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Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional enzyme related with
Huntington’s, Parkinson’s and Alzheimer’s diseases. The ability of negatively charged membranes
to induce a rapid formation of GAPDH amyloid fibrils has been demonstrated, but the mechanisms
by which GAPDH reaches the fibrillar state remains unclear. In this report, we describe the structural
changes undergone by GAPDH at physiological pH and temperature conditions right from its inter-
action with acidic membranes until the amyloid fibril is formed. According to our results, the GAP-

DH-membrane binding induces a g-structuring process along with a loss of quaternary structure in
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the enzyme. In this way, experimental evidences on the initial steps of GAPDH amyloid fibrils forma-
tion pathway are provided.
© 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

1. Introduction

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a well-
studied protein for its role in cellular energy production as a glyco-
lytic enzyme. However, current evidences reveal that this enzyme
is actually a multifunctional protein displaying a number of diverse
cellular functions unrelated to glycolysis [1]. These functions in-
clude transcription activation [2], metabolic switch between the
cytosol and the nucleus linking the metabolic state to the gene
transcription [3], membrane fusion [4], microtubule bundling [5],
and apoptosis through its binding to DNA as a transcription activa-
tor. GAPDH is also implicated in some neuronal diseases. In fact,
immunofluorescence analysis revealed that GAPDH is co-localized
with o-synuclein in Lewy bodies on Parkinsofis disease [6] and
drugs that are currently in use for treatment bind to or affect GAP-
DH function [7]. Moreover, several studies have shown that GAPDH
is located in amyloid plaques [8,9] and binds the amyloid precursor
protein [10] and AB peptide [11], indicating that GAPDH might play
a role in the progression of Alzheimefs disease. In vitro, oxidants
can induce amyloid-like aggregation of GAPDH via the formation
of intermolecular disulfide bonds [12]. At physiological conditions
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of pH and temperature, GAPDH is capable to undergo strong con-
formational changes from globular soluble to B-sheet enriched
amyloid structure when they interact with membranes containing
anionic phospholipids [13]. The fibrils formed under this condi-
tions appear to be analogous to those isolated in vivo [13], and
hence this system constitutes a good model to study the molecular
basis of amyloid fibril formation in vitro.

In the present work, kinetics and structural analysis were per-
formed in order to detect the changes undergone by the enzyme
upon its binding to negatively charged membranes. Our experi-
mental evidences allow us to suggest that a B-structuring and tet-
ramer dissociation processes occurs prior to the appearance of
protein aggregates. The results presented herein offers novel in-
sight into the initial steps of the amyloid fibrils formation pathway.

2. Materials and methods
2.1. Materials

Glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) and
Thioflavin T (ThT) were purchased from Sigma-Aldrich (St. Louis,
MO). Dioleylphosphatidylcholine (DOPC) and dioleylphosphatidic
acid (DOPA) were obtained from Avanti Polar lipids and their pur-
ity controlled by TLC.
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2.2. Vesicles preparation

Small unilamellar vesicles (SUV) were prepared according to Fi-
ner [14]. Briefly, appropriate amounts of DOPC and DOPA were dis-
solved in chloroform/methanol (2:1, vol/vol) and dried under
nitrogen. The lipids were rehydrated in the appropriate buffer
and sonicated on ice under nitrogen with a probe-type sonifier. Cy-
cles of sonication (1 min) and cooling (1 min) were repeated up to
15 times until the initially cloudy lipid dispersion became translu-
cent. The suspension was centrifuged for 15 min at 1100xg to ob-
tain a pure SUV suspension.

2.3. GAPDH enzymatic activity assay

GAPDH enzymatic activity was measured following the in-
crease in the absorbance at 340 nm of NADH using a Beckman
DU-7500 spectrophotometer. Briefly, 0.16 mg/ml of GAPDH in
the presence or in the absence of 0.5 mM DOPC:DOPA (9:1) lipo-
somes were incubated at 37 °C, pH 7.4. Afterwards, the enzymatic
reaction was carried out at 25 °C and was initiated by the addi-
tion of a 20 pl aliquot of the previous suspension to a reaction
mixture containing 100 mM glycine, 100 mM Na,HPO4, 5 mM
EDTA, 1.5 mM NAD and 2 mM glyceraldehyde-3-phosphate at
pH 9.0.

2.4. Hydrogen-deuterium exchange measurement

The lyophilized protein was dissolved in 50 pl of deuterated
buffer alone or containing 12.5 mM of DOPC:DOPA liposomes
and immediately mounted into an IR cell with a path length of
100 pm. The infrared spectra were recorded every minute up to
180 min. Sixteen scans were collected for each time interval. To
compare the spectra in H,O and D,0, they were normalized using
the amide I band in H,0 to the amide I band in D,0 at 1 min as ref-
erence. The spectrum collected after exchange for 24 h was used as
the fully deuterated spectrum.

2.5. Amide proton exchange rate

The H-D exchange of GAPDH was followed by FT-IR measuring
the apparent intensity changes of the amide II band, located
around 1548 cm™' [15]. The fraction of unexchanged amide proton,
F, was calculated at various time intervals as follows:

F= (AI 7AHOO)/AICO

where A; and A;; are the maximum absorbance of the amide I and Il
bands, respectively, Ay, is the amide II maximum absorbance of
fully deuterated protein, and w is the ratio of Ayo/Aj,, With Ay,
and Ay, being the maximum absorbance for the amide Il and amide
I bands, respectively, of GAPDH in H,O [16].

2.6. Thioflavin T fluorescence measurements

Eighty microliters of a GAPDH (4 mg/ml) solution were mixed
with 2 ml of 20 mM HEPES, pH 7.4, containing 25 uM ThT and
incubated at 37°C in the presence or in the absence of
0.5 mM of DOPC or DOPC:DOPA (9:1, 8:2 or 7:3 molar ratios)
liposomes in a quartz cuvette. The scattering, measured in the
absence of ThT, was subtracted. All fluorescence measurements
were carried out with an ISS (Champaign, IL, USA) PC1 spectro-
fluorometer according to Levine et al. [17]. The excitation wave-
length was set at 450 nm with emission measured at 482 nm
using a slit width of 0.5 and 1 nm for excitation and emission
light paths respectively. Each experiment was conducted in
triplicate.

2.7. Fourier transform infrared spectroscopy measurements

GAPDH solutions for infrared studies were prepared in 20 mM
HEPES, pD 7.4. Around 50 pu of sample containing 4 mg/ml of GAP-
DH were assembled in a thermostated cell between two CaF, win-
dows with 100 um spacers in a demountable liquid cell (Harrick
Scientific, Ossining, NY). The samples were recorded in a Nicolet
5700 spectrometer equipped with a DTGS detector (Thermo Nico-
let, Madison, WI). The sample chamber was permanently purged
with dry air. Solvent subtraction, deconvolution, determination of
band position and curve fitting of the original amide I band were
performed as previously described [18]. Protein structural analy-
ses, either in the absence or in the presence of the liposomes were
repeated three times with fresh new samples to test the reproduc-
ibility of the measurements. In all cases, the differences among the
three experiments were lower than 3%. The error in estimation of
the percentage of secondary structure depends mainly on the re-
moval of spectral noise, and it was estimated to be 2% [19].

2.8. Transmission electron microscopy

GAPDH (4 mg/ml) solution in 20 mM HEPES, pH 7.4, were
mixed with 12.5mM of DOPC and DOPC:DOPA (9:1) during
120 min. The samples were primary fixed in Karnovsky fixative
buffer. After 3 h at 4 °C, pellets were embedded in agar-agar and
transferred to 1% osmium tetroxide overnight. After rinsed in dis-
tilled water, the sample was treated with an aqueous solution of
2% uranyl acetate for 40 min. After fixation, samples were gradu-
ally dehydrated in alcohols of increasing strength, followed by ace-
tone. The infiltration with the embedding medium was performed
in Spurr resin (Pelco Int., CA, USA). Ultrathin sections mounted on
copper grids were stained with uranyl acetate and examined with
a Zeiss EM 109 transmission electron microscope.

3. Results
3.1. Lipid-induced conformational changes in GAPDH

The glycolytic activity of GAPDH in the presence of acidic mem-
branes shows an exponential decay over time (Fig. 1A). On the con-
trary the enzyme preserves its activity while incubated in the
absence of liposomes.

In order to test for structural rearrangements on GAPDH induced
by acidic liposomes, the H-D exchange rate was followed by infra-
red spectroscopy. The kinetics of the process in the absence or pres-
ence of DOPC:DOPA (9:1) liposomes was fitted to a two-
exponential decay model (Fig. 1B) which was satisfactorily used
in other systems [20,21] . Because of the complexity of the overall
H-D exchange process in proteins, only qualitative analyses were
performed. The amount of amide protons exchanged in the pres-
ence of acidic liposomes is significantly higher and the overall pro-
cess faster than in its absence. These data suggest that
conformational changes occur with the exposition of new protein
solvent accessible surfaces. The main changes in the H-D exchange
takes place within the first 5 min of protein-membrane interaction.

3.2. Kinetics of lipid-induced GAPDH amyloid fibrils formation

The ability of GAPDH to form amyloid fibrils in the presence of
acidic membranes was investigated through monitoring maximal
ThT emission intensity over 80 min of incubation at 37 °C and
shown in Fig. 2A. In the presence of DOPC:DOPA (9:1) membranes,
the aggregation kinetics shows a lag phase (10 min) followed by an
exponential phase which corresponds to the amyloid fibril elonga-
tion. The amount of negative charge in the bilayer increases the ex-
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Fig. 1. Glycolytic activity (A) and amide I proton exchange rates in D,0 (B) for GAPDH in the absence (filled circles) or in the presence (empty circles) of DOPC:DOPA (9:1)

liposomes at 37 °C, pH 7.4. The lines represent best fits to the data points.
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Fig. 2. (A) Kinetics of lipid-induced GAPDH amyloid fibrils formation. The ThT
fluorescence emission of a 0.16 mg/ml GAPDH solution in the absence (filled circles)
or in the presence of 0.5 mM DOPC (empty circle). 9:1 (inverted triangle), 8:2
(square), 7:3 (triangle) DOPC:DOPA liposome’s suspension registered as a function
of time. (B) Lipid-induced GAPDH fibrils observed by transmission electronic
microscopy. GAPDH solution (4 mg/ml) was incubated at 80 min 37 °C of incuba-
tion in the presence of 12.5 mM DOPC:DOPA (9:1) suspension. The scale bars at the
bottom correspond to 100 nm.

tent of GAPDH amyloid fibrils formation and shortens the lag
phase. Fig. 2B shows the fibrilar nature of the aggregates as well
as large unilamellar liposomes formed as a consequence of the fus-
ogenic activity previously described for GAPDH [4].

In the absence of liposomes, as well as in the presence of zwit-
terionic membranes, the protein kept its soluble state and no con-
siderable amount of amyloid fibrils was detected.

3.3. Characterization of the GAPDH structural changes induced by
acidic membranes

In order to characterize the structural rearrangement under-
gone by GAPDH in the presence of acidic membrane, infrared spec-
troscopy analyses were performed (Fig. 3 and Table 1) using
DOPC:DOPA (9:1) membranes since a 10 min lag phase allows
structural changes measurements before the fibrillation process
begins. After 80 min of incubation at 37 °C, GAPDH remained stable
and no changes in amide I spectra were observed (Fig. 3A). The
dominant band at 1654 cm™! reflects the content of o-helical while
the band component at 1638 cm™! indicates the presence of p-
sheet with some contributions from non-structured conformations
[22]. The band located around 1667 cm™! arises from B turns
[23,24]. The band at 1681 cm™! may also arise from a small contri-
bution of the high-frequency vibration of the antiparallel B-strand
[23]. Bands appearing at about 1642 cm™! are assigned to non-
structured conformation [22]. The band at 1623 cm™! corresponds
to interoligomeric contact as will be described in the following sec-
tion. According to the band assignment given above, the GAPDH
structure consists of 30% o-helix, 29% B-sheet, and 11% B-turns
(Fig. 3B and Table 1). This secondary-structure content is in good
agreement with those obtained by X-ray analysis [25].

After 80 min of incubation at 37 °C in the presence of DOPC:DO-
PA liposomes, significant structural changes on the protein were
evidenced along with the emergence of a new band corresponding
to protein aggregation at 1616 cm™! [18]. In this way, it is notable
the increase of the B-sheets, B-turns and aggregation bands, while
B-helix and interoligomeric bands diminished (Fig. 3C and Table 1).
In addition, the contribution from random coil becomes almost
undetectable. In accordance with the observations derived from
fluorescence assays, upon incubation with DOPC liposomes the
protein kept its soluble state and no considerable amount of amy-
loid fibrils was detected (data not shown).

3.4. Identification of GAPDH interoligomeric contact band

Bands in the 1630-1600 cm ™! region are not common in native
proteins. The band at 1623 cm~! has been assigned to protein-pro-
tein contacts in native oligomeric proteins as well as B-strands not
forming B-sheets [18,26]. Considering that GAPDH can be dissoci-
ated into dimmers or monomers at 45 °C [27], the thermal tetra-
mer dissociation was studied by infrared spectroscopy in order to
achieve an unmistakable assignment of the 1623 cm™' band.
Fig. 4 shows that this band diminishes with increasing temperature
until it vanishes at 50 °C, which strongly suggests that it arises
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Fig. 3. (A) FT-IR absorption spectra in the amide I region GAPDH before (solid line)
and after 80 min of incubation at 37 °C in the absence (dotted line) and in the
presence (dashed lines) of 12.5 mM DOPC:DOPA (9:1) liposomes. Reconstruction of
the amide I band from the components at 37 °C before (B) and after 80 min of
protein-membrane interaction (C).

Table 1

Band position (cm~') and percentage area (%) corresponding to the components
obtained after curve fitting of the GAPDH amide I band after 80 min of incubation at
37 °C in the absence and in the presence of DOPC:DOPA liposomes.

GAPDH +DOPC:DOPA

Position (cm™!) Area (%) Position (cm ™) Area (%)
1681 8 1682 5

1667 12 1667 18

1654 29 1653 22

1642 18 1643 <1

1638 21 1637 45

1623 12 1623 3

1616 - 1616 7

from the GAPDH monomers and/or dimmer contacts. It is impor-
tant to note that the GAPDH intermolecular hydrogen bonds from
protein aggregation, characterized by the 1616 cm™! band, be-
comes evident at about 45 °C, just when the tetramer is being
dissociated.

3.5. Time-progression of GAPDH structural changes

A detailed time-progression of the structural changes occurred
during the lipid-induced GAPDH refolding are depicted in Fig. 5.
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Fig. 4. Relative areas of 1623 cm~' (open triangles) and 1616 cm™! (filled triangles)
bands obtained after curve fitting of GAPDH amide I band. The protein spectra were
registered as a function of temperature. The contribution of each band to the amide
I was performed according to experimental procedures.

The protein secondary structure changes derived from the infrared
spectrum are shown in Fig. 5A. The main structural changes were
observed during the lag phase, i.e. within the first 10 min of incu-
bation, where the signal from B-sheet strongly increases at the ex-
pense of the unordered structure. On the contrary, the a-helix
content shows a slower decrement and this process covers the
lag and the amyloid fibrils growth phase. Fig. 5B shows the band
areas related with interchain interaction and it seems clear that
subsequent to the protein-membrane binding, the tetramer began
its dissociation and the intermolecular aggregation started. It is
important to take into account that in the lag phase, both, the main
B-structuring and the tetramer dissociation have been almost com-
pleted (Fig. 5A and B).

4. Discussion

Independent analyses demonstrate that GAPDH might be in-
volved in the pathogenesis of some protein misfolding diseases
[28], but its precise role in neurodegenerative diseases is still un-
known. The observation that the interaction of soluble A peptide
and denatured forms of GAPDH is rather specific and not due to its
adsorption to other denatured proteins lead to the hypothesis that
non-native forms of GAPDH might act as a seed in the formation of
amyloid structures during Alzheimer’s disease [29]. Acidic mem-
branes can also trigger the formation of GAPDH amyloid fibrils at
physiological conditions, and the formed fibrils are analogous to
those found in some pathological conditions [13]. In this way,
the study of the physicochemical basis of the ability of this enzyme
to form amyloid fibrils acquired relevance. In the present work, the
first description of the kinetics and conformational events under-
went by GAPDH right from its binding to acidic membrane until
the cross-B structure becomes evident is reported. The kinetic of
the lipid-induced GAPDH fibrillation showed that after a short
lag phase of about ten minutes, the amyloid fibrils growth phase
proceeded in an exponential way. This result is consistent with a
nucleation-dependent process that appears to be a common fea-
ture in some amyloid fibril formation [30]. The main conforma-
tional changes in the protein occurs within the lag phase, where
a protein B-structuring was evidenced by infrared techniques.
The GAPDH-DOPC:DOPA binding energy, which is about
—5.09 kcal/mol [31], could be used to support the observed confor-
mational change resembling the SNAREs systems [32].

In this paper, it is also demonstrated that in GAPDH, the
1623 cm~! band from the infrared spectrum could be unambigu-
ously assigned to interoligomeric interaction and allows to
monitoring the tetramer dissociation. According to our results,



L.M. Cortez et al./FEBS Letters 584 (2010) 625-630 629

Area (%)

0 20 40 60 80
Time (min)

0 10 20 30 40 50 60
Time (min)

Fig. 5. Relative contribution of secondary structure (A) and interchain interaction (B) to the amide [ band as a function of time. The infrared spectra were recorded after a
GAPDH solution (4 mg/ml) was added to a 12.5 mM DOPC:DOPA liposome suspension. Area percentages at each time are represented for B-sheets (filled circles), o-helix
(open circles), B-turns (filled triangles), random coil (open triangles), interoligomeric contact (open square) and protein aggregation (filled square).

GAPDH is being dissociated within the lag phase (Fig. 5B). This fact
could explain the increment on the protein’s solvent accessible
area, as evidenced by the H-D exchange, which might arise from
lost of the interoligomeric contacts (Fig. 1B).

According to GAPDH X-ray crystallography the interface be-
tween two monomer has an edge to edge B-sheet structure, while
the dimmers pack together through loops and random coil struc-
tures [25]. Thus, when GAPDH interacts with acidic membranes,
the random coil (including those belonging to the dimmer inter-
face) could be organized into B-structures leading to the tetramer
dissociation and the concomitant exposition of hydrophobic sur-
faces triggering the interchain aggregation. Moreover, the tetramer
dissociation could also explain the loss of glycolytic activity ob-
served in the presence of acidic membranes (Fig. 1A) since this
enzymatic activity is restricted to the tetramer [33].

The first critical step in protein fibrillogenesis is the partial
unfolding of the protein [34]. However, it is difficult to trap and
characterize such partially folded species under physiological con-
ditions because they are only transiently populated on the fibrilla-
tion pathway [35]. It has been assumed that conformational
change from a-helix into B-sheet may be a key step in the forma-
tion of amyloid fibrils in some proteins [35]. However, according to
our results, in GAPDH, the B-sheet increment is first at the expense
of random coil while the a-helix unfolding seems to be a less
important process.

The loss of quaternary structure and the partial interconversion
of secondary structure elements detected in the lag period, allow
us to characterize intermediate species in the GAPDH folding path-
way. The isolation of these intermediate species is difficult due to
the short duration of the lag period. This fact alongside the high light
scattering produced by the presence of lipid vesicles prevents the
study of these intermediates by other classical biophysical tech-
niques. In this scenario, infrared spectroscopy becomes a useful tool.

The data presented herein provide some insights on the GAPDH
misfolding pathway since intermediates folding species were
experimentally detected. This could shed light on the molecular
mechanisms that drive the GAPDH amyloid formation, associated
with various, often highly debilitating, diseases like Alzheimer's,
Parkinson’s or Huntington’s disease, for which no sufficient cure
is available yet.

Acknowledgements
This work was supported by Consejo Nacional de Investigaci-

ones, Agencia de Promocién Tecnolégica (PAE 22642) and Secre-
taria de Ciencia y Técnica de la Universidad Nacional de

Tucuman (CIUNT) Grant D313. The authors are grateful to Dra.
Beatriz Winik for her valuable contribution with the electronic
microscopy.

References

[1] Sirover, M.A. (1999) New insights into an old protein: the functional diversity
of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim.
Biophys. Acta 1432, 159-184.

Zheng, L., Roeder, R.G. and Luo, Y. (2003) S phase activation of the histone H2B

promoter by OCA-S, a coactivator complex that contains GAPDH as a key

component. Cell 114, 255-266.

[3] Hara, M.R. et al. (2005) S-Nitrosylated GAPDH initiates apoptotic cell death by

nuclear translocation following Siah1 binding. Nat. Cell Biol. 7, 665-674.

Morero, R.D., Vinals, A.L., Bloj, B. and Farias, R.N. (1985) Fusion of phospholipid

vesicles induced by muscle glyceraldehyde-3-phosphate dehydrogenase in the

absence of calcium. Biochemistry 24, 1904-1909.

Huitorel, P. and Pantaloni, D. (1985) Bundling of microtubules by

glyceraldehyde-3-phosphate dehydrogenase and its modulation by ATP. Eur.

J. Biochem. 150, 265-269.

Tatton, W.G., Chalmers-Redman, R.M., Elstner, M., Leesch, W., Jagodzinski, F.B.,

Stupak, D.P., Sugrue, M.M. and Tatton, N.A. (2000) Glyceraldehyde-3-

phosphate dehydrogenase in neurodegeneration and apoptosis signaling. ]J.

Neural Transm. Suppl. 77, 100.

Kragten, E. et al. (1998) Glyceraldehyde-3-phosphate dehydrogenase, the

putative target of the antiapoptotic compounds CGP 3466 and R-(—)-deprenyl.

J. Biol. Chem. 273, 5821-5828.

Sunaga, K., Takahashi, H., Chuang, D.M. and Ishitani, R. (1995) Glyceraldehyde-

3-phosphate dehydrogenase is over-expressed during apoptotic death of

neuronal cultures and is recognized by a monoclonal antibody against amyloid

plaques from Alzheimer’s brain. Neurosci. Lett. 200, 133-136.

Tamaoka, A., Endoh, R., Shoji, S., Takahashi, H., Hirokawa, K., Teplow, D.B.,

Selkoe, D.J. and Mori, H. (1996) Antibodies to amyloid beta protein (A beta)

crossreact with glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

Neurobiol. Aging 17, 405-414.

[10] Schulze, H., Schuler, A., Stuber, D., Dobeli, H., Langen, H. and Huber, G. (1993)
Rat brain glyceraldehyde-3-phosphate dehydrogenase interacts with the
recombinant cytoplasmic domain of Alzheimer’s beta-amyloid precursor
protein. J. Neurochem. 60, 1915-1922.

[11] Oyama, R, Yamamoto, H. and Titani, K. (2000) Glutamine synthetase,
hemoglobin alpha-chain, and macrophage migration inhibitory factor
binding to amyloid beta-protein: their identification in rat brain by a novel
affinity chromatography and in Alzheimer's disease brain by
immunoprecipitation. Biochim. Biophys. Acta 1479, 91-102.

[12] Nakajima, H., Amano, W., Fujita, A., Fukuhara, A., Azuma, Y.T., Hata, F., Inui, T.
and Takeuchi, T. (2007) The active site cysteine of the proapoptotic protein
glyceraldehyde-3-phosphate dehydrogenase is essential in oxidative stress-
induced aggregation and cell death. J. Biol. Chem. 282, 26562-26574.

[13] Zhao, H., Tuominen, E.K. and Kinnunen, P.K. (2004) Formation of amyloid
fibers triggered by phosphatidylserine-containing membranes. Biochemistry
43, 10302-10307.

[14] Finer, E.G., Flook, A.G. and Hauser, H. (1972) Mechanism of sonication of
aqueous egg yolk lecithin dispersions and nature of the resultant particles.
Biochim. Biophys. Acta 260, 49-58.

[15] Susi, H. and Byler, D.M. (1986) Resolution-enhanced Fourier transform
infrared spectroscopy of enzymes. Meth. Enzymol. 130, 290-311.

[16] Barksdale, A.D. and Rosenberg, A. (1982) Acquisition and interpretation of
hydrogen exchange data from peptides, polymers, and proteins. Meth.
Biochem. Anal. 28, 1-113.

2

[4

[5

[6

[7

[8

[9



630

(17]

(18]

(19]

[20]

(21]

(22]

(23]
(24]

[25]

(26]

L.M. Cortez et al./FEBS Letters 584 (2010) 625-630

LeVine 3rd., H. (1993) Thioflavine T interaction with synthetic Alzheimer’s
disease beta-amyloid peptides: detection of amyloid aggregation in solution.
Protein Sci. 2, 404-410.

Arrondo, ].L., Castresana, J., Valpuesta, ].M. and Goni, F.M. (1994) Structure and
thermal denaturation of crystalline and noncrystalline cytochrome oxidase as
studied by infrared spectroscopy. Biochemistry 33, 11650-11655.

Echabe, I., Encinar, ].A. and Arrondo, J.L.R. (1997) Removal of spectral noise in
the quantitation of protein structure through infrared band decomposition.
Biospectroscopy 3, 469-475.

Kim, K.S., Fuchs, ].A. and Woodward, C.K. (1993) Hydrogen exchange identifies
native-state motional domains important in protein folding. Biochemistry 32,
9600-9608.

de Jongh, HH., Goormaghtigh, E. and Ruysschaert, J.M. (1995) Tertiary
stability of native and methionine-80 modified cytochrome c detected by
proton-deuterium exchange using on-line Fourier transform infrared
spectroscopy. Biochemistry 34, 172-179.

Arrondo, J.L, Muga, A, Castresana, J. and Goni, FM. (1993) Quantitative
studies of the structure of proteins in solution by Fourier-transform infrared
spectroscopy. Prog. Biophys. Mol. Biol. 59, 23-56.

Byler, D.M. and Susi, H. (1986) Examination of the secondary structure of
proteins by deconvolved FTIR spectra. Biopolymers 25, 469-487.

Krimm, S. and Bandekar, J. (1986) Vibrational spectroscopy and conformation
of peptides, polypeptides, and proteins. Adv. Protein Chem. 38, 181-364.
Cowan-Jacob, S.W., Kaufmann, M., Anselmo, A.N., Stark, W. and Grutter, M.G.
(2003) Structure of rabbit-muscle glyceraldehyde-3-phosphate
dehydrogenase. Acta Crystallogr. D Biol. Crystallogr. 59, 2218-2227.
Arrondo, ].L.,, Young, N.M. and Mantsch, H.H. (1988) The solution structure of
concanavalin A probed by FT-IR spectroscopy. Biochim. Biophys. Acta 952,
261-268.

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

Markossian, K.A. et al. (2006) Mechanism of thermal aggregation of rabbit
muscle glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 45, 13375-
13384.

Mazzola, J.L. and Sirover, M.A. (2002) Alteration of intracellular structure and
function of glyceraldehyde-3-phosphate dehydrogenase: a common
phenotype of neurodegenerative disorders? Neurotoxicology 23, 603-609.
Naletova, 1., Schmalhausen, E., Kharitonov, A., Katrukha, A., Saso, L., Caprioli, A.
and Muronetz, V. (2008) Non-native glyceraldehyde-3-phosphate
dehydrogenase can be an intrinsic component of amyloid structures.
Biochim. Biophys. Acta 1784, 2052-2058.

Ferrone, F. (1999) Analysis of protein aggregation kinetics. Meth. Enzymol.
309, 256-274.

Avila, C.L.,, de Arcuri, B.F., Gonzalez-Nilo, F., De Las Rivas, J., Chehin, R. and
Morero, R. (2008) Role of electrostatics on membrane binding, aggregation
and destabilization induced by NAD(P)H dehydrogenases. Implication in
membrane fusion. Biophys. Chem. 137, 126-132.

de la Fuente, M. and Ossa, C.G. (1997) Binding to phosphatidyl serine
membranes causes a conformational change in the concave face of annexin I.
Biophys. J. 72, 383-387.

Mockrin, S.C., Byers, L.D. and Koshland Jr., D.E. (1975) Subunit interactions in
yeast glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 14, 5428-
5437,

Kelly, J.W. (1998) The alternative conformations of amyloidogenic proteins
and their multi-step assembly pathways. Curr. Opin. Struct. Biol. 8, 101-106.
Uversky, V.N. and Fink, A.L. (2004) Conformational constraints for amyloid
fibrillation: the importance of being unfolded. Biochim. Biophys. Acta 1698,
131-153.



	Glyceraldehyde-3-phosphate dehydrogenase tetramer dissociation and amyloid fibril formation induced by negatively charged membranes
	Introduction
	Materials and methods
	Materials
	Vesicles preparation
	GAPDH enzymatic activity assay
	Hydrogen–deuterium exchange measurement
	Amide proton exchange rate
	Thioflavin T fluorescence measurements
	Fourier transform infrared spectroscopy measurements
	Transmission electron microscopy

	Results
	Lipid-induced conformational changes in GAPDH
	Kinetics of lipid-induced GAPDH amyloid fibrils formation
	Characterization of the GAPDH structural changes induced by acidic membranes
	Identification of GAPDH interoligomeric contact band
	Time-progression of GAPDH structural changes

	Discussion
	Acknowledgements
	References


