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Abstract This paper describes a numerical scheme to approximate the so-
lution of the optimal control problem for nonlinear systems with restrictions on
the manipulated variable. The method proposed here systematically reduces
the cost associated with successively updated control strategies, after proposing
an initial seed trajectory based on approximation arguments. The numerical
scheme follows two main lines of reasoning: the first one relying on lineariza-
tions around a seed state/control trajectory, exploiting a theoretical expression
for the increment of the cost, and mainly valid in regular situations, although
after some adaptations can be used when saturations occur. One of its ad-
vantages is that the decreasing of the cost can be assessed without integrating
numerically the nonlinear dynamics. However, and because of the constraints,
eventually this method fails, and an alternative approach must be activated
to keep decreasing the cost. The second approach, based on specific control
variations of the current control strategy, and it is activated depending on two
theoretical criteria (failure alert) developed here. The initial control variation
is derived from the differential Riccati equation for the linearized system and
appropriate quadratic cost functions. Other variations, similar to those used in
Pontryagin classical theorem for generating the final cone of states, are proposed
by modifying the locations of ‘switching times’, and so producing oscillations
in the interior of regular periods. The performance of the numerical combined
method and the related mathematical objects are illustrated by optimizing some
two-dimensional nonlinear systems with scalar bounded controls.

Keywords: Optimal control, restricted controls, nonlinear systems, control
variations, LQR problems.

1 Introduction

The Hamiltonian formalism has been at the core of the development of modern
optimal control [1, 2, 8, 19, 24]. For regular problems the standard mathemati-
cal results towards optimal solutions are: (i) the Hamilton-Jacobi-Bellman equa-
tion [3, 4], which is a first-order nonlinear partial differential equation (PDE),
or equivalently (ii) Hamilton Canonical Equations (HCE), which are a set of
2n ordinary differential equations (ODE) subject to two-point mixed bound-
ary conditions [5, 6, 11, 21]. The bounded-control context may lead to non
regular optimal control problems, for whose solutions there are not standard
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recipes [2, 20, 22, 23]. Since the early sixties, the Pontryagin Maximum Prin-
ciple (PMP) has been the standard theoretical setup to treat such non regular
situations [19], which despite being a theoretically powerful tool is difficult to use
in practical situations. PMP has been systematized for very few cases, especially
in time-optimal problems for linear systems with bounded controls [1, 2, 17, 19].

When the optimal control is a smooth trajectory only in a nontrivial subin-
terval I ⊆ [0, tf ], then the optimal control problem is called ‘partially regular’.
Clearly, if I = [0, tf ], then the problem is also ‘totally regular’. The treatment
of partially regular problems will be the main concern here when considering
nonlinear systems with input constraints. The standard procedure for nonlin-
ear systems requires the integration of the Hamiltonian Canonical Equations
(HCE) by using indirect shooting methods, which because of HCE’s inherent
instability leads to unpredictable results, and therefore cannot be applied in
real-time.

In contrast to linear systems, there are very few control strategies dealing
with the constrained nonlinear optimal control reported in the literature. Re-
cently [16] a suboptimal strategy was devised based on the optimal solution
of a linear time-varying (LTV) linearization, updated successively until reach-
ing some predefined tolerance. However, only bang-bang type solutions were
obtained this way. In [25] a penalty function method and an improved New-
ton algorithm were designed for solving the problem. Although the proposed
method was globally convergent with quadratic rate, the strategy needs the
calculation of the solution of the nonlinear HCEs by numerical integration.

The PMP brings forth open-loop optimal control trajectories when regularity
is lacking. Therefore, in control-restricted, non-regular situations, these open-
loop situations often present saturations of the control variable. On the con-
trary, regulars problems conduct to smooth optimal trajectories. Consequently,
methods based on improving solutions to regular approximate problems will
eventually need to resort to other, “non-regular” control variations, in order to
force the cost to decrease below the value obtained through regular solutions.

In this paper, a new numerical method is proposed to approximate, dur-
ing a first stage, the optimal control solution for nonlinear systems with input
constraints by using successive LTV ‘regular’ approximations along with a the-
oretical expression for the cost (valid in regular situations). After proposing
an initial seed trajectory useed, the cost is reduced by gradient-based iterations
until some point, when this regular method fails due to the influence of the con-
trol constraints. When this happens, another numerical strategy is activated,
achieving further reductions of the cost. The ‘alternative strategy’ generates
control variations of the last updated control trajectory obtained during the
regular procedure. Several types of variations are proposed, the first one con-
structed from the differential Riccati equation (DRE) for the linearized system
under an appropriated quadratic cost functional, obtained after disturbing the
final state value (as it will be explained in the text). The second one used
here comes from Pontryagin ‘spatial variations’, and the third one are oscilla-
tions created in the interior of regular periods, by modifying the locations of
switching-times τi (time instants when the control trajectory meets the bounds).
One main advantage of the proposed method is that the cost decrement can be
computed without need for the numerical integration of the nonlinear HCEs.
The approximation of the optimal control is obtained by choosing the variation
which produces the minimal cost in each iteration.
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The existence of the derivatives of the cost functional involved in this strat-
egy imply unconstrained controls and regularity of the problem, which are not
guaranteed in the proposed method. However, the approach has the following
main positive features: (i) the resulting formula for the derivatives produce in
general acceptable results during a certain number of iterations, and (ii) the
expression of the cost increment due to control variations is valid as far as the
control variation is small, regardless of being constrained or not, which allows
to activate an alert condition when this increment fails to be negative (a clear
indication that the validity of the general setup has collapsed). Two criteria
to give the alert signal are developed and discussed. If such an alert occurs,
then the alternative control variations are generated and tested to force further
decreasing of the cost.

In general the resulting control will at least be suboptimal, although in the
test-cases illustrated here the optimal trajectories were reached through the
proposed procedure.

The article has the following structure: In Section 2, the optimal control
problem and its formalism for finding solutions under regular situations are
presented. Also, the bounded-control scenario is settled and the problem with
input constraints posed. In Section 3, the gradient-based algorithm to reduce the
cost is substantiated, including the formula for the cost increment in terms of a
time-variant linearization of the augmented dynamics. The criteria to detect and
activate the alternative strategy are also proposed and discussed. In Section 4,
a nonlinear case-studies are treated and its optimal solution computed applying
the proposed method. Finally, conclusions and perspectives are exposed.

2 Optimal control for nonlinear systems

2.1 The Hamiltonian formalism. Unconstrained controls

The finite-horizon, time-constant formulation of a nonlinear problem with free
final states and unconstrained controls attempts to minimize the cost

J (u) =

tf∫
0

L(x(τ), u(τ)) dτ + K(x(tf )), (1)

subject to the following dynamic constraint (a nonlinear control system)

ẋ = f(x, u), x(0) = x0, (2)

with the state x evolving in some open set O of Rn containing x0, and assuming
that the vector field f and K is (at least) a C1 function in its domain. The ad-
missible control trajectories are the piecewise continuous functions u : [0, tf ]→
Rm, tf <∞. J (u) is a short notation for J (0, tf , x0, u(·)). To be precise, the
notation x(·) inside the Lagrangian L of Eq. (1) is the state-trajectory corre-
sponding to the control strategy u(·) via {x(t) = ϕ(t, x0, u(·)), t ∈ [0, tf ]} , with
ϕ denoting the transition function or transition map of the system (2), (see [22]),
assumed to exist in the appropriate range of its variables, and to coincide with
the unique solution to the dynamics (2).

Clearly the desired final (target) state is 0, so the problem aims to send x0 as
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near as possible to 0 with optimal cost (regulation problem). The Hamiltonian
of the problem is defined as usual [8]

H(x, λ, u) , L+ λ′f = L(x, u) + λ′f(x, u) , (3)

and seen as a function that map Rn ×Rm ×Rn → R, where λ is the adjoint or
costate variable, with values in Rn, in particular

λ(tf ) =

(
∂K
∂x

)′
(x(tf )). (4)

The problem (or the Hamiltonian H) is said to be regular [18] when for
each pair (x, λ) there exists a unique H-minimizing control value u0, with u0

a continuous function of its variables, called the ‘H-minimal’ control. In this
case it is possible to define the ‘optimal’ Hamiltonian H0 as

H0(x, λ) , H(x, λ, u0(x, λ)) , (5)

Since in that caseH results smooth with respect to all its variables, the definition
of u0 clearly implies

∂H

∂u
(x, λ, u0(x, λ)) ≡ 0 , (6)

and the ‘value function’ (or the ‘Bellman function’) V of the problem, i.e.

V (x, t) , inf
u(·)
J (u) , (7)

satisfies the partial differential equation known as the ‘Hamilton-Jacobi-Bellman’
(HJB) equation, namely:

∂V

∂t
+H0

[
x,

(
∂V

∂x

)′]
= 0 , V (x, tf ) = K(x(tf )), (8)

for regular problems, and from (5 - 8) it is clear that the optimal costate tra-
jectory λ∗ verifies

λ∗(t) =

(
∂V

∂x
(x∗(t), t)

)′
, (9)

‘the Hamiltonian Equations’ HE with their respective boundary conditions (as-
sociated to the HJB problem) [22] ẋ =

(
∂H0

∂λ

)′
; x(0) = x0 ,

λ̇ = −
(
∂H0

∂x

)′
; λ(tf ) =

(
∂K
∂x

)′
(x(tf )),

(10)

give rise to a 2n-dimensional two-point boundary-value problem in (x, λ) [19, 22].
If the HE are solved (their solution denoted as (x∗(·), λ∗(·))), then the optimal
control strategy u∗(·) is calculated at each time instant t through

u∗(t) = u0(x∗(t), λ∗(t)) . (11)

The immediate (and well-known) drawback to solve this optimal problem is
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the lack of information on the initial costate value λ(0), which precludes the
ODEs (10) to be integrated from initial conditions and applied to in real-time.
The final value x(tf ) also is unknown. For the nonlinear and unconstrained opti-
mal control problem, a couple of partial differential equations (which are solved
off-line) allows to find these missing boundary conditions [11]. Recently [9],
efficient numerical methods are provided to solve the linear and constrained
problem.

2.2 The bounded-control case

Commonly, the manipulated variable can move inside and on the boundary of
some bounded subset of a metric space, then it is natural to assume that the
admissible set of control values is a compact subset of Rm. In the scalar case,

u(t) ∈ U , [umin, umax] . (12)

The qualitative features of optimal control solutions to bounded problems are
significantly different from those of unbounded ones [19]. But questions about
how much they actually differ, which classes of problems lead to bang-bang con-
trols, and whether their solutions are just saturations of the optimal trajectories
of unbounded problems, are still open.

The search for solutions to restricted problems most frequently falls in the
domains of the Pontryagin Principle (PMP) [19]. However, even when solved,
PMP is not flexible enough to treat state perturbations: no optimal feedback
laws arise from the application of PMP equations, just open-loop control strate-
gies.

Let us assume from the beginning that there exists a time instant τ in (0, tf )
for which the optimal control of the restricted problem posed above takes the
value: u∗x0

(τ) ∈ (umin, umax) = Int(U).
The PMP standard formulation for the original problem indicates [1, 12,

19, 24] that, if there exists an optimal control solution u∗x0
(·) (for the bounded-

control problem and all initial conditions x0), then there should also exist an
optimal costate trajectory λ∗x0

(·), solution to the following (final-value, ODE)
problem:

λ̇ = −
(
∂H

∂x

)′
(x∗x0

, λ, u∗x0
) ; λ′(tf ) = ∇K

(
x∗x0

(tf )
)
, (13)

where x∗x0
(tf ) denotes the optimal final state value, i.e. the final value of the

trajectory x∗x0
(·) with dynamics

ẋ = f(x, u∗x0
) ; x(0) = x0 . (14)

PMP also guarantees that the related functions of u

ht(u) , H(x∗x0
(t), λ∗x0

(t), u), (15)

defined for each t ∈ [0, tf ] after the Hamiltonian H in Eq. (3), must assume their
minimal values at u∗x0

(t). In addition, for the class of autonomous problems at
hand,

ht(u
∗
x0

(t)) ≡ h̄x0 , (16)
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a constant in the whole optimization interval [0, tf ] . But from standard re-
sults [18, 22] it follows that for each t in some neighborhood of τ , the control
trajectory ũ defined by

ũ(t) , u0(x∗x0
(t), λ∗(t)) , (17)

allows to construct the corresponding optimal strategy u∗x0
in the following way:

u∗x0
(t) = ũsat(t) =

 umin if ũ(t) ≤ umin

ũ(t) if umin < ũ(t) < umax

umax if ũ(t) ≥ umax

. (18)

It is clear from the assumptions that u∗x0
(τ) ∈ (umin, umax). Then by con-

tinuity of regular controls this situation should extend to a maximal nontrivial
interval I := [τ1, τ2] ⊂ [0, tf ] containing τ (these time instants are called ‘switch-
ing times’), where the optimal state and costate variables

(
x∗x0

, λ∗x0

)
verify the

following ODEs:
(i) from Eqs. (6, 13, 17, 18):

λ̇ = −
(
∂H

∂x

)′
(x∗x0

, λ, u∗x0
) = −

(
∂H

∂x

)′
(x∗x0

, λ, ũ)

= −
(
∂H0

∂x

)′
(x∗x0

, λ) ; λ(τ) = λ∗x0
(τ) ; (19)

(ii) and by replacing ũ from Eq. (17) into the dynamics and resorting to
Eq. (6) again:

ẋ = f(x, u∗x0
) = f(x, ũ) (20)

= f(x, u∗x0
) = f(x, u0(x, λ∗x0

)) (21)

=

(
∂H0

∂λ

)′
(x, λ∗x0

) ; x(τ) = x∗x0
(τ) . (22)

3 Gradient-based cost reduction methods

3.1 Cost reduction in regular problems

Let us assume that a solution xseed(·) of the Eq. (2), corresponding to some
suboptimal piecewise-continuous control useed(·), is known. Then the dynamics
of the system will be approximated in the neighborhood of xseed(t) and useed(t).
It is convenient to define the new variables

X(t) , x(t)− xseed(t) (23)

U(t) , u(t)− useed(t),

where the state vector x(t) is assumed to deviate from the seed state vector
xseed(t) due to small control corrections U(t), allowing that the error X(t) can
be kept small.
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The time-dependent matrices

A(t) ,
df

dx
(xseed(t), useed(t)) (24)

B(t) ,
df

du
(xseed(t), useed(t)),

characterize the time-variant linear system

Ẋ(t) = f(x(t), u(t))− f(xseed(t), useed(t)) (25)

≈ A(t)X(t) +B(t)U(t) .

In this Subsection the original unconstrained optimal control problem posed
before will be slightly transformed into an equivalent one. In the new for-
mulation two state variables xe and z (associated with the original cumulative
Lagrangian and with the final penalization, respectively) are added to the initial
system. The new state

x# ,

 x
z
xe

 , (26)

will evolve in Rn+2 with dynamics

ẋ# = f#(x#, u) =

 f(x, u)
0

L(x, u) + z
tf

 , x#(0) =

 x0
K(x(tf ))

0

 . (27)

Thus, in these variables, the cost function (1) can be expressed in a pure final
penalization form, namely:

J (u) = xe(tf ). (28)

The expressions of the relevant objects for the augmented system result
in [13, 24]

A#(t) =


∂f(x,ũ)
∂x 0 0
0 0 0

∂L(x,ũ)
∂x

1
tf

0

 , (29)

B#(t) =

 ∂f(x,ũ)
∂u
0

∂L(x,ũ)
∂u

 , (30)

[λ#(tf )]′ = (∇K(x(tf )),−1, 1) , (31)

where λ#(tf ) is the final value of the costate variable for the augmented system.
In what follows the # sign will be avoided for the sake of simplicity, assuming
that the meaning of the new augmented state and cost expressions are clear.
The numerical approach for the minimization of J (u) for a nonlinear system
in the unconstrained context [22] attempts to compute a control variation (or
‘perturbation’) µ : [0, tf ] ⊂ Rm of useed such that

J (useed + hµ) < J (useed) (32)
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for a sufficiently small ‘step size’ h > 0. A suitable variation can be chosen [22]
as:

µ(t) , −B(t)′Φ(τ, t)′λ(tf ), (33)

where Φ(τ, t) is the fundamental matrix associated with A(·), i.e. the solution
to the linear equation:

∂Φ(τ, t)

∂τ
= A(τ)Φ(τ, t), Φ(τ, τ) = I . (34)

The cost increment then can be estimated by the equation [22]

∆JS = λ(tf )′

tf∫
0

Φ(tf , s)B(s)∆u(s)ds , (35)

where the control increment is, for regular problems,

∆u , hµ . (36)

3.2 Updating the numerical method to the constrained
control scenario

First approximations of the switching times τi,0 (defined in Section 2.2, and
where the second index represents the iteration number) of the optimal satura-
tion points τi can be estimated after obtaining the solution to the unbounded-
control problem via the HJB (8) and then saturating the resulting control,
namely ũ as in Eq. (17). Thus, the initial switching times τi,0 can be adopted
as the time instants where ũ meets the boundary of the admissible control-
values set U. Also, the feasible version u∗x0

= ũsat can be adopted as the initial
candidate u0 (called the ‘seed’ trajectory and denoted by useed) for the solution
to the constrained problem, i.e.

useed(t) = u0(t) , u∗x0
(t) = ũsat(t) = [u0(x(t), λ(t))]sat . (37)

Other controls can be chosen as seeds trajectories, according to intuition or
knowledge about the particular problem at hand, especially when the HJB equa-
tion turns too difficult to be solved. In any case, the seed trajectory must be
updated through successive iterations uj ; j = 1, 2, . . . under the condition that

J (uj+1) ≤ J (uj) ≤ · · · J (useed) ; j = 1, 2, . . . , (38)

which will be ascertained by calculating the cost decrements through Eq. (35),
where the control increment needed verifies

∆uj+1 , uj+1 − uj . (39)

Taking into account constrained controls, the first goal is to adapt the al-
gorithm described for regular problems in Subsection 3.1 to the constrained
scenario ensuring the reduction of the cost. This procedure will consist of:

(i) Compute µj using Eq. (33) for j = 0, 1, 2, . . ., where B(t),Φ(τ, t), λ(tf )
are evaluated from the seed trajectories xseed, useed, then
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(ii) saturate the regular control obtained, i.e. the updated control must
verify

uj+1(t) , [uj(t) + hµj ]
sat, (40)

for a small h > 0. In this way, all the updated controls uj will always take
admissible values. The h value must be chosen to obtain a negative value for
∆JS , calculated with Eq. (35). If after reducing h, ∆JS remains positive, then
the method fails and should be stopped.

In the case that the method starts to reduce the cost it is necessary to have
an indication saying when the method must be stopped. This alert should verify

∆JS ≈ ∆JA , (41)

where ∆JA is a measure of the cost deviation produced by the saturated con-
trol trajectory generated, and where the symbol ≈ means that both terms are
of the same order of magnitude (these two assertions will be discussed in sub-
section 3.3). At the moment, if the condition (41) is satisfied, then the method
finishes. If not,

(iii) Rename uj+1 → useed, j + 1→ j, and update the seed state trajectory,
i.e. evaluate xj+1 through numerical integration of

ẋ = f(x, uj+1) , x(0) = x0 , (42)

and, thus update xj+1 → xseed.
(iv) Repeat the steps (i) to (iii) until ∆JS is considered to be small enough

and reaches a defined tolerance.

3.3 Failure alert criteria for the constrained procedure

When restrictions on the control values are met, then the derivatives of the
Hamiltonian or Lagrangian with respect to u are not defined on the boundaries
of the admissible control-values set, and thus the formula for the cost increment
(35) is no longer valid. It is expected that, when the saturated control trajectory
is used, the procedure described in the previous subsection can eventually fail
to reduce the cost. Here, two criteria will be generated to assess an eventual
failure of the modified method for constrained controls:

(i) The Pontryagin main theorem related to PMP allows to analyze the effect
of control perturbations on the final reached state. The truncation (saturation)
of regular control strategies due to bounds can be regarded as such control
perturbations, and their effects assessed via the sensitivity matrices as it is
described in [19, 24].

For a saturated control strategy ũsat ∈ U in [0, tf ] and considering that
truncations occur at the switching-time instants τi ∈ (0, tf ), a variation control
us(·) with respect to the feasible control ũsat(·) can be computed as follows:

us(t) ,

{
w ∀t ∈ [τ

′
, τ)

ũsat(t) ∀t ∈ [0, τ
′
) ∪ [τ, tf )

, (43)

where w is the control value generated by the regular procedure at the time
instant τ

′
near τ . Taking into account that xũsat(·) is the state trajectory

corresponding to ũsat(·), and xus
(·) is associated to the variation control us(·),
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then its final state value verifies (see [24]):

xus
(tf ) = xũsat(tf ) + εcZτ (tf )∆f(τ, w) + εl(ε), (44)

where ε is a small number, εc = τ − τ ′, and l(ε) is an (infinitesimal) vector
whose norm tends to 0 when ε→ 0.

The change in the final value is then, approximately,

∆x(tf ) = xus
(tf )− xũsat(tf ) = εcZτ (tf )∆f(τ, w). (45)

From Eqs. (27, 28), the cost variations are reflected in the last (n+2) component,
whose expression is

∆JZ = [ ∆tjZτ (tf )∆f(τ, w)]n+2 , (46)

where ∆tj , τ j+1 − τ j ; j = 1, 2, .... replaces the (previously perturbation time
accounted for) εc.

The sensitivity matrix Zτ comes from spatial variations of the control, i.e.
from the difference between the control proposed in Eq. (33) and the control
that is truly applied after saturation. Zτ (·) is a (n + 2) × (n + 2)−matrix,
solution to the following initial-value problem defined in [τ, tf ] :

Ż = A(t) · Z ; Z(τ) = I ,

and ∆f(τ, w) is the difference between the function f evaluated at (τ, w) and
at (τ, ũsat), namely

∆f(τ, w) , f(xũsat(τ), w)− f(xũsat(τ), ũsat(·)). (47)

Finally, considering now the sum of the effects of the variations for a finite
number of switching times (k), the cost increment results

∆JZ =

k∑
i=1

[∆tjiZτi(tf )∆f(τi, wi)]n+2. (48)

(ii) The second criterion for failure detection arise after calculating the
cost variation by using the regular control in the interval [τ

′
, τ). This new

computation of the cost variation (called ∆JT ) is obtained by approximating
Eq. (35) during the interval considered, more precisely

∆JT = λ(tf )′Φ̃B̃∆u∆t , (49)

where ∆u = w, and Φ̃ and B̃ are average values for the fundamental matrix
and the control matrix in [τ

′
, τ), respectively. ∆t = ∆tj maintains the same

meaning as in the previous criterion.
Then, by considering the sum effect of the variations for a finite number of

switching-times (k), finally ∆JT verifies

∆JT =λ(tf )′
k∑
i=1

Φ̃(τ ′i , τi)B̃(τ ′i , τi)∆ui∆t
j
i . (50)

Both criteria can be compared against the formula (35), and thus to decide
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if it is necessary to stop the regular procedure. When the order of magnitude
of any of the two criteria is similar to the total cost reduction (35), then the
failure alert suggest to stop the regular cost reduction (via the cost-differential
method (33)), because it will probably diverge in one of the next iterations.
In the example treated below both criteria yielded similar results, so at least
numerically it can be stated that

∆JA , ∆JZ ≈ ∆JT , (51)

where ∆JA accounts for the alert condition (41), as it was announced.

3.4 How to proceed when a failure alert is detected

Several types of control variations will be used to force additional cost reductions
after the regular procedure is eventually stopped.

3.4.1 Variations based on the Differential Riccati Equation.

The first control variation proposed comes from the solution of the time-varying
LQR problem defined by Eq. (25), and the following quadratic cost function:

Jlin(u) ,

tf∫
0

[X ′(τ)QX(τ) + U ′(τ)RU(τ)]dτ + X ′(tf )SX(tf ), (52)

where Q is a n× n positive semi-definite matrix, R is a m×m positive-definite
matrix, and the final penalization S is also a semidefinite n×n matrix as usual
in finite-time LQR problems. Here, and for the sake of simplicity, the dimension
of the control space will be maintained in m = 1. .

The matrix P4(·) is the solution of the Differential Riccati Equation (DRE)
for the optimal control problem posed by Eqs. (25, 52), namely

Ṗ4(t) = P4(t)W (t)P4(t)− P4(t)A(t)−A′(t)P4(t)−Q, P4(tf ) = S, (53)

where
W (t) , B(t)R−1B′(t), (54)

and the optimal corresponding of control is

U(t) = −R−1B′(t)P4(t)X(t). (55)

where X(t) is the solution of Eq. (25), with the final conditions Xi(tf ) = ±υi,
for some small υi > 0, i = 1, ...n.

This type of variations result in small deviations from the seed trajectories
(due to the penalizations involved in the cost functional). In turn, this approach
ensures that the linearizations used in the definitions of X,U are also good ap-
proximations. Based on these properties, the Riccati type control variations
are preferred to the variations described below, under theoretical grounds. Nu-
merically they are slow, since their application involve solving the matrix DRE
each time, so the resorting to the other variations may turn mandatory when
the cost decrement becomes too small. The control variation is updated in this
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Figure 1: Effect of variations ετ with the δi constants for other types of control
variations. δ1 = δ2 = 0.01.

case as
uj+1(t) = [uj(t) + Uj(t)]

sat, j = 1, 2, . . . (56)

3.4.2 Other types of control variations

Let us assume that the saturated seed control has Mj switching times in an
iteration j. The interval between each pair k (k = 1, 2, ...,Mj/2) of subsequent
switching-time instants will be denoted as (τ1k, τ2k) . The following third-order
curves can then be proposed as alternative control variations:

µjk(t) ,

 0 if t ≤ τ1k − δ1
0 if t ≥ τ2k + δ2
(t− τ1k + δ1)(τ∗ − t)(t− τ2k − δ2)ετ otherwise

, k = 1, 2, ...,Mj

(57)
where the inflection instant is

τ∗ =
τ1k + τ2k + δ2 − δ1

2
, (58)

with δ1, δ2 perturbations of the switching times τ1 and τ2 respectively, and ετ
is the amplitude of the deviation (see Figs. 1, 2). The control trajectories are
updated then through

uj+1(t) = [uj(t) + µjk]sat, j = 1, 2, . . . (59)

These are geometrically motivated variations. Other types may be generated
along similar lines, as needed.
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Figure 2: Effect of variations δi with the ετ constant for other types of control
variations. ετ = 1× 103.

3.4.3 Numerical algorithm for the gradient-based nonlinear method

Here, the proposed numerical algorithm is summarized:
(i) Generate the first approximation of the state and control trajectories,

by solving the HJB equation or by any other criterion. After choosing the ‘seed
control trajectory’ useed (for instance, that corresponding to the saturation of
the optimal control of the unrestricted regular problem), xseed is computed from
the differential equation

ẋ = f(x, useed) ; x(0) = x0 . (60)

The trajectory useed provides the initial values for the switching times τi (the
time instants where useed meets any of the bounds umin, umax).

(ii) Update the matrix parameters A(t), B(t), λ(tf ) by using the lineariza-
tion proposed in 3.1, and after that update the control trajectory as in Eq. (40).
This updated control will be taken as the new useed in the next iteration.

(iii) Applied the regular method while the cost keeps decreasing. The cost
reduction is evaluated via Eq. (35).

(iv) While the regular method is working, the failure criteria must be
checked in parallel (see subsection 3.3). If none of these criteria reach the
same magnitude order than the cost deviation, i.e. ∆JS ≈ ∆JA, then steps
(ii) and (iii) are repeated. If there is a failure alert, then

(v) apply the control variations described by subsections 3.4.1 and 3.4.2,
the control trajectory being modified in each case as in Eqs. (56, and 59),
respectively, and their corresponding cost variations being calculated through
Eq. (35). The variation producing the smallest cost is finally chosen to update
the present seed control.
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(vi) The last step is repeated until the cost reduction is too small (or meets
some predefined tolerance) or becomes positive.

4 Applications and numerical results

This case-study is a modification of the ‘cheapest stop of a train’ problem already
considered in [1, 7, 10]. Here, a friction term is included in the model as proposed
elsewhere [14, 15] to obtain the following nonlinear system:

ẋ1(t) = x2(t)

ẋ2(t) = αu(t) + βu(t)x2(t), (61)

where the states x1 and x2 are the position and the velocity of the train, re-
spectively. The parameter α is a constant which normalizes the units of the
control action, and β is a constant associated to the friction of the train over
the rails. The manipulated variable u(t) is a scalar-valued function, interpreted
as the braking effort of a train. The feasible values of the control are assumed
as u(t) ∈ [0, 3] ⊂ R.

The initial conditions are chosen as x1(0) = 1 and x2(0) = −1. The param-
eters are taken as α = 1 and β = 0.15. The objective is to minimize a quadratic
cost functional during a finite time-horizon formulation. The matrices of the
cost function are Q = 10I, R = 0.5, and the final penalization (also quadratic)
is K(x(tf )) = x(tf )′Sx(tf ) with S = 100I. The time horizon is settled in tf = 1.

The linearization of the nonlinear system (61) around the seed trajectories
(the subindex ‘seed’ is omitted) is described by the matrices

A(t) ,


0 1 0 0
0 0.15usat(t) 0 0
0 0 0 0

20x1(t) 20x2(t) 1 0

 , (62)

B(t) ,


0

1 + 0.15x2(t)
0

usat(t)

 , (63)

The final costate of the linearized system is given by

λ(tf )′ = (200x1(tf ), 200x2(tf ),−1, 1). (64)

The first h value adopted in the simulations was h = 0.01. A failure alert
was detected when (35) attained the order of (50) at around the 30-th iteration.
The cost reached was Js = 15.4947 and the regular method was stopped. Fig. 3a
shows the reduction of the total cost using the ‘regular’ method.

Fig. 4a shows the corresponding evolution of ∆J obtained from the proce-
dure formulated in subsection 3.3. The result of Eq. (35) was compared against
Eqs. (48,50) to generate the alert condition (41). Eq. (43) was used to generate
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Figure 3: a) Evolution of the total cost resulting from regular method, b) evo-
lution of the total cost resulting from alternative method.

an appropiatte control variation us(·)

us(t) =


w1 ∀t ∈ [τ

′

1, τ1)

w2 ∀t ∈ [τ
′

2, τ2)

usat(t) ∀t ∈ [0, τ
′

1) ∪ [τ1, τ
′

2) ∪ [τ2, tf )

, (65)

where τ
′

1, τ
′

2 are small perturbations of the switching times.
Fig. 5 shows the alternative variations generated from Eq. (33). When

the alert was active, the alternative control variations were essayed. For the
variations the type (55), the disturbance imposed at the final state value was
Xi(tf ) = ±0.01 in all directions i, and for the variations of the type described
in subsection 3.4.2, ετ = 1. Fig. 3b shows the reduction of the total cost until
obtaining a minimum value through the alternative variations, and Fig. 3b il-
lustrates the evolution of its corresponding cost variation along with the alert
criteria. The relative reduction of the total cost after applying the regular and
the alternative variations resulted in Jseed−Jc

Jc
∗ 100% = 8.67%.

Figs. 6 and 7 show some control variations used during the numerical treat-
ment, generated from Eq. (55). Fig. 6 depicts variations obtained by disturbing
the final states, and the Fig. 7 the variations related to the Riccati equation.
Fig. 8 illustrates different controls obtained after using different methods (sat-
uration of the unbounded control strategy, Sontag’s method, and the method
proposed here). For the last iteration, the Hamiltonian h̄x0

≡ −23.56 was con-
stant in the whole time horizon interval [0, tf ], confirming the optimatility of
the finally computed control trajectory. Although in this example the optimal
control was found, normally the numerical method developed here can just lead
to suboptimal solutions.
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Figure 8: Control strategy for the bidimensional example.

Table 1: Final numerical values
Seed

trajectory
The best ‘regular’

trajectory
Optimal solution

(proposed method)
x1(tf ) 0.2187 0.17370 0.1657952
x2(tf ) −0.0137 −0.0485 −0.0450726
τ1 0.23 0.4570 0.5440
τ2 0.88 0.8130 0.7549
J 16.779 15.4947 15.4408
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The second example discussed below is a modification of the previous prob-
lem. The nonlinear two-dimensional model was modified to produce an unstable
linearization, and also different bounds in the control values were imposed. The
proposed dynamics read

ẋ1(t) = 1.5x1(t) + x2(t)

ẋ2(t) = αu(t) + βu(t)x2(t) (66)

u(t) ∈ [−1, 1] ⊂ R,

with parameters α = 1, β = 0.15, Q = 10I, R = 0.5, and S = 100I. The initial
conditions are chosen now as x1(0) = 1 and x2(0) = −0.5. When the failure
alert was activated, the cost was Js = 803.8446, at the 10-th iteration. Fig. 9
shows the reduction of total cost for the regular procedure.

After that, the alternative control variations were essayed. For variations of
the type (55), the disturbance imposed in the final state were Xi(tf ) = ±0.01 in
all directions i, and for the other variations described in subsection 3.4.2, ετ =
1×106 and δ1 = δ2 = ±0.01. Fig. 10 shows the reduction of the total cost until
obtaining the minimum value after resorting to the alternative variations. The
relative reduction of the total cost after applying the regular and the alternative
variations resulted in Jseed−Jc

Jc
∗ 100% = 80.7%.

The behavior of this example preserved some features of the previous prob-
lem: the same number of switching-times and a single regular period. The con-
trol variations associated with Equation (65) generate cost reductions ∆JS (35)
significantly bigger than errors ∆JZ (48), i.e. acceptable during the first iter-
ations. Around iteration 40 it was considered that the absolute value of ∆JS
and ∆JZ were too close (see Figure 11) as to activate the failure alert. The
Fig. 12 shows different controls obtained along the different methods used in
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Figure 10: Method failure, and evolution of the total cost resulting from alter-
native method.

Table 2: Final numerical values
Seed

trajectory
The best ‘regular’

trajectory
Optimal solution

(proposed method)
x1(tf ) 3.7361 2.6442 2.617883
x2(tf ) 0.2661 −0.8175 −0.887606
τ1 0.035 0.676 0.715
τ2 0.204 0.6850 0.718
J 1449.228 803.8445 802.1658

the sequel.
The Hamiltonian arrived to a constant in the whole optimization interval

[0, tf ] , h̄x0 = −1438, confirming the optimatility of the limit control trajectory.
In table 2 the relevant numerical results are reported.

5 Conclusions and perspectives

Feedback control is desirable in industrial applications when perturbations are
expected to appear, but an explicit expression is hardly attainable for nonlinear
systems subject to general performance criteria and restricted control values.
Besides, in these situations existing PMP solutions are obtained as open-loop
strategies, so it should not be expected for optimal controls to be reachable
after a finite sequence of closed-loop approximations. With these limitations
in mind, here an efficient algorithm has been devised to approximate the open-
loop optimal control, based on recent theoretical results and alternative control
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variations. The resulting strategies are quite different from the saturated form
of the optimal control corresponding to the unrestricted problem with the same
parameters and initial condition. This last control strategy was used in the
worked examples just as a first approximation, and so called a ‘seed’ strategy,
although the method does not strictly depend on the initial approximation. The
method then proceeds recursively, based on the linearization of the dynamics
around the last approximate trajectories and a formula devised for evaluating
the cost reduction in the regular context [22]. Since the problem at hand is
generally non regular, the iterative procedure eventually fails in reaching the
optimum, i.e., the cost ceases to decrease, or it enters in a dangerous zone
were the error of saturation is of the same order as the cost reduction achieved.
Then a second series of iterations is started, by using special classes of con-
trol variations: solutions to the DRE for the linearized dynamics subject to a
new cost objective, cubic variations of regular arcs, and Pontryagin-type spatial
variations generated from perturbations of the switching time-instants.

In general, the resulting control after these iterations will be suboptimal,
although in the test-cases illustrated here the optimal values were reached at
the end. In the first numerical example the cost reduction relative to the cost
of the seed trajectory was approximately 9%, and in the second one was more
than 80%, showing the unpredictable behavior of seed trajectories coming from
regular solutions.

The stability of the method is guaranteed since (i) the regular procedure is
stopped after an efficient alert condition is detected, (ii) the approximation to
the differential cost ∆JS is not allowed to change sign, and (iii) the total cost
is bounded from below.
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energy in a class of bounded-control lqr problems. Optimal Control Appli-
cations & Methods, 35(3):361–382, 2013.

[11] V. Costanza, P. S Rivadeneira, and R. D. Spies. Equations for the missing
boundary values in the hamiltonian formulation of optimal control prob-
lems. Journal of Optimization Theory and Applications, 149:26–46, 2009.

[12] Lawrence C Evans. An introduction to mathematical optimal control the-
ory version 0.2.

[13] W. H. Fleming and R.W. Rishel. Deterministic and Sthocastic Optimal
Control. Dover, New York, USA, 1975.

[14] Phil Howlett. The optimal control of a train. Annals of Operations Re-
search, 98(1-4):65–87, 2000.

[15] Phil G Howlett, Peter J Pudney, and Xuan Vu. Local energy minimization
in optimal train control. Automatica, 45(11):2692–2698, 2009.

[16] M. Itik. Optimal control of nonlinear systems with input constraints
using linear time varying approximations. NONLINEAR ANALYSIS-
MODELLING AND CONTROL, 21(3):400–412, 2016.

[17] V. Jurdjievic. Geometric Control Theory. Cambridge University Press,
Cambridge, 2006.

[18] R. E. Kalman, P. L. Falb, and M. A. Arbib. Topics in Mathematical System
Theory. McGraw-Hill, New York, 1969.

[19] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F.
Mishchenko. The Mathematical Theory of Optimal Processes. Macmillan,
New York, USA, 1964.

[20] S. J. Qin and T. A. Badgwell. A survey of industrial model predictive
control technology. Control Engineering Practice, 11:733–764, 2003.

[21] A. V. Rao, D. A. Benson, G. T. Huntington, C. Francolin, C. L. Darby,
and M. A. Patterson. User’s manual for gpops: A matlab package for
dynamic optimization using the gauss pseudospectral method. Technical
report, University of Florida, August 2008.

[22] E. D. Sontag. Mathematical Control Theory. Springer, New York, 1998.

[23] J. L. Speyer and D. H. Jacobson. Primer on Optimal Control Theory.
SIAM Books, Philadelphia, USA, 2010.

[24] J. L. Troutman. Variational Calculus and Optimal Control. Springer, New
York, USA, 1996.

23



[25] X. Wu and K. Zhang. Constrained optimal control problems of nonlinear
systems based on improved newton algorithms. In 3rd International Con-
ference on Informative and Cybernetics for Computational Social, 2016.

24


	Introduction
	Optimal control for nonlinear systems
	The Hamiltonian formalism. Unconstrained controls
	The bounded-control case

	Gradient-based cost reduction methods
	Cost reduction in regular problems
	Updating the numerical method to the constrained control scenario
	Failure alert criteria for the constrained procedure
	How to proceed when a failure alert is detected
	Variations based on the Differential Riccati Equation. 
	Other types of control variations
	Numerical algorithm for the gradient-based nonlinear method


	Applications and numerical results
	Conclusions and perspectives

