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We study the relation between the continuum threshold as function of the temperature s0(T )
within finite energy sum rules and the trace of the Polyakov loop Φ in the framework of a nonlocal
SU(2) chiral quark model, establishing a contact between both deconfinement order parameters at
finite temperature T and chemical potential µ. In our analysis, we also include the order parameter
for the chiral symmetry restoration, the chiral quark condensate.

We found that s0 and Φ providing us the same information for the deconfinement transition,
both for the zero and finite chemical potential cases. At zero density, the critical temperatures for
both quantities coincide exactly and, at finite µ both order parameters provide evidence for the
appearance of a quarkyonic phase.

I. INTRODUCTION

In QCD the strong interaction among quarks depends
on their color charge. When quarks are placed in a
medium, this color charge is screened due density and
temperature effects [1]. If the density and/or the tem-
perature increases beyond a certain critical value, one
expects that the interactions between quarks no longer
confine them inside a hadron, so that they are free to
travel longer distances and deconfine. This transition
from a confined to a deconfined phase is usually referred
to as the deconfinement phase transition.

A separate phase transition takes place when the
realization of chiral symmetry shifts from a Nambu-
Goldstone phase to a Wigner-Weyl phase. Based, on
lattice QCD evidence [2] one expects these two phase
transitions to take place at approximately the same tem-
perature at zero chemical potential. At finite density
these two transitions can arise at different critical tem-
peratures. The result will be a quarkyonic phase, where
the chiral symmetry is restored but the quarks and gluons
remains confined.

In order to characterize the properties of these phase
transitions it has been customary to study the behavior of
corresponding order parameters as functions of the tem-
perature T and the baryon chemical potential µ, namely
the trace of the Polyakov loop (PL) Φ (deconfinement
phase transition) and quark anti-quark chiral condensate
〈ψ̄ψ〉 (chiral symmetry restoration), respectively.

Another important parameter in the discussion of these
phase transitions is the role that an external magnetic
field may play, inducing changes in the critical temper-
ature, in the location of the critical end point, etc [3].
However, in this work we will not refer to magnetic field
effects, since the goal of our discussion is to compare the
Polyakov loop order parameter with another QCD de-
confinement parameter that has been introduced in the

literature [4] in the form of the squared energy thresh-
old, s0(T ), for the onset of perturbative QCD (PQCD)
in hadronic spectral functions. For an actual general re-
view see Ref. [5]. Around this energy, and at zero tem-
perature, the resonance peaks in the spectrum are either
no longer present or become very broad. The smooth
hadronic spectral function thus approaches the PQCD
regime. With increasing temperature approaching the
critical temperature for deconfinement, one would expect
hadrons to disappear from the spectral function which
should then be described entirely by PQCD.
When both T and µ are nonzero, lattice QCD simu-

lations cannot be used, because of the sign problem in
the fermionic determinant. Therefore, one need to re-
sort either to mathematical constructions to overcome
the above limitation, or to model calculations.
The two deconfinement order parameters mentioned

before: the trace of the PL (Φ) and the continuum thresh-
old (s0) can be used to realize a phenomenological de-
scription of the deconfinement transition at finite tem-
perature and density.
The natural framework to determine s0 has been that

of QCD sum rules [6]. This quantum field theory frame-
work is based on the operator product expansion (OPE)
of current correlators at short distances, extended be-
yond perturbation theory, and on Cauchy’s theorem in
the complex s-plane. The latter is usually referred to
as quark-hadron duality. Vacuum expectation values of
quark and gluon field operators effectively parametrize
the effects of confinement. An extension of this method
to finite temperature was first outlined in [4]. Further
evidence supporting the validity of this program was
provided in [7], followed by a large number of applica-
tions [8, 9].
To analyze the role of the PL, we will concentrate

on nonlocal Polyakov−Nambu−Jona-Lasinio (nlPNJL)
models [10–15], in which quarks move in a background
color field and interact through covariant nonlocal chi-
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rally symmetric four point couplings. These approaches,
which can be considered as an improvement over the (lo-
cal) PNJL model [16–22], offer a common framework to
study both the chiral restoration and deconfinement tran-
sitions. In fact, the nonlocal character of the interac-
tions arises naturally in the context of several successful
approaches to low-energy quark dynamics [23–25], and
leads to a momentum dependence in the quark propa-
gator that can be made consistent [26] with lattice re-
sults [27–29].
In view of the above mentioned points, the aim of the

present work is to study the relation between both or-
der parameters for the deconfinement transition at finite
temperature and chemical potential, Φ and s0, using the
thermal finite energy sum rules (FESR) with inputs ob-
tained from nlPNJL models.

II. FINITE ENERGY SUM RULES

We begin by considering the (charged) axial-vector
current correlator at T = 0

Πµν(q
2) = i

∫

d4x eiq·x 〈0|T (Aµ(x)Aν (0))|0〉,

= −gµν Π1(q
2) + qµqνΠ0(q

2) , (1)

where Aµ(x) =: ū(x)γµγ5d(x) : is the axial-vector cur-
rent, qµ = (ω, ~q) is the four-momentum transfer, and the
functions Π0,1(q

2) are free of kinematical singularities.
Concentrating on the function Π0(q

2) and writing the
OPE beyond perturbation theory in QCD [6], one of the
two pillars of the sum rule method, one has

Π0(q
2)|QCD = C0 Î +

∑

N=1

C2N (q2, µ2)〈Ô2N (µ2)〉 , (2)

where µ2 is a renormalization scale. The Wilson coef-
ficients CN depend on the Lorentz indices and quan-
tum numbers of the currents. Finally, the local gauge
invariant operators ÔN , are built from the quark and
gluon fields in the QCD Lagrangian. The vacuum ex-
pectation values of those operators (Ô2N (µ2)), dubbed
as condensates, parameterize nonperturbative effects and
have to be extracted from experimental data or model
calculations. These operators are ordered by increas-
ing dimensionality and the Wilson coefficients, calcula-
ble in PQCD, fall off by corresponding powers of −q2.
The unit operator above has dimension d = 0 and C0Î
stands for the purely perturbative contribution. Hence,
this OPE factorizes short distance physics, encapsu-
lated in the Wilson coefficients, and long distance effects
parametrized by the vacuum condensates.
The second pillar of the QCD sum rules technique is

Cauchy’s theorem in the complex squared energy s-plane

1

π

∫ s0

0

ds f(s) Im Π0(s)|HAD =

− 1

2πi

∮

C(|s0|)

ds f(s) Π0(s)|QCD , (3)

where f(s) is an arbitrary analytic function, and the ra-
dius of the circle s0 is large enough for QCD and the OPE
to be used on the circle. The integral along the real s-axis
involves the hadronic spectral function. This equation is
the mathematical statement of what is usually referred to
as quark-hadron duality. Using the OPE, Eq.(2), and an
integration kernel f(s) = sN (N = 1, 2, · · · ) one obtains
the FESR

(−)N−1C2N 〈Ô2N 〉 = 4π2

∫ s0

0

ds sN−1 1

π
ImΠ0(s)|HAD

−s
N
0

N
[1 +O(αs)] (N = 1, 2, · · · ) .

(4)

For N = 1, the dimension d = 2 term in the OPE
does not involve any condensate, as it is not possible to
construct a gauge invariant operator of such a dimension
from the quark and gluon fields. There is no evidence
for such a term (at T = 0) from FESR analyses of ex-
perimental data on e+e− annihilation and τ decays into
hadrons [30, 31]. At high temperatures, though, there
seems to be evidence for some d = 2 term [32]. However,
the analysis to be reported here is performed at lower val-
ues of T , so that we can safely ignore this contribution
in the sequel.
The dimension d = 4 term, a renormalization group

invariant quantity, is given by

C4〈Ô4〉 =
π

6
〈αsG

2〉+ 2π2(mu +md)〈q̄q〉, (5)

The leading power correction of dimension d = 6 is the
four-quark condensate, which in the vacuum saturation
approximation [6] becomes

C6〈Ô6〉 =
896

81
π3 αs |〈q̄q〉|2 , (6)

which has a very mild dependence on the renormaliza-
tion scale. This approximation has no solid theoretical
justification, other than its simplicity. Hence, there is
no reliable way of estimating corrections, which in fact
appear to be rather large from comparisons between Eq.
(6) and direct determinations from data [31].
The extension of this program to finite temperature

is fairly straightforward [4, 7, 33], with the Wilson co-
efficients in the OPE, Eq.(2), remaining independent of
T at leading order in αs, and the condensates develop-
ing a temperature dependence. Radiative corrections in
QCD involve now an additional scale, i.e. the tempera-
ture, so that αs ≡ αs(µ

2, T ). This problem has not yet
been solved successfully. Nevertheless, from the size of
radiative corrections at T = 0 one does not expect any
major loss of accuracy in results from thermal FESR to
leading order in PQCD, as long as the temperature is
not too high, say T . 200MeV. Essentially all applica-
tions of FESR at T 6= 0 have been done at leading order
in PQCD, thus implying a systematic uncertainty at the
level of 10 %.



3

In the static limit (~q → 0), to leading order in PQCD,
and for T 6= 0 and µ 6= 0 the function Π0(q

2)|QCD in
Eq.(1) becomes Π0(ω

2, T, µ)|QCD; to simplify the nota-
tion we shall omit the T and µ dependence in the sequel.
A straightforward calculation of the spectral function in
perturbative QCD, at finite temperature and finite den-
sity gives

1

π
ImΠ0(s)|PQCD =

1

4π2

[

1− ñ+

(√
s

2

)

− ñ−

(√
s

2

)]

− 2

π2
T 2 δ(s)

[

Li2(−eµ/T ) + Li2(−e−µ/T )
]

,

(7)

where Li2(x) is the dilogarithm function, s = ω2, and

ñ±(x) =
1

e(x∓µ)/T + 1
(8)

are the Fermi-Dirac thermal distributions for particles
and antiparticles, respectively.

In the hadronic sector we assume pion-pole dominance
of the hadronic spectral function, i.e. the continuum
threshold s0 to lie below the first radial excitation with
mass Mπ1

≃ 1300 MeV. This is a very good approxi-
mation at finite T , as we expect s0 to be monotonically
decreasing with increasing temperature. In this case,

1

π
ImΠ0(s)|HAD = 2 f2

π(T, µB) δ(s−m2
π), (9)

where fπ(T, µB) is the pion decay constant at finite T
and µ, with fπ(0, 0) = 92.21± 0.14 MeV [34]. Notice we
will not include in our spectral function the first part of
a1 resonance obtained from the τ -decay data [35], since
still there is no counterpart in the SU(2) nlPNJL model
for the description of the hadronic vector resonance. A
zero temperature analysis has been done for the vector
case in Ref. [36].

Turning to the FESR, Eq.(4), with N = 1 and no
dimension d = 2 condensate, and using Eqs.(7) and (9)
one finds

∫ s0(T,µ)

0

ds

[

1− ñ+

(√
s

2

)

− ñ−

(√
s

2

)]

=

8π2f2
π(T, µ) + 8T 2

[

Li2(−eµ/T ) + Li2(−e−µ/T )
]

. (10)

This is a transcendental equation determining s0(T, µ) in
terms of fπ(T, µ).
For completeness, the other two thermal FESR at zero

chemical potential are given by [35],

−C4〈Ô4〉(T ) = 4π2

∫ s0(T )

0

ds s
1

π
ImΠ0(s)|HAD

−
∫ s0(T )

0

ds s

[

1− 2nF

(√
s

2T

)]

, (11)

C6〈Ô6〉(T ) = 4π2

∫ s0(T )

0

ds s2
1

π
ImΠ0(s)|HAD

−
∫ s0(T )

0

ds s2
[

1− 2nF

(√
s

2T

)]

, (12)

where nF (x) = 1/(1+ ex) is the Fermi thermal function.

III. THERMODYNAMICS AT FINITE DENSITY

IN THE PNJL MODEL

We consider a nonlocal SU(2) chiral quark model that
includes quark couplings to the color gauge fields. The
corresponding Euclidean effective action is given by [37,
38]

SE =

∫

d4x

{

ψ̄(x) (−iγµDµ + m̂)ψ(x)−

GS

2

[

ja(x)ja(x) − jP (x)jP (x)
]

+ U (Φ[A(x)])

}

, (13)

where ψ is the Nf = 2 fermion doublet ψ ≡ (u, d)T ,
and m̂ = diag(mu,md) is the current quark mass ma-
trix. In what follows we consider isospin symmetry,
mu = md = m. The fermion kinetic term in Eq. (13)
includes a covariant derivative Dµ ≡ ∂µ− iAµ, where Aµ

are color gauge fields. The nonlocal currents ja(x), jP (x)
are given by

ja(x) =

∫

d4z G(z) ψ̄
(

x+
z

2

)

Γa ψ
(

x− z

2

)

,

jP (x) =

∫

d4z F(z) ψ̄
(

x+
z

2

) i
←→
/∂

2 κp
ψ
(

x− z

2

)

,

(14)

where, Γa = (11, iγ5~τ ) and u(x
′)
←→
∂ v(x) = u(x′)∂xv(x) −

∂x′u(x′)v(x). The functions G(z) and F(z) in Eq. (14)
are nonlocal covariant form factors characterizing the
corresponding interactions.
Notice that the four currents ja(x) require a com-

mon form factor G(z) in order to guarantee chiral in-
variance, while the coupling jP (x)jP (x) is self-invariant
under chiral transformations. The scalar-isoscalar com-
ponent of the ja(x) current will generate a momentum
dependent quark mass in the quark propagator, while
the “momentum” current jP (x) will be responsible for a
momentum dependent quark wave function renormaliza-
tion (WFR) [26, 37, 38], if is not included then the mass
parameter in the quark propagator cannot be compare
with lattice results.
Now we perform a bosonization of the theory, intro-

ducing bosonic fields σ1,2(x) and πa(x), and integrating
out the quark fields. Details of this procedure can be
found e.g. in Ref. [26].
In order to analyze the properties of meson fields it

is necessary to go beyond the mean field approximation,
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considering quadratic fluctuations in the Euclidean ac-
tion:

Squad
E =

1

2

∫

d4p

(2π)4

∑

M

rM GM (p2) φM (p) φ̄M (−p) ,

(15)

where meson fluctuations δσa, δπa have been translated
to a charged basis φM , being M the scalar and pseu-
doscalar mesons (σ, π0, π±) plus the σ2 field, and GM

are the inverse dressed propagators. The coefficient rM
is 1 for charge eigenstatesM = σi, π

0, and 2 forM = π+.
Meson masses are then given by the equations

GM (−m2
M ) = 0 , (16)

where the full expressions for the one-loop functions
GM (q) can be found in Ref. [15, 26]. In addition, physical
states have to be normalized through

φ̃M (p) = Z
−1/2
M φM (p) , (17)

where

Z−1
M =

dGM (p)

dp2

∣

∣

∣

∣

p2=−m2
M

. (18)

At finite temperature, the meson masses are obtained
by solvingGP (−m2

P , 0) = 0. The mass values determined
by these equations are the spatial “screening-masses” cor-
responding to the zeroth Matsubara mode, and their in-
verses describe the persistence lengths of these modes at
equilibrium with the heat bath [12].
At zero temperature, one can also calculate the weak

decay constants of pseudoscalar mesons. These are given
by the matrix elements of the axial currents Aa

µ between
the vacuum and the physical meson states,

ıfab(p
2) pµ = 〈0|Aa

µ(0)|δπb(p)〉 . (19)

The matrix elements can be calculated from the expan-
sion of the Euclidean effective action in the presence of
external axial currents,

〈0|Aa
µ(0)|δπb(p)〉 =

δ2SE

δAa
µδπb(p)

∣

∣

∣

∣

Aa
µ=δπb=0

, (20)

Performing the derivative of the resulting expressions
with respect to the renormalized meson fields, we can
finally identify the corresponding pion weak decay con-
stant [15, 26]

fπ =
mc Z

−1/2
π

m2
π

F0(−m2
π) . (21)

with

F0(p
2) = 8Nc

∫

d4q

(2π)4
g(q)

Z(q+)Z(q−)

D(q+)D(q−)
×

[

q+ · q− +M(q+)M(q−)
]

(22)

where q± = q ± p/2 and D(q) = q2 +M2(q), with M(p)
and Z(p) defined as

M(p) = Z(p) [mq + σ̄1 g(p)] ,

Z(p) = [1− σ̄2 f(p)]−1
. (23)

here g(p) and f(p) are the Fourier transforms of the form
factors in Eq. (14).

Since we are interested in the deconfinement and
chiral restoration critical temperatures, we extend the
bosonized effective action to finite temperature T and
chemical potential µ. This will be done using the stan-
dard imaginary time formalism. Concerning the gauge
fields Aµ, we assume that quarks move on a constant
background field φ = A4 = iA0 = ig δµ0G

µ
aλ

a/2,
where Gµ

a are SU(3) color gauge fields. Then the traced
Polyakov loop, which in the infinite quark mass limit can
be taken as an order parameter of confinement, is given
by Φ = 1

3Tr exp(iφ/T ). For the light quark sector the
trace of the Polyakov loop turn out to be an approximate
order parameter in the same way the chiral quark con-
densate is an approximate order parameter for the chiral
symmetry restoration outside the chiral limit.

We work in the so-called Polyakov gauge [39], where
the matrix φ is given a diagonal representation φ =
φ3λ3+φ8λ8. This leaves only two independent variables,
φ3 and φ8. Owing to the charge conjugation properties
of the QCD Lagrangian, the expectation values 〈Φ〉 and
〈Φ∗〉 of the conjugate Polyakov loop fields must be real
quantities [20, 40]. This means Φ = Φ∗ for the mean
field configurations that satisfy the gap equations. With
the constraint of φ3 and φ8 being real: φ8 = 0, leav-
ing only φ3 as an independent variable, and therefore
Φ = [2 cos(φ3/T ) + 1]/3.

Thus, in the mean field approximation (MFA), and
following the same prescriptions as in previous works, see
e.g. Refs. [41, 42], the thermodynamical potential ΩMFA

at finite temperature T and chemical potential µ is given
by

ΩMFA = Ωreg +Ωfree + U(Φ, T ) + Ω0 , (24)

where
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Ωreg = − 4T
∑

c=r,g,b

∞
∑

n=−∞

∫

d3~p

(2π)3
log

[

(ρcn,~p)
2 +M2(ρcn,~p)

Z2(ρcn,~p)

]

+
σ̄2
1 + κ2p σ̄

2
2

2GS
,

Ωfree = −4T
∫

d3~p

(2π)3

∑

c=r,g,b

∑

s=±1

Re ln

[

1 + exp

(

− ǫp + isφc
T

)]

, (25)

here σ̄1,2 are the mean field values of the scalar fields.
We have also defined

(

ρcn,~p

)2

=
[

(2n+ 1)πT + φc − ıµ
]2

+ ~p 2 , (26)

the sums over color indices run over c = r, g, b, with the
color background fields components being φr = −φg =

φ3, φb = 0, and ǫp =
√

~p 2 +m2 . The term Ωreg is the
regularized expression with the thermodynamical poten-
tial of a free fermion gas, and finally the last term in
Eq. (24) is just a constant fixed by the condition that
ΩMFA vanishes at T = µ = 0.
The effective gauge field self-interactions are given by

the Polyakov loop potential U(Φ, T ). At finite tempera-
ture T , it is usual to take for this potential a functional
form based on properties of pure gauge QCD. One possi-
ble Ansatz is that based on the logarithmic expression of
the Haar measure associated with the SU(3) color group
integration. The corresponding potential is given by [20]

Ulog(Φ, T )
T 4

= − 1

2
a(T )Φ2 +

b(T ) log
(

1− 6Φ2 + 8Φ3 − 3Φ4
)

, (27)

where

a(T ) = a0 + a1

(

T0
T

)

+ a2

(

T0
T

)2

,

b(T ) = b3

(

T0
T

)3

. (28)

The parameters can be fitted to pure gauge lattice QCD
data to properly reproduce the corresponding equation
of state and the Polyakov loop behavior [20]. The values
of ai and bi are constrained by the condition of reaching
the Stefan-Boltzmann limit at T → ∞ and by imposing
the presence of a first-order phase transition at T0, which
is a further parameter of the model. At the critical tem-
perature, the Polyakov loop potential develops a second
degenerate minimum giving raise to a first order phase
transition.
In the absence of dynamical quarks, from lattice cal-

culations one expects a deconfinement temperature T0 =
270 MeV. However, it has been argued that in the pres-
ence of light dynamical quarks this temperature scale
should be adequately reduced to about 210 and 190 MeV
for the case of two and three flavors, respectively, with

an uncertainty of about 30 MeV [43]. In this work we
will use T0 = 208 MeV.
Besides the logarithmic function in Eq. (27), a widely

used potential is that given by a polynomial function
based on a Ginzburg-Landau Ansatz [19, 44]:

Upoly(Φ, T )
T 4

= − b2(T )
2

Φ2 − b3
3
Φ3 +

b4
4
Φ4 , (29)

where

b2(T ) = a0 + a1

(

T0
T

)

+ a2

(

T0
T

)2

+ a3

(

T0
T

)3

. (30)

Once again, the parameters can be fitted to pure gauge
lattice QCD results to reproduce the corresponding equa-
tion of state and Polyakov loop behavior (numerical val-
ues can be found in Ref. [19]).
Given the full form of the thermodynamical potential,

the mean field values σ̄1,2 and φ3 can be obtained as
solutions of the coupled set of gap equations

∂ΩMFA
reg

(∂σ1, ∂σ2, ∂φ3)
= 0 . (31)

In order to fully specify the model under consideration,
we proceed to fix the model parameters as well as the
nonlocal form factors g(q) and f(q). We consider here
Gaussian functions

g(q) = exp
(

−q2/Λ2
0

)

,

f(q) = exp
(

−q2/Λ2
1

)

, (32)

which guarantee a fast ultraviolet convergence of the loop
integrals. The values of the five free parameters can be
found in [38].
Once the mean field values are obtained, the behav-

ior of other relevant quantities as functions of the tem-
perature and chemical potential can be determined. We
concentrate, in particular, on the chiral quark conden-
sate 〈q̄q〉 = ∂ΩMFA

reg /∂m and the traced Polyakov loop
Φ, which will be taken as order parameters for the chi-
ral restoration and deconfinement transitions, respec-
tively. The associated susceptibilities will be defined as
χch = ∂ 〈q̄q〉/∂m and χPL = dΦ/dT .

IV. RESULTS

In order to determine the relation between both or-
der parameters for the deconfinement transition, namely
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the perturbative QCD threshold s0 and the trace of the
Polyakov loop Φ as functions of the temperature and
chemical potential we begin our analysis studying the
finite energy sum rules at zero density. In this scenario,
when µ = 0, the Eq. (10) becomes

8π2f2
π(T ) =

4

3
π2T 2 +

∫ s0(T )

0

ds

[

1− 2nF

(√
s

2T

)]

,

(33)

where the pion decay constant at finite temperature
and/or chemical potential is calculated using the Eq. (21)
with Eq. (22) as

F0(p
2) = 8T

∑

c,n

∫

d3~q

(2π)4
g(ρcn,~q)

Z(ρcn,~q
+)Z(ρcn,~q

−)

D(ρcn,~q
+)D(ρcn,~q

−)
×

[

ρcn,~q
+ · ρcn,~q− +M(ρcn,~q

+)M(ρcn,~q
−)

]

(34)

where ρcn,~q
± = ρcn,~q ± p/2 .

It is known that in local versions of the PNJL model,
at zero chemical potential, the restoration of the chiral
symmetry and the deconfinement transition take place
at different temperatures (see e.g. Refs. [45, 46]), usually
separated by approximate 20 MeV. Therefore, it is inter-
esting to analyze the results obtained in a nonlocal and in
a local PNJL model, the latter one parametrized accord-
ing to [19]. In Fig. 1 we plot the continuum threshold and
the trace of the PL for the nonlocal (local) PNJL model
in solid (dashed) line, for the logarithmic and polyno-
mial effective potentials. As we expected from previous
results, in the local version both transitions do not occur
simultaneously. In this scenario, the PQCD threshold
vanishes at a critical temperature, T s0

c , located between
the chiral critical temperature T χ

c and the PL deconfine-
ment temperature TΦ

c (obtained through the correspond-
ing susceptibilities) and hence, although it is not possi-
ble to conclude a direct relation between s0 and Φ, the
continuum threshold, in any case, vanishes before the
restoration of the chiral symmetry, in agreement with
general arguments [4].
In the case of the nonlocal PNJL model, for both ef-

fective potentials, s0 and Φ have a similar critical tem-
perature for the deconfinement transition of approximate
Tc ∼ 170 MeV. These temperatures are summarized in
Table I.
The value obtained at zero temperature for the con-

tinuum threshold, s0 ∼ 670, MeV is rather small but in
a good agreement with other calculations in sum rules
using as input LQCD results. The main reason for
this lower value is the pion pole approximation for the
spectral function. When additional information is in-
corporated, for instance the a1 resonance, the value of
s0(T = 0) increases substantially [35].
Just for completeness and, in addition to the main goal

of this article, from the higher order FESR, Eqs. (11) and
(12), we can estimate the gluon condensate and the four-
quark condensate. The former shows the expected behav-
ior with a finite value at zero temperature. It decreases

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

Logarithmic

 0

 0.2

 0.4

 0.6

 0.8

       100        125        150        175        200        225        250

T [MeV]

Non local

Local

s0 (T)

Φ (T)

 0

 0.2

 0.4

 0.6

 0.8

       100        125        150        175        200        225        250

Polynomial

Figure 1: Continuum threshold (red line) and trace of
the Polyakov loop (blue line) as a function of the

temperature for nonlocal (solid line) and local PNJL
model (dashed line) at zero chemical potential for

logarithmic (upper panel) and polynomial (lower panel)
effective potentials.

Logarithmic Polynomial
Non local Local Non local Local

Tχ

c [MeV] 171 205 176 201
TΦ

c [MeV] 171 171 174 183
T s0
c [MeV] 171 189 170 190

Table I: Chiral critical temperatures T χ
c , deconfinement

temperatures TΦ
c and T s0

c for the local and nonlocal
PNJL model with logarithmic and polynomial effective

potentials.

monotonically as function of temperature, vanishing at
T ∼ 170 MeV. The four quark condensate, plotted in
Fig. 2, was compared, according to the vacuum satura-
tion approximation (VSA), with the squared of the chi-
ral quark condensate obtained within the SU(2) nlPNJL
model. If we assume that the previous approximation is
exact, from Eqs. (6) and (12), at zero temperature and in

the chiral limit, we obtain that αs =
108 π3

7

f6
π

|〈q̄q〉|2 ≃ 1.6

(a very similar result is obtained outside the chiral limit),

meaning that the VSA underestimate C6〈Ô6〉. This value
is considerably higher than recent estimations of the
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strong coupling at low energies, based on completely dif-
ferent approaches [47, 48]. The first one relies on a recent
analysis of the ALEPH data for the τ decay, whereas the
second one corresponds to a general recent review includ-
ing different perspectives.
From Fig. 2, we see that for both Polyakov effective

potentials, the VSA is about 40% less than the four-quark
condensate obtained from FESR at zero temperature, in
qualitatively agreement with estimates, based onK0−K̄0

mixing [49].
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Figure 2: Four-quark condensate in the vacuum
saturation approximation with αs = 1 [48] (blue line)

and C6〈Ô6〉 (red line) for the logarithmic (polynomial)
Polyakov effective potential in solid (dashed) line, at

zero density as a function of the temperature.

From lattice QCD calculations, at zero chemical po-
tential, the chiral symmetry restoration and the decon-
finement transition take place at the same critical tem-
perature. This behavior was verified in nlPNJL mod-
els [15, 37] and also obtained by finite energy sum
rules [33]. The next natural step is to extend our anal-
ysis to a finite density scenario, to identify the relation
between s0(T, µ) and Φ(T, µ).
In Fig. 3 we plot, for the logarithmic Polyakov effective

potential, the normalized quark condensate 〈q̄q〉/〈q̄q〉0,
the trace of the PL Φ and the continuum threshold s0
as functions of the temperature for three different val-
ues of chemical potential. In the middle panel we choose
µ = 139 MeV, which correspond to the critical end point
chemical potential µCEP . For values of µ smaller than
µCEP , the chiral restoration arises via a crossover tran-
sition. Beyond this critical density, a first order phase
transition occurs. This value, together with the critical
temperature TCEP = 161 MeV determines the coordi-
nates of the critical end point.
All the results presented here were obtained by Gaus-

sian regulators (see Eq. (32)). Nevertheless, similar out-
comes would be obtained if other form factors would have
been employed. For instance, a lattice inspired depen-
dence (Lorentzian regulator) [15] or we may also neglect

the momentum current, this means no WFR effects [12].
It turns out that the chiral and deconfinement critical
temperatures get a minor dependence on the explicit
shape used to parameterize the form factors [38, 50].
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Figure 3: Continuum threshold (solid red line), trace of
the Polyakov loop (black dashed lined) and the

normalized quark condensate (blue dotted line) as a
function of the temperature at a constant density for

the logarithmic effective potential.

In the upper panel of Fig. 3, where µ = 100 MeV,
we see that the chiral and deconfinement transitions are
crossovers occurring at the same critical temperature.
The peak of the Polyakov susceptibility and the point
where the continuum threshold vanishes occur at approx-
imate the same temperature Tc ∼ 166 MeV.
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When µ becomes equal or higher than µ = 139 MeV,
the order parameter for the chiral symmetry restoration
has a discontinuity signaling a first order phase transi-
tion. These gap in the quark condensate induces also a
jump in the trace of the PL (see middle and lower panels
in Fig. 3). The value of Φ at the discontinuity indicates
that at this temperature the system remains confined but
in a chiral symmetry restored state. This region is usu-
ally referred as the quarkyonic phase [51, 52].
At bigger densities than the critical end point chemical

potential, the thermal equation has not solution beyond
the critical temperature. The term proportional to the
dilogarithm becomes too negative and therefore Eq. 10
can not be satisfied. The continuum threshold stops with
a finite value at the chiral critical temperature (see mid-
dle and lower panels in Fig. 3). We see in this way, that
the Polyakov loop and the continuum threshold provide
the same information. When the chiral symmetry is re-
stored, s0 and Φ show that we are still in a confined
phase. This characterize the occurrence of a quarkyonic
phase.

V. SUMMARY AND CONCLUSIONS

In this article we discuss if the behavior of two vastly
used order parameters for the deconfinement transition:
the continuum threshold and the trace of the Polyakov
loop, provide us with the same physical insight.
To accomplish this analysis, we use finite energy sum

rules for the axial-vector current correlator. In this
framework, one can define the continuum threshold as
the energy where the resonance peaks in the spectrum
become very broad.
On the other side, the Polyakov loop is a thermal Wil-

son loop, gauge-invariant under the center of the color
group and is expected to vanish in the confined phase
and being different from zero in the deconfined phase.

The idea was to carry on the FESR program saturating
the spectral function with the pion pole approximation.
The input parameters we used in the spectral function,
namely the pion mass, the pion decay constant and the
chiral quark condensate, were obtained from a nonlocal
SU(2) Polyakov-NJL model with Gaussian form factors.
In this way we establish the connection between both
approaches.
At zero density, we compare the trace of the Polyakov

loop and the continuum threshold for the local and the
nonlocal version of a PNJL model. We determine, for the
nlPNJL model, that the continuum threshold vanishes at
the same temperature where the Polyakov susceptibility
has its maximum value. In the case of the local PNJL,
s0 becomes zero between the critical temperature for the
deconfinement transition, according to the Polyakov loop
analysis, and the chiral restoration temperature. The
fact that both deconfinement temperatures are smaller
than the chiral critical temperature is in agreement with
other analysis.
At finite chemical potential, we find that for both de-

confinement parameters, beyond the critical end point
chemical potential, the system remains in its confined
phase even when the chiral symmetry is restored. This
is an evidence for the appearance of a quarkyonic phase.
We may conclude saying that our analysis gives strong

support to the idea that both deconfinement parameters,
in fact, provide the same kind of physical information.
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