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ABSTRACT
Several processes in the early Universe might lead to the formation of primordial black holes
with different masses. These black holes would interact with the cosmic plasma through
accretion and emission processes. Such interactions might have affected the dynamics of the
Universe and generated a considerable amount of entropy. In this paper, we investigate the
effects of the presence of primordial black holes on the evolution of the early Universe. We
adopt a two-fluid cosmological model with radiation and a primordial black hole gas. The latter
is modelled with different initial mass functions taking into account the available constraints
over the initial primordial black hole abundances. We find that certain populations with narrow
initial mass functions are capable to produce significant changes in the scalefactor and the
entropy.
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1 IN T RO D U C T I O N

There is overwhelming evidence supporting the existence of
black holes in the Universe. Studies of stellar and gas dy-
namics strongly suggest the presence of supermassive black
holes (MBH ∼ 106–109 M�) at the centre of most galaxies (e.g.
Ferrarese & Ford 2005). At smaller scales, stellar-mass black holes
(MBH ∼ 3–10 M�) are thought to be the result of the collapse of
massive stars (Neugebauer 2003). Their presence is manifested in
X-ray binaries (XRBs). There are currently about 60 stellar black
hole candidates (Corral-Santana et al. 2016). Additionally, recent
gravitational wave detections have revealed the existence of binary
systems of black holes with several tens of solar masses at moderate
redshifts (Abbott et al. 2016a,b, 2017).

Under the extreme conditions of the early Universe, black holes
can be formed from direct collapse (Zel’dovich & Novikov 1966;
Hawking 1971; Carr & Hawking 1974). These are called Primordial
black holes (PBHs) and have been extensively investigated (see
Khlopov 2010 for a review).

A PBH would form with a mass of order the horizon mass MH(t),

MPBH ∼ MH(t) ∼ c3t

G
∼ 1015

(
t

10−23s

)
g, (1)

as can be seen by a simple comparison between the cosmic density
at time t after the big bang and the density associated with a black
hole of mass M. This implies that PBHs could span a wide range
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of masses. In particular, they might be small enough for Hawking
radiation to be important (Hawking 1974).

PBH formation requires the existence of large inhomogeneities
in the early Universe (Carr & Hawking 1974; Carr 1975). Inde-
pendently of the source of these inhomogeneities, the formation
can be enhanced by some processes, such as phase transitions –
for example, from bubble collisions (Crawford & Schramm 1982;
Hawking, Moss & Stewart 1982), collapse of cosmic strings
(Hawking 1987; Polnarev & Zembowicz 1991) or domain walls
(e.g Berezin, Kuzmin & Tkachev 1983; Caldwell, Chamblin &
Gibbons 1996) – or a sudden reduction in the pressure at the quark-
hadron era (Jedamzik 1997; Jedamzik & Niemeyer 1999). Fur-
thermore, applications of ‘critical phenomena’ to PBH formation
suggest that their spectrum could go well below the horizon mass
(e.g. Niemeyer & Jedamzik 1998; Green & Liddle 1999). PBH
formation can also occur in a matter-dominated universe (see, e.g.
Khlopov & Polnarev 1980; Polnarev & Khlopov 1985). For more
details on all these mechanisms the reader is referred to Carr et al.
(2010).

Although PBHs have not been detected so far, their study
covers several areas of interest: baryogenesis (Barrow 1980;
Lindley 1981; Barrow, Copeland & Kolb 1991a; Hook 2014),
dark matter (see Carr, Kühnel & Sandstad 2016b, and references
therein), big bang nucleosynthesis (Zeldovich et al. 1977; Vainer,
Dryzhakova & Naselskii 1978; Kohri & Yokoyama 2000), reoniza-
tion of the Universe (Gibilisco 1998) and gravitational waves (Bird
et al. 2016; Sasaki et al. 2016).

Several constraints have been imposed on the initial number of
PBHs formed (see Carr et al. 2010 for a review). Most of these limits
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are related to the different potential interactions between PBHs and
other astrophysical objects (e.g. gravitational interactions) and the
observables resulting from black hole evaporation. The importance
of these constraints is that they indirectly impose restrictions on
the conditions of the early Universe and, hence, on different early
universe models (e.g. inflation models, Josan & Green 2010; Peiris
& Easther 2008). However, not all constraints on PBHs are equally
reliable. For example, at the lowest masses (M � 106g) the only
available constraint relies on a strong assumption, namely that black
holes do not completely evaporate but leave behind Planck-mass
relic particles (MacGibbon 1987).

The presence of a PBH population in the early Universe could
have affected the cosmic evolution directly. The main feature of
such a population is its initial mass function (IMF). According to
the particular mechanism and time-scale of the formation process,
this IMF can either extend over a wide mass range or be narrow
and centred on a certain mass. Barrow et al. (1991b) studied the
cosmic evolution of the early Universe considering radiation and
a population of PBHs with a power-law IMF; they assume that
the two components interacted only through Hawking evaporation.
Other scenarios considered in later works involve PBH popula-
tions with narrow or monoenergetic IMFs (e.g. Barrow, Copeland
& Liddle 1992; Zimdahl & Pavón 1998; Brevik & Halnes 2003) or
additional space–time dimensions (Borunda & Masip 2010).

In this work, we investigate the early Universe evolution consid-
ering PBH populations with both extended and narrow IMFs, taking
into account the best available constraints on PBH abundances in
the characterization of the scenarios. We consider an FLRW space–
time and a two-perfect-fluid model: a PBH gas with a dust-like
equation of state and a relativistic component (radiation). The flu-
ids exchange energy through Hawking evaporation and accretion
on to the black holes. The energy exchange is coupled to the metric
scalefactor through the Friedmann equations.

The structure of this article is the following: In Section 2, we
briefly summarize the most significant available constraints about
PBH abundances. In Section 3, we analyse the energy exchange
between a black hole and a radiation bath. Then, in Section 4,
we extend this analysis to a black hole population interacting with
radiation in a cosmological background. We present the results in
Section 5 and the conclusions and final remarks in Section 6.

2 PB H A BU N DA N C E S

The constraints on the initial abundances of PBHs are generally
expressed in terms of the fraction of the energy density of the
Universe that goes to PBHs at their formation epoch: β = ρPBH/ρ tot.

The lifetime of a black hole with mass M due to Hawking evap-
oration can be estimated as (Hawking 1975)

τlife ∼ 1010

(
M

1015g

)
yr. (2)

As described in Carr et al. (2010), this implies that (i) PBHs formed
with mass of order of 1015g should be evaporating at the present
epoch producing gamma rays, positrons and antiprotons that con-
tribute to the diffuse gamma-ray background and the cosmic-ray
flux (e.g. Wright 1996; Carr et al. 2016a). (ii) PBHs with initial
mass M < 1015g are already evaporated; however, their existence
could have affected different processes in the early Universe. Ones
that evaporated within the first second after the big bang could have
generated most of the entropy of the Universe (e.g. Zeldovich &
Starobinskii 1976) or altered the baryogenesis (Dolgov, Naselsky
& Novikov 2000; Bugaev, Elbakidze & Konishche 2003) and the big

Figure 1. Most relevant constraints on the initial fraction of the energy
density of the universe in PBHs for monoenergetic IMFs (adapted from
Green 2015). We distinguish in colours the different kind of constraints.
The constraints derived from relic particle studies are shown in blue, those
related to evaporation effects (e.g. gamma-ray production) in green, those
related to gravitational effects (e.g. lensing or dynamical effects) in red and
other constraints, as those related to neutron capture or gravitational waves,
in yellow. The coloured areas are the forbidden regions of the parameter
β = ρPBH/ρtot.

bang nucleosynthesis (e.g. Zeldovich et al. 1977; Vainer et al. 1978).
These PBHs can also evaporate into neutrinos, hadrons and other
massive particles or leave behind Planck-mass relic particles con-
tributing to the cold dark matter (CDM) (e.g. MacGibbon 1987;
Barrow et al. 1992; Lemoine 2000; Bugaev & Konishchev 2002;
Alexander & Mészáros 2007). (iii) PBHs with M > 1015g have
lifetimes longer than the age of the Universe, and hence they would
still exist and would be detectable by their gravitational effects.
Indeed, given the negative results obtained so far in the search for
particle dark matter (in particular, weakly interacting massive par-
ticles, Akerib et al. 2016), PBHs have become interesting CDM
candidates (see, e.g. Chapline 1975; Carr et al. 2016b). In addition,
these PBHs can interact with other astrophysical objects in several
ways; for example, they might be captured by a neutron star and
the star being accreted (Capela, Pshirkov & Tinyakov 2013) or they
could have played a role as seeds of supermassive black holes in
the centre of galaxies. Recently, they have been also proposed as
sources of gravitational wave events (Garcı́a-Bellido 2017).

Since these effects are not observed, constraints on the PBH
abundances are imposed in accordance with the sensitivity of current
observations. Fig. 1 shows the most updated limits. The constraints
on black hole relics are the only ones that can limit the quantity of
less massive PBHs formed. It is important to remark, as was done by
Carr et al. (2017) and Kühnel & Freese (2017), that the constraints
in Fig. 1 are derived considering monoenergetic PBH populations.
The case of PBHs with an extended mass function is quite different
and depends on the particular form of the IMF. Following Carr
et al. (2017), we summarize the main aspects of this treatment in
Appendix.

3 B L AC K H O L E MA S S VA R I AT I O N

A Schwarzschild black hole of mass M emits particles with a black-
body spectrum at a temperature (Hawking 1975)

TBH = �c3

8πkBGM
, (3)

where � is the reduced Planck constant, kB is the Boltzmann con-
stant and G is the gravitational constant. This emission produces a
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mass-loss rate given by

∂M

∂t

∣∣∣∣
em

= 1

c2
�BHh∗σT 4

BH, (4)

where σ is the Stefan–Boltzmann constant, c is the speed of light
in vacuum, h∗ is the number of particle species available for the
black hole to evaporate into and �BH is the effective area at which
particles escape from the hole. Strictly speaking, h∗ depends on the
temperature and, consequently, on the black hole mass; neverthe-
less, this dependency is discrete and h∗ can be considered constant
for fixed mass ranges. Equation (4) can be written as

∂M

∂t

∣∣∣∣
em

= −A(M)

M2
, (5)

where A(M) = 5.3 × 1025 g3 s−1 for black holes with masses >1017 g
and A(M) ≥ 7.8 × 1026 g3 s−1 for black holes with masses ≤1015 g
(MacGibbon & Carr 1991).

In addition to the Hawking emission, black holes immersed in
a thermal bath accrete particles at a rate given by (Zel’dovich &
Novikov 1966)

∂M

∂t

∣∣∣∣
acc

= 27πG2

c5
ρRM2, (6)

where ρR is the energy density of radiation measured far away
from the hole. Combining the two effects, we obtain the complete
equation for the mass variation rate

dM

dt
= 27πG2

c5
ρRM2 − 1

c2
�BHh∗σT 4

BH. (7)

4 C O S M I C EVO L U T I O N

4.1 Two-fluid cosmology

We consider a cosmic fluid immersed in an FLRW space–time,
(� × R, gFLRW

μν ), where � is a set of space-like hypersurfaces and
gFLRW

μν is such that

ds2 = −dt2 + R(t)2

[
dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2)

]
. (8)

Here, R(t) is the scalefactor of the metric and k is the curvature
parameter. We assume that the fluid is composed of two perfect
components, A and B; hence, its energy-momentum tensor is

T μν = T
μν

(A) + T
μν

(B) , (9)

where

T
μν

(i) = 1

c2

[
ρ(i) + p(i)

]
uμuν − p(i)g

μν, (i = A, B), (10)

and ρ(i) and p(i) denote the energy density and the pressure of the
fluid-component i, respectively. We assume that both components
have the same four-velocity uμ but their equation of state can be
different:

p(i) = w(i)ρ(i), (i = A, B). (11)

If the two fluid-components interact, only the total energy-
momentum tensor is conserved. Thus,

∇μT μν = 0 =⇒ ∇μT
μν

(A) = −∇μT
μν

(B) . (12)

We denote Q the rate of energy exchange caused by the interaction,
and we define the normalized scalefactor a(t) = R(t)/R(t0), where t0

is an arbitrary cosmic time (see Section 5 for the specific choice of
this value). Then, by adding one of the Friedmann equations to the

only non-trivial component of equation (12), we obtain a system of
three differential equations for ρ(A), ρ(B) and a:

ρ̇(A) + 3

(
ȧ

a

) [
1 + w(A)

]
ρ(A) = Q,

ρ̇(B) + 3

(
ȧ

a

) [
1 + w(B)

]
ρ(B) = −Q,

(
ȧ

a

)2

− 8πG

3c2

[
ρ(A) + ρ(B)

] + c2k

[R(t0)a]2
= 0. (13)

The interaction term Q depends on the specific characteristics of
the system. In what follows, we apply this two-fluid formalism to a
cosmological model of the early Universe in which the two fluids
are radiation and a PBH gas.

4.2 Early universe with PBHs

Let us consider a relativistic thermal plasma characterized by its
equilibrium temperature TR, which sets the other relevant thermo-
dynamic quantities (energy density ρR, pressure pR and entropy
density sR) through the following relations:

ρR = g∗
(kBTR)4

(�c)3
,

pR = 1

3
ρR = g∗

(kBTR)4

3(�c)3
,

sR = ρR + pR

TR
= 4

3

g∗k4
B

(�c)3
T 3

R . (14)

Here, g∗ takes into account the contribution of the different species
of relativistic particles.

Let us also consider a PBH component modelled as a dust-like
perfect fluid (pPBH = 0) whose constituents are Schwarzschild black
holes. These may have different masses and therefore are charac-
terized by their IMF, N0(m), which evolves with time due to two
processes: the expansion of the universe and the energy exchange
of each PBH with the radiation. If N(t; m) denotes the mass function
at time t, the PBH energy density is

ρPBH(t) =
∫ Mmax

Mmin

N (t ; m)E(m) dm, (15)

where Mmin and Mmax are the minimum and maximum mass of
the black holes and E(m) = mc2 is the energy of a Schwarzschild
black hole of mass m. In a similar way, the entropy density can be
calculated as

sPBH(t) =
∫ Mmax

Mmin

N (t ; m)S(m) dm, (16)

where S(m) = 4πkBGm2/�c is the Bekenstein–Hawking entropy
of a Schwarzschild black hole of mass m.

In order to obtain an expression for the Q-term, we must sum the
effects of the interaction of each black hole with the radiation. If
the mass of a black hole evolves from m at time t to m + dm at time
t + dt, then

N (t ; m) = N (t + dt ; m + dm), (17)

and this implies

∂N (t ; m)

∂t

∣∣∣∣
int

= ∂N (t ; m)

∂m

dm

dt
, (18)
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where the mass variation rate is given by equation (7). The Q-term
results

Q = ∂ρPBH

∂t

∣∣∣∣
int

=
∫ Mmax

Mmin

∂N (t ; m)

∂t

∣∣∣∣
int

mc2dm

=
∫ Mmax

Mmin

∂N (t ; m)

∂m

dm

dt
mc2dm. (19)

Finally, we consider that the space–time has negligible curvature
(which is a very reasonable assumption in the early Universe) and
we set k = 0. The system of equations (13) becomes

ρ̇R + 4
ȧ

a
ρR = −

∫ Mmax

Mmin

∂N (t ; m)

∂m

dm

dt
mc2dm,

ρ̇PBH + 3
ȧ

a
ρPBH =

∫ Mmax

Mmin

∂N (t ; m)

∂m

dm

dt
mc2dm,

(
ȧ

a

)2

= 8πG

3c2
(ρR + ρPBH) . (20)

Now we have an integro-differential equation system for the func-
tions N(t; m), ρR(t) and a(t). In what follows, we separate our
analysis into narrow IMFs and extended IMFs.

4.2.1 Narrow IMF

If a PBH population is formed on a short time-scale, for example
from a phase-transition, the IMF is typically narrow and centred on
a particular mass (Barrow et al. 1992). We study the simplest narrow
IMF, namely a Dirac delta function. We assume that the PBHs form
at time tform with a mass Mform ∼ MH(tform). Thus,

N0(m) ≡ Aδ(m − Mform), (21)

where A is a normalization constant and can be related to the original
fraction of the energy density of the universe that goes to PBHs.
The initial energy and entropy densities of the black holes are

ρPBH(t = tform) = AMformc2, (22)

sPBH(t = tform) = AS(Mform). (23)

In this scenario, all black holes evolve in the same manner and
at each time t they have the same mass MPBH(t). Therefore, we
can determine the evolution of the whole population by studying
one representative PBH. Under this simplification, the set of equa-
tions (20) becomes

ρ̇R + 4
ȧ

a
ρR = −Ac2 dMPBH

dt
,

˙ρPBH + 3
ȧ

a
ρPBH = Ac2 dMPBH

dt
,

(
ȧ

a

)
= 8πG

3c2
(ρR + ρPBH) , (24)

that is a system of linear differential equations for MPBH(t), ρR(t)
and a(t).

4.2.2 Extended IMF

In other scenarios, for example those where the formation occurs
on a long time-scale, the IMF can be extended and span a wide
mass range (Barrow et al. 1991b). We analyse the particular case of
a power-law IMF of the form

N0(m) = Am−γ , (25)

Figure 2. Evolution of a PBH of mass 105 g formed at a time tini = 10−33 s.

where A is a normalization constant and γ is the spectral index,
which typically lies in the range of 2–3 (Carr et al. 2010).

Here, we assume that the formation starts at time tini (the least
massive black holes) and ends at time tend (the most massive ones).
The form of the mass function N(t; m) varies with time owing to
the different rates of evolution of each PBH. In order to solve the
equation system, we discretise the function N(t; m) in blocks. Each
block evolves as an independent Dirac delta function like the one
we previously considered.

5 R ESULTS

We set the initial values of the energy densities of both fluids at time
tini, and we normalize the scalefactor such that a(t0 = tini) = 1. For
the initial radiation temperature, we assume the following expres-
sion (e.g. Weinberg 1972):

TR(tini) ∼ 1010(tini/s)−1/2 K. (26)

Then, we set

ρPBH(tini) := βρR(tini), (27)

where β < 1 is a free parameter of the model, though it is limited
by the constraints previously discussed. As the number density of
pre-inflation PBHs is negligible after the inflationary epoch, we
consider only post-inflationary times: tini = 10−33 s.

In what follows, we present numerical results for some examples
of the two scenarios discussed in Section 4. We solved the equa-
tion system (20) using an adapted fourth-order Runge–Kutta
method.

5.1 Monoenergetic IMF

Let us consider a monoenergetic PBH population of mass
Mini = 105g ∼ MH(tini). Fig. 2 shows the evolution of one of these
black holes. The only free parameter is the ratio of energy densities
β. In a first scenario, we do not take into account the rather specula-
tive ‘relic particle’ constraints. Hence, there is no upper limit on β

(for the chosen value of the mass) and we set β = 10−3. Fig. 3 shows
the cosmic evolution for this scenario. At the beginning, radiation
dominates and the scalefactor evolves as a(t) ∝ t1/2. As the PBH
component dilute slower than radiation, it starts to dominate at some
later time, and during a period the universe is PBH-dominated (dust-
dominated) and a(t) ∝ t2/3. All black holes evaporate on a time-scale
of about 10−10 s yielding their energy to radiation, and the universe
becomes radiation-dominated again; however, the PBH population
produced an increase in the scalefactor of about two orders of mag-
nitude.
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Figure 3. Cosmic evolution for a two-fluid model considering radiation
and a monoenergetic population of PBHs with mass MPBH = 105 g and
β = 10−3. Top panel shows the scalefactor evolution for this system (with
interaction), for a radiation-dominated universe (radiation), and for a uni-
verse in which black holes do not evaporate and behave exactly like dust
(without interaction). Central panel shows the energy densities of both fluids
and the bottom panel shows the entropy per unit of comoving volume of
both fluids as well as the total one.

The entropy in a comoving volume, s(t)a(t)3, also increases dur-
ing the whole evolution; this is driven by the accretion at early times
and by the evaporation at the end of the evolution. The latter is the
most significant process and produces an increase in entropy by a
factor of ∼106. This scenario is an example of an a priori plausi-
ble scenario (provided that the ‘relic particle’ constraint does not
apply), which presents significant modifications compared with the
standard radiation-dominated evolution.

If we accept the relic constraints, the highest possible value of
β for the adopted mass is ∼10−15. This is a similar case to the
situation discussed, but with this new value of β no modifications
in the cosmic evolution are obtained, as it is shown in Fig. 4.

Figure 4. Scalefactor evolution of a two-fluid model considering radiation
and a population of PBHs with mass MPBH = 105 g and β = 10−15.

5.2 Power-law IMF

Scenarios with a power-law IMF were studied by Barrow et al.
(1991b), who neglected the accretion and considered that all PBHs
formed simultaneously. We assume here that a black hole of mass
m cannot be formed until the horizon mass exceeds m, and hence
the formation must be extended in time. There are three additional
free-parameters besides β: the minimum and maximum mass of the
distribution, Mmin y Mmax and the spectral index γ .

In order to investigate the general behaviour of power-law IMFs,
we first ignore the constraints. We choose Mmin = 6.5 × 102mP

(mP � 2.18 × 10−5 g is the Planck mass), which corresponds
to black holes with lifetimes of the order of the initial time
(tlife ∼ tini = 10−33 s) and Mmax = 106 M�, corresponding to su-
permassive black holes. We study IMFs with different values of γ

in the range of 2–3, and for different values of β. In addition, as
we may have large enough PBHs for accretion to be important, we
consider scenarios with and without accretion. We fit the scalefactor
with power laws: a ∝ tr.

In agreement with Barrow et al. (1992), we find scenarios with
intermediate evolution between those that are radiation and dust-
dominated (1/2 < r < 2/3). Significant modifications in the cosmic
evolution occur only for γ near 2 (harder spectra) and for higher
values of β. Fig. 5 shows the results for the case γ = 2.1, β = 10−1.
The scalefactor evolves as a power law with r = 0.544 indepen-
dently of whether there is accretion or not. Furthermore, despite
accretion temporarily modifies the ratio of energy densities, the di-
lution of the holes rapidly becomes dominant and the two scenarios
converge to the same stationary value of β ∼ 0.47; accretion seems
to be negligible even in the most favourable scenario. Finally, the
entropy in a comoving volume increases during the whole evolu-
tion although less than in one of the monoenergetic cases discussed
above, even though here β is two orders of magnitude higher.

A plausible power-law scenario must satisfy the observational
constraints. Fig. 6 shows how these constraints apply for this type
of distribution as a function of γ . We can see that the harder the
spectrum is, the lower the influence of the relic constraints results.
The most favourable scenarios are those with hard spectra; for them
β ∼ 10−24 both neglecting and including the relic constraints. For
these cases, we obtain that PBHs do not cause any significant effect
and the scalefactor evolves as in a radiation-dominated universe.

6 C O N C L U S I O N S A N D F I NA L R E M A R K S

We have studied the effects that different PBH populations produce
on the evolution of the early Universe. We considered a two-fluid
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Figure 5. Cosmic evolution for a power-law IMF with spectral in-
dex γ = 2.1, and with masses lying between Mmin = 650mP and
Mmax = 106 M�, for a value of β = 10−1. Top panel shows the scale-
factor evolution in four cases: with and without accretion, in a radiation-
dominated universe, and in a universe with radiation and PBHs but without
any interaction between them. Central panel shows the ratio of the fluid en-
ergy densities with and without accretion. Bottom panel shows the entropy
per unit of comoving volume of both fluids as well as the total one.

cosmological model with radiation and a PBH gas. According to
the different possible formation mechanisms, the PBH IMF may be
extended or narrow. We have investigated representative cases for
these two possible scenarios, namely power-law and monoenergetic
IMFs. To characterize the IMFs, we have taken into account the
different constraints that exist for PBH abundances. In particular,
we have distinguished the ‘relic constraints’ from the others, since
they are too conjectural.

Monoenergetic populations of small PBHs produce significant
modifications in the cosmic evolution (changes in the scalefactor
and generation of entropy) provided that the PBH energy density is
high enough. The latter condition requires to discard the ‘relic con-
straints’. If instead we take them as valid, no effects are produced.

Figure 6. Combined constraints on the initial fraction of the energy density
of the universe in PBHs for power-law IMFs, as a function of the spectral
index γ . The minimum mass is Mmin = 650mP. The red line is plotted
discarding the relic constraints, whereas the blue dashed-line considers them.
The hatched areas are the forbidden regions of the parameter β. In Appendix ,
we show a more general case.

The behaviour of power-law scenarios is different. We discussed
that the constraint treatment depends on the IMF form. For the
analysed cases, we found cosmic evolution modifications only if
we omit the constraints. In addition, we investigated the importance
of accretion in these scenarios finding that it plays no significant
role. Situations where all constraints are satisfied do not present any
relevant effect.

We conclude that the presence of some particular PBH popu-
lations in the early Universe may affect the cosmic evolution. In
particular, populations of small PBHs with narrow IMFs are likely
to produce these effects. These populations are possible if the relic
constraints are not valid. In addition, we found that accretion on
to PBHs is not a relevant energy-exchange mechanism in the early
Universe, even for the most favourable IMFs.
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Rev. D, 96
Chapline G. F., 1975, Nature, 253, 251
Corral-Santana J. M., Casares J., Muñoz-Darias T., Bauer F. E., Martı́nez-
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A P P E N D I X : P B H C O N S T R A I N T S O N
E X T E N D E D MA S S FU N C T I O N S

Let us consider a PBH population with mass function N(m; α),
where α = {αi} are the parameters that characterize the function,

Figure A1. Combined effect of the constraints on the initial fraction of the
energy density of the universe in PBHs for power-law IMFs, as a function
of the parameters Mc = Mmine1/(γ − 2) and σ ≡ 1/(γ − 2). The colour
map shows log (βmax). The dotted lines are contour lines of βmax (i.e.
βmax = constant) and the regions in black are forbidden combinations of the
parameters. The left-hand panel is plotted discarding the relic constraints,
whereas in the right-hand panel these are considered.

and let us define

φ(m; α) := ρ−1
tot N (m; α)mc2, (A1)

where ρ tot is the total energy density of the universe and c is the
speed of light in vacuum. If O[φ(m; α)] denotes an observable
depending on the PBH mass function, we can expand it as

O[φ(m; α)] = O0 +
∫

dmφ(m; α)K1(m)

+
∫

dm1dm2φ(m1; α)φ(m2; α)K2(m1,m2) + · · · ,
(A2)

where O0 is the background contribution and the functions Kj(m)
depend on the details of the underlying physics and the nature of
the observation. As we considered that PBHs do not interact among
themselves, only the first two terms in the right-hand side of equa-
tion (A2) need to be considered.

If a measurement imposes an upper bound on the observable,

O[φ(m; α)] ≤ Oexp, (A3)

for a monoenergetic mass function with m = M∗,

φmon(M∗) ≡ ρ−1
tot Aδ(m − M∗)mc2, (A4)

we have

ρ−1
tot AM∗c2 ≤ Oexp − O0

K1(M∗)
≡ β(M∗), (A5)

where β(M∗) is the upper bound for monoenergetic distributions
(see Fig. 1). Combining equations (A2) and (A5) we obtain∫

dm
φ(m; α)

β(m)
≤ 1, (A6)

for an arbitrary mass function. If we know β(m) and assume the
form of the function φ(m; α), we can integrate equation (A6) over
the mass range (m1, m2) for which the constraint applies. For given
values of the parameters α, this imposes limits on β ≡ ρPBH/ρ tot.
In particular, for a power-law mass function we have

φ(m; Mmin, γ ) = Am1−γ c2, with m ≥ Mmin. (A7)

If γ > 2, a minimum mass is strictly necessary for the function not
to diverge. Instead, the role of the maximum mass is not important in
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this case. Then, for each set of parameters {γ , Mmin} the combined
effect of equation (A6) applied to the different constraints impose
limits on A and hence on β. It is standard to plot the constraints as a
function of the parameters Mc ≡ Mmine1/(γ − 2) and σ ≡ 1/(γ − 2)
instead of the original ones (see Fig. A1).

The procedure discussed in this Appendix is an adaptation of the
one presented by Carr et al. (2017).

This paper has been typeset from a TEX/LATEX file prepared by the author.


