refitting of

all model parameters. By looking at the DAs in Fig. 1 it is seen that in all cases the curves have two

symmetric maxima. This is also shown by the π DAs calculated in Refs. [41, 42], albeit in our case

the two maxima are much closer to x = 0.5. In fact, in the nlNJL model this feature arises from the

term F
(2)
i (w, x, kT ) [see Eqs. (23-25)], which is a genuine nonlocal contribution. Now, by comparing

the curves in the different panels of Fig. 1 one can see the effect of meson and quark masses in the

behavior of the DAs. As expected, the π DA at µ0 = 3 GeV is relatively close to the asymptotic

limit φasym(x) = 6x(1 − x). This also holds for the u (or d) quark DA in the case of the η meson,

φ
(qℓ)
η (x), while for the strange quark DA φ

(qs)
η (x) the deviation from φasym(x) is more appreciable.

Finally, in the case of the η′ meson (right panel in Fig. 1), both φ
(qℓ)
η′ (x) and φ

(qs)
η′ (x) lie far from the

asymptotic limit. Another important feature, common to all obtained DAs, is that they go to zero

rather fast near the points x = 0 and x = 1, supporting the idea of suppression of the kinematic end

points [43, 44].

Let us consider the QCD evolution of the DAs. We recall that we are working within a quark

model in which there is no gluon content. Moreover, according to the numerical values of the ρ
(±)
n

coefficients in Table III (which measure the degree of mixing between quark and gluon components

of the DAs in the evolution equations) we can assume the contribution of gluons to be negligible

at any µ scale. Thus it is possible to use just the octet evolution formulae for all quark DAs. In

Tables IV, V and VI we quote the first coefficients of the Gegenbauer expansion obtained from the

quark DAs at µ0 = 3 GeV in the flavor basis, together with the corresponding values after evolving

down to µ = 1 GeV at NLO. Notice that, in general, within our approach the absolute values of the

expansion coefficients a
(qi)
Mn decrease rather slowly with n.

n 2 4 6 8 10 12

aπn(3GeV) −0.0183 −0.0324 0.0048 −0.0090 0.0049 −0.0067

aπn(1GeV) (NLO) −0.0225 −0.0646 0.0075 −0.0242 0.0114 −0.0205

TABLE IV: Coefficients aπn obtained within the nlNJL model at µ0 = 3 GeV, and their values after evolving

down to µ = 1 GeV at NLO.

Our results for the case of the η meson can be compared with those obtained within the (local)

Nambu−Jona-Lasinio model in Ref. [28], where only the η meson case is analyzed, since the η′ turns

out to be unbounded. It is seen that the shapes of the η DAs are quite different from those obtained

in the present model, showing only one central maximum (we recall that the origin of the two-maxima

behavior shown in Fig. 1 arises from the purely nonlocal contribution). As expected, the differences

in the shapes are translated to the coefficients of the Gegenbauer expansion: the first coefficients



n 2 4 6 8 10 12

a
(ql)
ηn (3GeV) −0.0538 −0.0263 0.0049 −0.0071 0.0033 −0.0049

a
(ql)
ηn (1GeV) (NLO) −0.0778 −0.0540 0.0077 −0.0194 0.0071 −0.0152

a
(qs)
ηn (3GeV) −0.1185 −0.0577 0.0538 −0.0248 0.0012 0.0023

a
(qs)
ηn (1GeV) (NLO) −0.1785 −0.1168 0.1151 −0.0619 0.0016 0.0054

TABLE V: Coefficients a
(ql)
ηn and a

(qs)
ηn obtained within the nlNJL model at µ0 = 3 GeV, and their values

after evolving down to µ = 1 GeV at NLO.

n 2 4 6 8 10 12

a
(ql)
η′n (3 GeV) 0.1156 −0.0789 −0.0341 0.0023 0.0201 −0.0061

a
(ql)
η′n (1GeV) (NLO) 0.1860 −0.1509 −0.0799 0.0019 0.0520 −0.0182

a
(qs)
η′n (3GeV) −0.1343 −0.0568 0.0632 −0.0334 0.0010 0.0104

a
(qs)
η′n (1GeV) (NLO) −0.2031 −0.1155 0.1360 −0.0829 0.0008 0.0291

TABLE VI: Coefficients a
(ql)
η′n and a

(qs)
η′n obtained within the nlNJL model at µ0 = 3 GeV, and their values

after evolving down to µ = 1 GeV at NLO.

obtained in Ref. [28] read a
(qℓ)
η2 = 0.134, a

(qℓ)
η4 = 0.352, a

(qs)
η2 = 0.377 and a

(qs)
η4 = 0.245.

B. TFFs without gluons

In this subsection we present the results obtained within our approach for the

pseudoscalar meson-γ TFFs. In fact, we have modified the expression on the right hand side of

Eq. (1) by adding subleading terms in an expansion in inverse powers of Q2. This procedure has

been already used in Refs. [13, 15, 28, 45] in order to account for contributions coming e.g. from

higher twist operators. Here we propose to include two terms in this expansion. In addition, let us

neglect for now the gluon contribution to the TTFs. This is consistent with a description of mesons

within the nlNJL, which has no gluon content. We have in this way

Q2 FMγ(Q
2) =

∫

dx
1

2
Tqq̄
(

x,Q2, µ2
)

Φ
(q)
M (x, µ2) +

c

Q2
+

d

Q4
. (39)

In accordance with our approximation of neglecting gluon contributions, we will use octet evolution

for the whole quark DAs Φ
(q)
M (x, µ2).

Our results for the M-γ TFFs, where M = π, η and η′, are shown in Fig. 2. The curves have

been obtained by calculating the corresponding DAs at NLO, using the octet evolution given by

Eq. (38). In all cases solid lines correspond to the evaluation of the TFFs under the assumption of

no higher twist corrections, i.e. taking c = d = 0, while dashed lines are obtained from Eq. (39) by



Meson c (GeV3) d (GeV5) n χ2/n χ2/n (c = d = 0)

π 0.130 −0.234 50 3.9 6.9

η 0.064 −0.159 30 0.76 1.3

η′ −0.075 0.049 40 0.88 2.5

TABLE VII: Fitted values of c and d for the π-, η- and η′-γ TFFs. n stands for the number of experimental

data points in each case. In the last column we quote the value of χ2 corresponding to the choice c = d = 0.

fitting c and d to the experimental data. In the case of the π-γ and η-γ TFFs we have considered all

world data, i.e. those obtained by CELLO, CLEO, BaBar and Belle Collaborations for the π-γ TFF

and those from CLEO and BaBar for the η-γ TFF. On the other hand, for the η′-γ TFF we have

considered only the data from CLEO and BaBar, in view of the large errors in the determination of

Q2 values shown by L3 results (which are also included in the figure). The dotted lines in the graphs

correspond to the LO asymptotic Q2 →∞ limits for the TFFs in QCD, namely

Q2FAsymLO
Mγ (Q2) =







√
2fπ M = π

(
√
2f 8

M + 4f 0
M)/
√
3 = (5

√
2f ℓ

M + 2f s
M)/3 M = η, η′

. (40)

Finally, the short-dashed curves correspond to what we call the “asymptotic behavior”, obtained

from Eq. (39) by taking c = d = 0, the parton level amplitudes Tqq̄ at the NLO, and the asymptotic

form of the DAs, Φ
(q)
M (x) = φasym(x) = 6x(1− x). One has [8, 36]

Q2FAsymNLO
Mγ (Q2) =

(

1− 5
αs(Q

2)

3 π

)

[

Q2FAsymLO
Mγ (Q2)

]

. (41)

In Table VII we quote the values of c and d arising from our fits, together with the number of

experimental data considered in each case and the corresponding χ2 values. For comparison we also

include the χ2 obtained when we take c = d = 0. By looking at the χ2 values it is seen that the

introduction of higher twist corrections through the c and d terms leads to a significant improvement

in the theoretical description of the data for both the π-γ and η′-γ TFFs, while the improvement

is not so important in the case of the η-γ TFF. In this regard, notice that the better quality of the

fits is basically dominated by the description of the low virtuality region (which has less impact in

the case of the η′-γ TFF owing to the wide dispersion of the data). In fact, by comparing the solid

and dashed curves in the figure we observe that in the case of the π-γ and η-γ TFFs the differences

are ruled by the behaviors at Q2 . 3 GeV2, while for the η′-γ TFF there is a more steady deviation

which covers a region up to Q2 ∼ 10 GeV2. Moreover, from Table VII it is seen that the signs of c

and d are the same for π-γ and η-γ TFFs, whereas they are opposite to those obtained from the fit

to η′-γ TFF data. This could be related with the octet character of the π and the prevailingly octet

character of the η, which contrast with the mostly singlet character of the η′.
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FIG. 2: Theoretical π-γ, η-γ and η′-γ transition form factors and experimental results from CELLO, CLEO,

BaBar, Belle and L3 Collaborations. Solid lines correspond to the case c = d = 0, while dashed lines

correspond to the values of c and d in Table VII. Short-dashed lines show the NLO asymptotic QCD

behavior (see text), and dotted lines indicate the QCD asymptotic limits. In the case of the η′-γ TFF, the

gray region corresponds to a change in a
(qi)
η′n coefficients within a range of 15%. Notice that in all graphs we

have used a logarithmic scale for Q2.



Now, while higher twist effects influence the low Q2 region of the TFFs, it is interesting to analyze

the high virtuality region from the point of view of QCD, comparing our results with the asymptotic

QCD behavior and the asymptotic limit of the TFFs. From the graphs in Fig. 2 it is seen that in

all cases the introduction of NLO corrections to the parton level subprocess amplitudes Tqq̄ (while

keeping the asymptotic limit for the DAs) has a negative contribution to the TFFs. In addition, it

is seen that in all cases the results obtained within the nlNJL model approximate experimental data

from below.

Let us comment separately the situation for each meson. In the case of the pion, the experimental

data seem to cross the asymptotic limit at some Q2 value between ∼ 10 − 20 GeV2, hence the

NLO corrections go in the wrong direction. This is a well-known problem that we have already

discussed in the context of the two-flavor version of the nlNJL model in Ref. [13]. In fact, the

puzzling pion data can be described by some models based on flat DAs and some cutoff in the parton

amplitudes [15, 45, 46].

In the case of the η-γ TFF, even if experimental data for Q2 > 10 GeV2 seem to follow the

asymptotic behavior, the trend of the data shows that it is not unlikely that the TFF crosses the

QCD asymptotic limit for higher Q2 [28]. In any case, according to present experimental results, it

can be said that our model provides a good description of the TFF.

Finally, for the η′-γ TFF the experimental data lie clearly below the asymptotic behavior, and

quite far from the asymptotic QCD limit. Once again the results obtained within the nlNJL model

are shown to be in good agreement with the data. Given the uncertainty in the numerical calculations

for the η′ DA discussed in the previous subsection, we have studied in this case the stability of our

results against some variation in the coefficients of the Gegenbauer expansion of the quark DAs. In

order to get an estimation of the error we have considered the η′-γ TFF for c = d = 0, allowing for

a change in a
(qi)
η′n coefficients (n ≥ 2) within a 15% range. The corresponding range obtained for the

TFF is shown by the small gray area in Fig. 2. In general we can state that this error does not affect

qualitatively our results.

IV. THE EFFECT OF GLUONS

In this section we discuss the possible effect of the presence of gluon components in the DAs.

According to the discussion in Sec. II.C, it is natural to carry out our analyses using the octet-singlet

basis for the quark distribution amplitudes. At any scale µ, we can use Eqs. (28) to obtain the

octet and singlet quark DAs from the flavor ones, and analogous expressions can be written for the

coefficients of the Gegenbauer expansion. Let us assume that we know the flavor DAs or, equivalently,

the coefficients of the Gegenbauer expansion at some scale µ̄0. For the octet and singlet Gegenbauer



coefficients we have

a
(q8)
Mn(µ̄0) =

1√
3 f 8

M

[

f ℓ
M a

(qℓ)
Mn(µ̄0)−

√
2 f s

M a
(qs)
Mn(µ̄0)

]

,

a
(q0)
Mn(µ̄0) =

1√
3 f 0

M

[√
2 f ℓ

M a
(qℓ)
Mn(µ̄0) + f s

M a
(qs)
Mn(µ̄0)

]

. (42)

At LO, the evolution from µ̄0 up to a higher scale µ is obtained from Eqs. (37) and (32). In particular,

for quark singlet and gluon coefficients one has

a
(+)
Mn (µ̄0) =

a
(q0)
Mn (µ̄0)− ρ(−)

n a
(g)
Mn (µ̄0)

1− ρ(−)
n ρ

(+)
n

,

a
(−)
Mn (µ̄0) =

a
(g)
Mn (µ̄0)− ρ(+)

n a
(q0)
Mn (µ̄0)

1− ρ(−)
n ρ

(+)
n

, (43)

hence

a
(q0)
Mn (µ) =

1

1− ρ(−)
n ρ

(+)
n











(

αs (µ̄0)

αs (µ)

)γ
(+)
n /β0

− ρ(+)
n ρ(−)

n

(

αs (µ̄0)

αs (µ)

)γ
(−)
n /β0



 a
(q0)
Mn (µ̄0)

−ρ(−)
n





(

αs (µ̄0)

αs (µ)

)γ
(+)
n /β0

−
(

αs (µ̄0)

αs (µ)

)γ
(−)
n /β0



 a
(g)
Mn (µ̄0)







, (44)

a
(g)
Mn (µ) =

1

1− ρ(−)
n ρ

(+)
n







ρ(+)
n





(

αs (µ̄0)

αs (µ)

)γ
(+)
n /β0

−
(

αs (µ̄0)

αs (µ)

)γ
(−)
n /β0



 a
(q0)
Mn (µ̄0)

+





(

αs (µ̄0)

αs (µ)

)γ
(−)
n /β0

− ρ(+)
n ρ(−)

n

(

αs (µ̄0)

αs (µ)

)γ
(+)
n /β0



 a
(g)
Mn (µ̄0)







. (45)

In fact, to the order we are working, we should compute the NLO evolution of the DAs. At NLO

the evolution of a
(qi)
Mn (µ) coefficients for different order n become mixed, as one can see from Eq. (38)

for the case of octet components. However, the impact of NLO corrections to the evolution of these

coefficients is not significant in comparison with the corresponding corrections for the subprocess

amplitudes Tqq̄ and Tgg given in Eqs. (2). Indeed, the most important effect on the DAs when

going from LO to NLO evolution comes from the change in the strong coupling constant, αs (µ).

Thus we adopt the following prescription: we consider the NLO corrections for Tqq̄ (x,Q
2, µ2) and

Tgg (x,Q
2, µ2) [given by Eqs. (2)] together with Eqs. (37) and (44-45) for the evolution of the octet

and singlet DAs, respectively. In all these equations we take the NLO running equations for the

strong coupling constant αs, given by Eq. (64) in App. B. In order to test the validity of this

prescription, let us study the case of the octet DAs. In Tables VIII, IX and X we quote the values of

the coefficients aπn, a
(q8)
ηn and a

(q8)
η′n , respectively, evolved from µ = 3 GeV to µ = 1 GeV at LO [i.e.,

using Eqs. (37) and (63)], at NLO [i.e., using Eqs. (38) and (64)], and within the above described

“mixed” approximation, which means to take the LO evolution equation (37) for the coefficients and



n 2 4 6 8 10 12

aπn(3GeV) −0.0183 −0.0324 0.0048 −0.0090 0.0049 −0.0067

aπn(1GeV) (LO) −0.0264 −0.0552 0.0091 −0.0187 0.0109 −0.0158

aπn(1GeV) (NLO) −0.0225 −0.0646 0.0075 −0.0242 0.0114 −0.0205

aπn(1GeV) (Mixed) −0.0284 −0.0614 0.0103 −0.0216 0.0127 −0.0187

TABLE VIII: Coefficients aπn(µ) obtained within the nlNJL quark model at µ = 3 GeV and their evolution

down to µ = 1 GeV at LO, at NLO and using the mixed approximation.

n 2 4 6 8 10 12

a
(q8)
ηn (3GeV) −0.0911 −0.0444 0.0331 −0.0173 0.0021 −0.0008

a
(q8)
ηn (1GeV) (LO) −0.1315 −0.0758 0.0631 −0.0358 0.0046 −0.0018

a
(q8)
ηn (1GeV) (NLO) −0.1357 −0.0902 0.0695 −0.0439 0.0039 −0.0033

a
(q8)
ηn (1GeV) (Mixed) −0.1413 −0.0842 0.0716 −0.0414 0.0054 −0.0022

TABLE IX: Coefficients a
(q8)
ηn (µ) obtained within the nlNJL quark model at µ = 3 GeV and their evolution

down to µ = 1 GeV at LO, at NLO and using the mixed approximation.

the NLO evolution equation (64) for αs. From the values in the tables one can conclude that the

“mixed” approximation can be used to estimate NLO calculations with reasonably good accuracy.

We consider here two different ways of estimating the effect of gluons in the DAs. Our first analysis

is based on the fact that in general one assumes that the scale at which standard quark models —

with no gluon content— can be used to describe hadron physics lies around µ ∼ 0.5 − 1 GeV.

Thus, we evolve the quark DAs obtained within the nlNJL from our input scale µ0 = 3 GeV to

a lower energy scale, which we choose to be µ̄0 = 0.5 GeV, and at this lower scale we impose the

condition of no gluons. Then, for higher values of µ, we allow gluon contributions to be generated

through the evolution equations, which mix quark singlet and gluon components of the DAs. For the

second analysis, once again we proceed by using the nlNJL quark model parametrization in order

to calculate the coefficients a
(qi)
Mn (M = η, η′) of the Gegenbauer expansion of the DAs at the scale

µ0 = 3 GeV. Now, for n ≤ n̄, where n̄ is some chosen value of n, we also include nonzero gluon

coefficients a
(g)
Mn(µ0), and use Eqs. (44) and (45), with µ̄0 = µ0, to evolve quark and gluon coefficients

to any other scale. The values of the gluon coefficients a
(g)
Mn(µ0) are then determined from a fit to the

experimental data for the TFFs. For the remaining coefficients (those of order n > n̄) we proceed in

the same way as in the first analysis. The consistency of this approach can be tested by analyzing

the stability of the results against changes in the chosen value of n̄. Notice that this second analysis

leads to the presence of gluons at low virtuality, which is compatible with models that include a

glueball component for the description of the η-η′ mixing [47].



n 2 4 6 8 10 12

a
(q8)
η′n (3GeV) −0.4317 −0.0305 0.1791 −0.0759 −0.0217 0.0301

a
(q8)
η′n (1GeV) (LO) −0.6232 −0.0520 0.3418 −0.1577 −0.0483 0.0708

a
(q8)
η′n (1GeV) (NLO) −0.6661 −0.0733 0.3930 −0.1839 −0.0601 0.0854

a
(q8)
η′n (1GeV) (Mixed) −0.6698 −0.0577 0.3881 −0.1821 −0.0566 0.0837

TABLE X: Coefficients a
(q8)
η′n (µ) obtained within the nlNJL quark model at µ = 3 GeV and their evolution

down to µ = 1 GeV at LO, at NLO and using the mixed approximation.

A. First analysis

Let us analyze the numerical results obtained for the effect of gluon contributions according to the

first analysis proposed above. As stated, we take into account the fact that usually quark models do

not include gluons at their scale of validity µ̄0, therefore we can obtain the coefficients a
(q0)
Mn and a

(g)
Mn

at any scale µ from Eqs. (44-45) by imposing a
(g)
Mn(µ̄0) = 0. Moreover, from Tables II and III it is

seen that the values of the ρ
(+)
n ρ

(−)
n coefficients are small and the γ

(+)
n anomalous dimensions are close

to γqq. Hence we can assume that the mixing with gluons will have small influence on the singlet

coefficients a
(q0)
Mn(µ). On the other hand, since the values of ρ

(+)
n for low n are not negligible, the first

gluon coefficients a
(g)
Mn(µ) of the Gegenbauer expansion could give some appreciable contribution to

η and η′ DAs.

As discussed in Sec. II.B, we input the shape of quark propagators at the scale µ0 = 3 GeV from

lattice QCD calculations. In order to connect the DAs at this scale to those at the lower scale µ̄0

that we use as starting point for the QCD evolution we need some approximation. We use here octet

evolution, i.e., we begin by considering the calculated DAs at µ0 = 3 GeV shown in Fig. 1, and evolve

them down to µ̄0 = 0.5 GeV assuming no gluon components. Then, starting from the µ̄0 scale we

use the evolution equations (44-45) to obtain the singlet quark and gluon DAs (the latter, generated

by the mixing in the evolution) at any µ. Thus at the scale µ̄0 = 0.5 GeV we have

a
(g)
Mn (0.5 GeV) = 0 ,

a
(q0)
Mn (0.5 GeV) = ã

(q0)
Mn (3 GeV)

[

αs (3 GeV)

αs (0.5 GeV)

]γqq
n /β0

, (46)

where

ã
(q0)
Mn (3 GeV) =

1√
3 f 0

M

[√
2 f ℓ

M a
(qℓ)
Mn (3 GeV) + f s

M a
(qs)
Mn (3 GeV)

]

. (47)

The values for the first coefficients a
(qℓ)
Mn (3 GeV) and a

(qs)
Mn (3 GeV) for M = η and M = η′ are those

quoted in Tables V and VI. Notice than when evolving back from µ = µ̄0 to µ = 3 GeV using the

evolution equations (44-45) in general we will obtain a result for a
(q0)
Mn(3 GeV) different from the input



n 2 4 6 8 10 12

a
(q0)
ηn (1 GeV) 0.182 0.107 −0.268 0.094 0.022 −0.066

a
(g)
ηn (1 GeV) 0.342 0.062 −0.072 0.014 0.002 −0.004

a
(q0)
η′n (1 GeV) −0.022 −0.128 0.036 −0.039 0.027 0.007

a
(g)
η′n(1 GeV) −0.042 −0.074 0.010 −0.006 0.003 0.0005

TABLE XI: Coefficients a
(q0)
Mn(µ) and a

(g)
Mn(µ) (M = η, η′) evolved from µ0 = 0.5 GeV to µ = 1 GeV according

to our first analysis of gluon contributions.

value ã
(q0)
Mn(3 GeV). However, since the anomalous dimensions γ

(+)
n are close to γqqn (see Table II),

one expects the differences to be small for all n.

In Table XI we quote the first coefficients of the Gegenbauer expansion for the quark singlet and

gluon DAs at µ = 1 GeV. As expected from the values of ρ
(+)
n in Table III, it is seen that the

coefficients of the gluon DA decrease rapidly with n. The small value of a
(q0)
η′n for n = 2 arises from a

cancellation in the r.h.s. of Eq. (47), which reduces significantly the value of ã
(q0)
Mn(3 GeV).

From our calculations we find that the effect of gluon contributions to the TFFs within this

approximation is negligible. In the case of the η-γ TFF, the comparison with experimental data for

c = d = 0 leads to χ2/n = 1.33, to be compared with the value of 1.30 obtained in absence of gluons

(see Table VII). The corresponding curve differs slightly from that plotted in Fig. 2 (central panel,

solid line). For the η′-γ TFF the influence of gluons in this approximation is also imperceptible. The

comparison with data leads to χ2/n = 2.9, somewhat above the value of 2.5 quoted in Table VII,

whereas the corresponding curve lies within the uncertainty range indicated by the gray region in

the lower panel of Fig. 2.

B. Second analysis

As stated above, in this second analysis we allow for the presence of nonzero gluon coefficients

a
(g)
ηn , a

(g)
η′n at a low µ scale for n ≤ n̄, where n̄ is some chosen value of n, and we determine the values of

these coefficients by fitting to the experimental data for the η-γ and η′-γ TFFs. For the coefficients

a
(q0)
Mn and a

(g)
Mn, with n > n̄, we proceed as in the first analysis. We consider here the cases n̄ = 2 and

n̄ = 4, comparing the corresponding numerical results to get an estimation of the stability of the

approach.

Let us first take n̄ = 2. In this case we take the coefficients a
(q0)
Mn and a

(g)
Mn for n ≥ 4 to be the same

as those calculated in the previous analysis, therefore the corresponding values at µ = 1 GeV can be

read from Table XI. For the first Gegenbauer coefficients a
(q0)
η2 and a

(q0)
η′2 , at the scale µ0 = 3 GeV we

use the input provided by Eq. (42) with µ̄0 = µ0, taking the values of a
(qℓ)
M2(3 GeV) and a

(qs)
M2 (3 GeV)



for M = η, η′ from Tables V and VI. On the other hand, the first gluon coefficients a
(g)
η2 and a

(g)
η′2 at

the scale µ0 = 3 GeV are taken as free parameters to be determined from fits to the η-γ and η′-γ TFF

experimental data, respectively. The theoretical values for the TFFs are obtained by evolving the

coefficients a
(q0)
M2 and a

(g)
M2 to any scale through the above described “mixed” evolution approximation.

Finally we proceed in a similar way, taking now n̄ = 4. Namely, for n ≥ 6 we use the same a
(q0)
Mn and

a
(g)
Mn coefficients as in the first analysis, we obtain a

(q0)
M2 (3 GeV) and a

(q0)
M4 (3 GeV) from Eq. (42) with

µ̄0 = µ0 for n = 2 and n = 4, respectively, and we determine a
(g)
M2 (3 GeV) and a

(g)
M4 (3 GeV) from fits

to the experimental data for the η-γ and η′-γ TFFs.

To discuss our results we quote not only the values of the coefficients a
(q0)
Mn and a

(g)
Mn obtained at

the input scale µ0 = 3 GeV but also the corresponding values after the evolution down to 1 GeV,

as it is commonly done in the literature. This is especially relevant in this case, since the effect

of gluon contributions to the TFFs is more relevant at low virtuality, say Q2 . 3 GeV2. Let us

start by analyzing the results for the η meson. From the n̄ = 2 fit we obtain a
(g)
η2 (3 GeV) = 2.66,

with χ2/(number of points) = 1.30, while from the n̄ = 4 fit we get a
(g)
η2 (3 GeV) = −109 and

a
(g)
η4 (3 GeV) = 65.5, with χ2/(number of points) = 0.71. The comparison is more feasible when we

evolve the coefficients down to µ = 1 GeV:

a
(g)
η2 (1 GeV) = 6.37 a

(q0)
η2 (1 GeV) = 0.155 n̄ = 2

a
(g)
η2 (1 GeV) = −275
a
(g)
η4 (1 GeV) = 278

a
(q0)
η2 (1 GeV) = 1.24

a
(q0)
η4 (1 GeV) = −0.937







n̄ = 4 .

(48)

Taking into account the results of our first analysis (discussed in the previous subsection), in which

we obtain χ2/(number of points) = 1.33, it is seen that the n̄ = 2 fit shows no gain of quality in

the description of the experimental data. In addition, the n̄ = 4 fit leads to a strong cancellation

between the n = 2 and n = 4 gluon coefficients. There is no physical reason for this cancellation,

therefore we interpret this result as a spurious solution. Thus we conclude that there is no evidence

of a significant presence of gluons in the case of the η meson.

For the η′ meson the n̄ = 2 fit leads to a
(g)
η′2(3 GeV) = 4.31, while from the n̄ = 4 fit we obtain

a
(g)
η′2(3 GeV) = 4.38 and a

(g)
η′4(3 GeV) = −0.049. The quality of the fit is approximately the same in

both cases, with χ2/(number of points) = 0.91. Evolving these coefficients to µ = 1 GeV we obtain

a
(g)
η′2(1 GeV) = 10.9 a

(q0)
η′2 (1 GeV) = −0.064 n̄ = 2

a
(g)
η′2(1 GeV) = 11.1

a
(g)
η′4(1 GeV) = −0.097

a
(q0)
η′2 (1 GeV) = −0.065
a
(q0)
η′4 (1 GeV) = −0.127







n̄ = 4 .

(49)

Contrary to the case of the η-γ TFF, now we observe that there is a significant gain of quality in

the description of the experimental values in comparison with the results from our first analysis and
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FIG. 3: Theoretical curves and experimental results for the η′-γ TFF. The full line corresponds to the NLO

result with no gluon contributions discussed in Sec. III, and the gray region indicates the indetermination

in the corresponding Gegenbauer coefficients. The dashed line is the TFF obtained when the contributions

of gluons are fitted. Short-dashed and dotted lines correspond to the NLO asymptotic behavior of the TFF

(see discussion in Sec. III) and the asymptotic limit, respectively. Notice the usage of a logarithmic scale

for Q2.

with those quoted in Sec. III. We recall that the latter, obtained under the assumption of no gluon

contributions to the η′ DA, lead to a fit of η′-γ TFF with χ2/n = 2.5 (see Table VII). Moreover,

although the n̄ = 4 fit has one more free parameter with respect to the case n̄ = 2, the theoretical

description of the η′-γ TFF is approximately the same in both cases. Our result is shown by the

dashed line in Fig. 3 (n̄ = 2 and n̄ = 4 fits are indistinguishable). For comparison we also include in

the figure the previous NLO result with no gluon contribution (full line, indetermination indicated by

the grey band), the “asymptotic behavior”, according to the definition in Sec. III (short-dashed line),

and the asymptotic Q2 → ∞ value (dotted line). Our analysis shows that the gluon contribution

is sizable in the case of the η′ meson. From the figure it is seen that in the low virtuality region

the difference between our NLO calculation and the asymptotic behavior is similar to the difference

between the present fit and the NLO result. In fact, the result obtained after considering the fitted

gluon contributions to the η′ DA is comparable to that arising from the inclusion of higher twist

contributions, discussed in the previous section.

Finally, it is interesting to compare our results with those obtained in Refs. [19–21]. The authors

of these articles perform model independent fits of the η-γ and η′-γ TFFs, considering only the n = 2

coefficients of the Gegenbauer expansions of the DAs. Moreover, they assume meson independence of

the quark and gluon DAs, i.e. they take φ
(qi)
η = φ

(qi)
η′ and φ

(g)
η = φ

(g)
η′ . In this way they end up with only



three free parameters, namely the coefficients a
(q8)

η(′)2
, a

(q0)

η(′)2
and a

(g)

η(′)2
. The analyses carried out in those

papers, considering various fits under different conditions, show that the results are quite stable within

the quoted errors. Let us take here as representative values the default results from Ref. [21], namely

a
(q8)

η(′)2
(1 GeV) = −0.05±0.02, a

(q0)

η(′)2
(1 GeV) = −0.12±0.01 and a

(g)

η(′)2
(1 GeV) = 19±5, as well as the

results in Eq. (63) of Ref. [19], which translated to our notation lead to a
(q0)

η(′)2
(1 GeV) = −0.12± 0.11

and a
(g)

η(′)2
(1 GeV) = 18.2±4.5. It is worth noticing that our results do not support the hypothesis of

meson independence of quark and gluon DAs, in fact, we find significative differences between them.

Nevertheless, it is seen that the values obtained from our analysis are consistent with the above

results. Indeed, considering Eq. (3), and taking values of meson decay constants from Table XII, it is

seen that that the coefficients of φ
(q8)
M are basically determined by the η-γ TFF, whereas those of φ

(q0)
M

(and also φ
(g)
M ) are mainly fixed by the η′-γ TFF. Therefore, the value of a

(q8)

η(′)2
in Ref. [21] should be

compared with our result in Table IX, a
(q8)
η2 = −0.14, while the results for a

(q0)

η(′)2
and a

(g)

η(′)2
in Ref. [21]

and Ref. [19] are to be compared with our values a
(q0)
η′2 = −0.06 and a

(g)
η′2 = 11, see Eq. (49). Taking

into account the theoretical and experimental uncertainties, we conclude that the values quoted in

Refs. [21] and [19] are compatible with each other and with our results.

V. CONCLUSIONS

In this work we have evaluated the quark DAs for the η and η′ mesons and the associated η-γ

and η′-γ TFFs within the framework of a nonlocal Nambu–Jona-Lasinio model. This approach,

which has been shown to provide a successful description of various meson observables [30, 35], has

been previously considered in Ref. [13] for the study of the π meson DA and the π-γ TFF. Since

the theoretical framework satisfies all basic symmetry requirements (i.e. chiral, Poincaré and local

electromagnetic gauge invariances), the quark DAs turn out to be naturally normalized within this

scheme.

One of the main ingredients of our model is the quark propagator, which by construction shows

a momentum dependence consistent with lattice QCD results. The calculated quark DAs have to

be therefore associated to the momentum scale of lattice data, namely 3 GeV [31]. In general, the

comparison of any observable related to the quark DAs (as e.g. the M-γ TFF) with experimental

data will require a perturbative evolution of the results obtained at this reference scale. Here we

have carried out this evolution up to NLO accuracy in αs, neglecting the mixing between Gegenbauer

coefficients of different orders for the singlet quark and gluon DAs.

From the obtained quark DAs at the scale of 3 GeV we observe the following features: (i) whereas

our πDA is not far from the asymptotic distribution φasym (x) = 6x (1− x), the η and η′ quark DAs

move away from the asymptotic behavior, the departure being larger the larger the meson mass is;



(ii) all DAs show two maxima, and this structure arises from the nonlocal genuine contributions in

Eq. (25); (iii) in all cases the DAs go to zero rather fast near x = 0 and x = 1, supporting the idea

of suppression of the kinematic end points [43, 44]. Another outcome of our results is that when the

DAs are expanded in Gegenbauer polynomials we find that the absolute values of the corresponding

coefficients decrease rather slowly with n, in contrast with usual assumptions.

Concerning the evaluation of the M-γ TFFs, we have found that in general NLO corrections lead

to a suppression of Q2F (Q2). Although this represents a problem regarding the explanation of the

already challenging experimental scenario for the π-γ TFF, the corrections go in the right direction

in the case of the η-γ and η′-γ TFFs. An important difference between the case of the π meson and

those of the η and η′ mesons is that η and η′ states can include a gluon-gluon component. In this

regard, we have firstly performed an analysis in which these gluon components have been neglected

for all Q2 values, while higher twist corrections have been taken into account by adding 1/Q2 and

1/Q4 terms to the dominant twist 2 contribution provided by the DAs. Then we have fitted these

contributions toM-γ TFF data. From our results it is seen that the effect of higher twist corrections

is more important for the π-γ and η-γ TFFs, particularly for Q2 . 3 GeV2. Moreover, it is seen

that the signs of the corresponding contributions are the same in both cases. Conversely, for the

η′-γ TFF, contrary to what it should be expected, the higher twist corrections appear to be less

concentrated in the low virtuality region.

Finally, we have investigated the effect of two-gluon components of the η and η′ mesons to leading-

twist accuracy, considering NLO perturbative QCD and neglecting the mixing between Gegenbauer

coefficients of different orders. From the numerical analysis it is found that the evolution equations

do not generate an appreciable contribution if we assume that meson DAs include no gluons at

low virtuality. On the other hand, if we allow for the presence of gluon-gluon components in the

η and η′ DAs at low momentum scales, it is seen that the experimental data for the corresponding

TFFs suggest an important gluon component in the η′ state and a less important one in the η state.

According to the discussion in Sec. IV.B, our results for the first Gegenbauer coefficients of quark

DAs at the scale of 1 GeV are

a
(q8)
η2 (1 GeV) = −0.14 a

(q8)
η4 (1 GeV) = −0.08

a
(q0)
η2 (1 GeV) = 0.18 a

(q0)
η4 (1 GeV) = 0.11

a
(q8)
η′2 (1 GeV) = −0.67 a

(q8)
η′4 (1 GeV) = −0.06

a
(q0)
η′2 (1GeV) = −0.06 a

(q0)
η′4 (1 GeV) = −0.13

For the gluon DAs, our results in the case of the η meson are not conclusive, whereas for the η′ we

obtain

a
(g)
η′2 (1 GeV) = 11 a

(g)
η′4 (1 GeV) = −0.10



As discussed in Sec. IV.B, these results are found to be compatible with previous fits for Gegenbauer

coefficients quoted in Refs. [19–21]. In this way, from our analysis we conclude that π-γ and η-γ

TFFs are more sensible to corrections coming from higher twist effects, while the experimental data

on the η′-γ TFF points to the presence of a significant gluon-gluon component in the η′ state.
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Appendix A: Details of the model

In this appendix we provide some details on the calculation of the quark DAs in Eq. (22). We

start from the Euclidean action in Eq. (10), to which we add a coupling with an external axial

gauge field Aa
µ, as described in Sec. II.B. Then we perform a standard bosonization of the fermionic

theory, introducing scalar fields σa(x), ζ(x) and pseudoscalar fields πa(x), together with auxiliary

fields Sa(x), Pa(x) and R(x), with a = 0, ..., 8. Details of this procedure can be found e.g. in Ref. [30].

As in that work, we use the stationary phase approximation, replacing the path integral over the

auxiliary fields by the corresponding argument evaluated at the minimizing values S̃a(x), P̃a(x), and

R̃(x). This leads to the equations

σa(x) +G S̃a(x) +
H

2
Aabc

[

S̃b(x)S̃c(x)− P̃b(x)P̃c(x)
]

= 0 ,

πa(x) +G P̃a(x) +H Aabc S̃b(x)P̃c(x) = 0 ,

ζ(x) +GR̃(x) = 0 . (50)

Thus the bosonized action can be written as

Sbos
E = − ln detD +

∫

d4x

{

σa(x)S̃a(x) + πa(x)P̃a(x) + ζ(x)R̃(x)

+
G

2

[

S̃a(x)S̃a(x) + P̃a(x)P̃a(x) + R̃(x)2
]

+

+
H

4
Aabc

[

S̃a(x)S̃b(x)S̃c(x)− 3S̃a(x)P̃b(x)P̃c(x)
]

}

, (51)



where

D
(

y +
z

2
, y − z

2

)

= γ0 W
(

y +
z

2
, y
)

γ0

{

δ(4)(z)

(

− i/∂ +mc

)

+

[

G(z)
[

σa (y) + iγ5 π
a (y)

]

λa + F(z) σ2 (y)
i
←→
/∂

2 κp

]}

W
(

y, y − z

2

)

.(52)

As usual, we assume that, owing to parity conservation and charge and isospin symmetries, the

fields σa(x), a = 0, 8, and ζ(x) have nontrivial translational invariant mean field values σ̄a and ζ̄,

while mean field values of the remaining fields are zero. Thus we write

σa(x) = σ̄a + δσa(x) ,

πa(x) = δπa(x) ,

ζ(x) = ζ̄ + δζ(x) . (53)

Replacing in the bosonized effective action, and expanding the latter in powers of meson fluctuations

ξ and powers of the gauge field Aa
µ, we obtain

Sbos
E = S(MFA) + S(ξ2) + S(ξA) + . . . , (54)

where only the terms relevant for our calculation have been explicitly written.

The mean field action per unit volume reads

S(MFA)

V (4)
= 2Nc

∑

f

∫

d3p

(2π)3
log

[

Z(p)2

p2 +Mf(p)2

]

−
(

ζ̄ R̄ +
G

2
R̄2 +

H

4
S̄u S̄d S̄s

)

− 1

2

∑

f

(

σ̄f S̄f +
G

2
S̄2
f

)

, (55)

where we have rotated neutral fields from the SU(3)F basis to a flavor basis, σa, πa → σf , πf , where

a = 0, 3, 8 and f = u, d, s, or equivalently f = 1, 2, 3. The functions Mf (p) and Z(p) correspond to

the momentum-dependent effective masses and WFR of quark propagators introduced in Sec. II.B

[see Eqs. (13) and (14)], while S̄f and R̄ stand for the values of the fields S̃f(x) and R̃(x) within the

MFA, respectively. The minimization of S(MFA) with respect to σ̄f and ζ̄ leads to the corresponding

Schwinger-Dyson equations [30].

The piece of the bosonic Euclidean action that is quadratic in the meson fluctuations can be

written as

S
(ξ2)
E =

1

2

∫

d4p

(2π)4

∑

M

rM GM(p2) ξM(p) ξ̄M(−p) , (56)

where meson fluctuations δσa, δπa have been translated to a charge basis ξM , M being the scalar

and pseudoscalar mesons in the lowest mass nonets (σ, π0, etc.), plus the ζ field. The coefficient

rM is 1 for charge eigenstates M = a00, σ, f0, ζ, π
0, η, η′, and 2 for M = a+0 , K

∗+
0 , K∗0

0 , π
+, K+, K0.



The full expressions for the one-loop functions GM(q), as well as those for the above mentioned

Schwinger-Dyson equations, can be found in Ref. [30]. Meson masses can be obtained by solving the

equations

GM(−m2
M ) = 0 . (57)

In order to obtain physical states ξ̃M one still has to introduce a wave function renormalization factor,

ξ̃M(p) = Z
−1/2
M ξM(p) , (58)

where

Z−1
M =

dGM(p)

dp2

∣

∣

∣

∣

p2=−m2
M

= g−2
Mqq. (59)

Finally, the bilinear piece in ξM and Aa
µ fields in Eq. (54) is given by

S
(ξA)
E = Tr

[

D−1
0 Dξ D−1

0 DA

]

− Tr
[

D−1
0 DξA

]

, (60)

where Dξ, DA and DξA stand for the terms in the expansion of Eq. (52) that are linear in ξM

and/or Aa
µ. Then the meson DAs within the nlNJL model can be obtained by taking the functional

derivative of S(ξA) with respect to ξM and Aa
µ. The corresponding expressions are lengthy, and will

not be quoted here. After some work one arrives at the result in Eqs. (22- 27).

It is worth noticing that, owing to the bilocal character of the current in Eq. (4), one gets an

extra delta function that involves the + components of the momenta. Namely, if Γ represents some

operator that includes dirac and flavor matrices, one has

∫

dz−

2π
ψ̄
(

−z
2

)

Γψ
(z

2

)
∣

∣

∣

z+=0, ~zT=0
eiP

+z−(x− 1
2
) = (61)

∫

d4p1
(2π)4

d4p2
(2π)4

δ

(

P+
(

x− 1

2

)

− p+1 + p+2
2

)

ψ̄p2 Γψp1 . (62)

The numerical results for meson masses and weak decay constants obtained within the present

nonlocal model, taking the parameters in Table I, are listed in Table XII.

mπ mK mη mη′ fπ fK/fπ f0
η/fπ f8

η/fπ f0
η′/fπ f8

η′/fπ

(MeV) (MeV) (MeV) (MeV) (MeV)

Model 139∗ 495∗ 523 958∗ 92.4∗ 1.17 0.209 1.085 1.496 −0.463

Empirical 139 495 547 958 92.4 1.22 0.187 1.174 1.155 −0.456

TABLE XII: Numerical results from our model and empirical values for various phenomenological quantities.

Input values are indicated with an asterisk.



Appendix B: NLO renormalization factors for the QCD evolution of the octet DA

We quote here the expressions for the renormalization factors ENLO
n and dkn needed to calculate

the evolution of the coefficients aMn(µ) in Eq. (38). One has

ENLO
n (µ, µ0) =

(

αs (µ0)

αs (µ)

)γqq
n /β0

[

1 +
αs(µ)− αs(µ0)

8π

γqqn
β0

(

γ
(1)
n

γqqn
− β1
β0

)]

,

where β0 (β1) and γ
qq
n (γ

(1)
n ) are the LO (NLO) coefficients of the QCD β-function and the anomalous

dimensions, respectively. One has β1 = 102 − 38nf/3, where nf is the number of flavors (we take

here nf = 4). The values of β0 and γqqn are given in Sec. IIC, and analytical expressions for γ
(1)
n can

be found in Refs. [48, 49]. For the evolution of the strong coupling constant αs at LO we use

αs(µ) =
4π

β0 ln(µ2/Λ2)
, (63)

with Λ = 0.224 GeV, while at NLO we take

αs(µ) =
4π

β0 ln(µ2/Λ2)

{

1 − β1
β2
0

ln
[

ln(µ2/Λ2)
]

ln(µ2/Λ2)

}

, (64)

with Λ = 0.326 GeV.

On the other hand, the off-diagonal mixing coefficients dkn in Eq. (38) are given by

dkn(µ, µ0) =
Mk

n

γqqn − γqqk − 2β0

{

1−
[

αs(µ)

αs(µ0)

][γqq
n −γqq

k
−2β0]/2β0

}

. (65)

Here the matrix elements Mk
n are defined as

Mk
n =

(k + 1)(k + 2)(2n+ 3)

(n+ 1)(n+ 2)
[γqqn − γqqk ]

×
{

8CFA
k
n − γqqk − 2β0

(n− k)(n+ k + 3)
+ 4CF

Ak
n − S1(n + 1))

(k + 1)(k + 2)

}

, (66)

where

Ak
n = S1

(

n+ k + 2

2

)

− S1

(

n− k − 2

2

)

+ 2S1(n− k − 1)− S1(n+ 1) , (67)

with

S1 (n) =
n
∑

j=1

1

j
. (68)

Numerical values of the coefficients Mk
n for n ≤ 12 can be found in Ref. [39].
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