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Communicated by Steve Sommer 

Although large deletions from the coagulation factor VIII gene, F8, are responsible for 5% 
of severe hemophilia A (seHA), few of them have been fully characterised. A detailed 
description of a large partial deletion of the F8 caused by unequal recombination between 
homeologous AluSx-derived sequences is presented. The proband, a case of isolated 
hemophilia A with a high inhibitor titre (5700 BU), showed a consistent absence of PCR-
amplification of exons 4 to 10, EX4_EX10del. Two approaches were used to narrow down 
the deletion breakpoints: a direct physical analysis based on PCR (that additionally permits 
carrier detection in the family); and, under the hypothesis that the mutation resulted from 
homologous recombination, sequence alignments of F8 intron 3 and 10. Both approaches 
indicate an unequal crossing over (CO) between two Alu-related sequences. Both elements 
involved were derived from the AluSx-subfamily consensus and demonstrate 86% sequence 
identity (with only single-base mismatches), with three gaps (of 2, 3 and 14-bases) and two 
main tracts of perfectly homologous sequence (28 and 24-bp). The short stretch of intron 10 
embedded into intron 3 sequence, linked to the CO, represents a typical hallmark of 
homologous recombination (double-strand break repair model). A detailed description of 
EX4_EX10del mutation is c.[338+3485delins1687+2223_1687+2225; 338+3551_1687+2291 
del]. The common involvement of unequal homologous recombination mediated by 
repetitive elements allowed us to suggest that our experimental design (based on intron 
sequence alignments) may be successfully applied to rearrangements involved in other X-
linked inherited diseases. Like other Alu-rich genes throughout the human genome, Alu-
mediated homologous recombination in F8 may be an important cause of hemophilia by 
promoting large DNA deletions. © 2004 Wiley-Liss, Inc. 
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INTRODUCTION 

Recombination between homologous DNA sequences plays an important role in generating genetic diversity in 
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all organisms. Similar to homologous recombination, where both sequences involved are almost identical, 
homeologous recombination involves similar but imperfectly matched sequences (Yang & Waldman, 1997). 
Although the limit for the above classification is arbitrary, it has been shown that disruption of sequence identity 
greatly reduces the chance of recombination between homologs (Waldman & Liskay, 1987). Short interspersed 
elements, such as Alu-elements, have propagated via retrotransposition to more than one million copies in the 
human genome, thus providing numerous possibilities for unequal recombination (Deininger & Batzer, 1999). Old 
Alu-subfamilies such as AluJ, AluSx and AluSq have been shown to harbour a large number of random mutations, 
which prevent their retrotransposition and also reduce their chance of unequal homologous recombination leading 
to human disease (Batzer et al., 1996). 

Hemophilia A (MIM# 306700) is an X-linked recessive disorder, which affects one in 10,000 males world-wide 
and is caused by mutations affecting the coagulation factor VIII (FVIII) gene (F8). The disease is classified as 
severe (seHA) when the coagulant activity of plasma FVIII is lower than 1 IU/dl. F8 is large and complex (186 kb 
and 26 exons) and is situated in the distal Mb of Xq (Gitschier et al., 1984). The first recurrent F8 mutation to be 
recognised was the intron 22 inversion (Inv22) (Lakich et al., 1993; Naylor et al., 1993), which accounts for 
approximately 42% of seHA cases (Antonarakis et al., 1995; De Brasi et al., 2000). Inv22 is mediated by 
intrachromosomal homologous recombination between a region of 9.5 kb within F8 IVS22 (int22h-1) and one of 
two inversely oriented copies of this sequence (int22h-2 or -3) (Naylor et al., 1995). Recently, Bagnall et al. (2002) 
described another recurrent inversion involving F8, affecting IVS1 (Inv1), that is responsible from up to 5% of 
seHA cases and results from homologous recombination between inversely oriented sequences of 1.2 kb (int1h). 
Large deletions in the F8 account for approximately 5% of seHAs (HAMSTeRS international hemophilia A 
mutation database http://europium.csc.mrc.ac.uk, Kemball-Cook et al., 1998). Genetic counselling in families with 
large F8 deletions can become a priority as a result of the increased clinical severity of the proband as a result of 
the high probability of developing an anti-FVIII inhibitory antibody (inhibitor). Carrier analysis in deletion 
families is hampered by the presence of a masking normal allele in carrier females. In this context, rapid analysis 
of a deletion-specific detection system may be extremely valuable. F8 is an Alu-rich gene with at least 49 Alu-core 
related sequences. It has been speculated that these sequences may provide many possibilities for unequal 
recombination (Vidal et al., 2002; Sommer et al., 2002). Although several papers have reported large partial 
deletions in F8 (Youssoufian et al., 1987; Bardoni et al., 1988; Millar et al., 1990; Krepelova et al., 1992; 
Figuereido et al., 1994; Salviato et al., 2002), few of them have presented a complete characterisation of the 
sequence breakpoints and addressed the mechanism involved (Woods-Samuels et al., 1991; Van de Water et al., 
1998; Shibata et al., 2000, Vidal et al., 2002). 

Although the origin of large deletions in F8 was formerly shown to be associated with non-homologous 
recombination (Woods-Samuels et al., 1991), it is currently believed to involve alternative molecular mechanisms. 
Recently, the involvement of a 16 bp-subset of the recombinogenic Alu-core sequence (Rüdiger et al., 1995) in a 
F8 exon 25 deletion (Vidal et al., 2002) prompted Sommer et al. (2002) to raise a central question of whether Alu-
mediated recombination is a common mechanism of mutation in the FVIII gene.  

In order to address this question and to gain further insight into the molecular mechanism of Alu-mediated 
rearrangements in the human genome, we studied a large partial deletion of F8 associated seHA. Herein, we 
provide evidence that this deletion is caused by unequal homeologous recombination between two full-length 
copies of AluSx situated in introns 3 and 10 of F8. 

MATERIALS AND METHODS 

Case and samples 
The proband was a patient with sporadic severe HA (FVIII:C < 1 IU/ml) who presented with a high titre 

inhibitory antibody against therapeutic FVIII (titre: first test 14,4 BU; maximum 5700 BU). The proband, his 
mother and 2 unrelated healthy women were studied to characterize the mutation, for carrier detection, and as 
control individuals. Genomic DNA was obtained from peripheral blood leukocytes either by phenol-chloroform 
(Sambrook et al., 1989) or salting-out extraction (Lahiri & Nuremberg, 1990) and ethanol precipitation. DNA 
quality and concentration were estimated by agarose gel electrophoresis.  
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DNA sequences 
 Xq28 contig, GenBank accession AL645722.2, AluSx, AluRep accession U14574. HEMOA: OMIM ID 

306700; International hemophilia A mutation database: HAMSTeRS (http://europium.csc.mrc.ac.uk).   

Intron 22 and intron 1 inversion analysis 

The intron 22 inversion was investigated by Southern blot analysis as described Lakich et al. (1993). The intron 
1 inversion was studied by the method described by Bagnall et al. (2002) with minor modifications. 

Long distance and standard PCR amplification 
Long-distance PCR amplifications (LD-PCR) were performed on 500 ng of genomic DNA, in a total volume of 

25µl, using 1U of Taq/Pwo DNA polymerase mixture (Expand long template DNA polymerase Mix, Roche) as 
previously described (De Brasi et al., 1999), with minor modifications using primers 3a and 11b for the deletion; 
and 3a and 4b for the wt-allele (Table 1, Fig. 1a). Deletion-specific and wild type intron-specific short range PCR 
amplification (S-PCR) were achieved on 300 ng of DNA, in a volume of 25 µl, using standard reagents and 
thermo-cycling, with primers i3f and i10r; and with i3f and 4b; respectively (Table 1, Fig. 1a). For point mutations 
screening, all F8 coding sequences were PCR-amplified from genomic DNA samples as described by Williams et 
al. (1998). 

 

Table 1. Primers Used for PCR Amplification 

 
 

Code 
 

5’ – Sequence – 3’ 
 

GenBank AL645722.2 
Nucleotides 

 

 
PCR 

Assay 
 

3a TGCTTCTCCACTGTGACCT * 44962-44980 LD-PCR 
4b GATTCAGTTGTTTGTACTTCTC * 49258-49279 LD-PCR 

S-PCR 
11b ACTGACCTATATTGCAAACCA * 85330-85350 LD-PCR 
i3f TTTGTGGCTGCTGCTTGTTAGT ** 48556-48577 S-PCR 

i10r AAAATCTCCCCAGAACTCTGTCA ** 83669-83691 S-PCR 
 
* Williams et al. (1998). ** This study. 
 

Pre-screening and screening for small deletions of factor VIII gene 
F8 gene mutation screening of all 26 exons, exon-intron boundaries and splicing sequences (260- 547bp), was 

performed using conformation sensitive gel electrophoresis (CSGE) as described Williams et al. (1998). Briefly, 
products from the clinical sample and a non-mutated control were mixed to form heteroduplexes, electrophoresed 
in mildly denaturing polyacrylamide gels, ethidium bromide stained and analyzed by UV transillumination. 

Restriction endonuclease analysis and electrophoresis of PCR products  

PCR products (5-10µl) were digested using 5U of restriction enzyme in 15µl total volume under conditions 
recommended by the manufacturer (Promega, Gibco BRL, New England Biolabs). LD-PCR products and their 
restriction digestion products were analyzed using 0.8-1% agarose gel electrophoresis while short-range PCR 
products and their restriction digests, were analyzed by 1.5-3% agarose gel electrophoresis. Gel images were 
documented using GelPro analyzer and the molecular weight of DNA segments was estimated by GelPro 3.2 
analysis software (Syrex, Argentina). 

Bioinformatics 
DNA sequence analysis, restriction mapping, exon-intron boundaries and primer annotations were performed 

using EditSeq and MapDraw software (LaserGene, DNA Star). Intron alignments were achieved by the Clustal 
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algorithm using default penalty parameters unless stated (MegAlign, Lasergene, DNA Star). Restriction maps to 
characterize the large deletion were achieved using an updated and F8 exon-annotated genomic sequence of Xq28, 
GenBank accession AL645722.2. The NCBI web page (http://www.ncbi.edu.blast/) was used to access BLAST 
(Basic Local Alignment Search Tool) algorithm (Atschul et al., 1990). AluSx subfamily sequence consensus were 
obtained from AluRep, accession U14574 (Batzer et al., 1996). 

DNA sequencing 
PCR products were prepared for DNA sequencing by purification using Concert Gel Extraction System (Gibco 

BRL). Sequencing primers were those used for PCR amplifications (Table 1). Manual DNA sequencing was 
performed using fmol DNA Cycle Sequencing System (Promega) under conditions recommended by the 
manufacturer. Each DNA sequence was determined using both forward and reverse primers. 

RESULTS 

Identification of a large deletion 
The seHA-affected patient was shown not to have the Inv22 or Inv1. The proband’s DNA sample was 

successfully amplified for exons 1 to 3 of F8, and exons 11 to 26. Exons 4-10 consistently failed to amplify. The 
amplimers obtained were screened for small mutations (small deletions, insertions and single base changes), by 
CSGE. The only change identified was in nucleotide 3864A>C, codon 1269 (Ser>Ser), previously reported on 
HAMsTERS as a common exon 14 DNA polymorphism. The results suggested a large partial deletion of F8 
spanning exons 4 to 10.  

Characterization of the sequence breakpoints at the genomic level 

In order to isolate the genomic breakpoints associated with the EX4_EX10del, a LD-PCR was performed using 
primers 3a and 11b, (Table 1) specific to the exons flanking the deletion (Fig. 1a). Interestingly, a deletion-specific 
product of 5.7 kb was produced in samples from the patient and his mother but not in either control individual’s 
DNA (Fig. 1a). At this point a hypothesis of recombination between homologous segments of introns 3 and 10 
prompted us to perform a sequence alignment and to formulate a prediction of the breakpoint sequences. This 
indicated that two Alu-related sequences may be involved in homologous recombination between introns 3 and 10 
of the F8, and predicted an amplimer of 5694 bp using primers 3a and 11b. Analysis of intron 3 and intron 10 
parental Alu homologs using BLASTN on the AluRep database revealed that both Alu-elements were derived from 
the AluSx subfamily. Due to sequence divergence, these parental elements showed a moderate number of random 
mutations compared with AluSx consensus (Fig. 2). 

Restriction endonuclease analysis of the 5.7-kb amplicon was compatible with the predicted Alu-mediated CO 
event within the DNA segments indicated (Fig. 1b). These results encouraged us to perform a short-range PCR 
specific for the deletion (441 bp) accompanied with another S-PCR to detect only the non-deleted allele. This new 
system based on S-PCR succeeded in detecting the EX4_EX10del and was used to simplify further studies in the 
family to confirm the carrier status of the proband’s mother (Fig. 1a), and to characterize the deletion breakpoints 
at the DNA sequence level. Restriction analysis of this 441-bp amplimer was also compatible with the predictions 
made by bioinformatics (Fig. 1b). The DNA sequence through the breakpoint of EX4_EX10del was determined 
using the 441-bp PCR product (Fig. 2).  
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Figure 1. Isolation and analysis of EX4_EX10del. (a) Above. Scheme of the deletion showing AluSx (gray boxes) mediated 
recombination. Primer target sites and PCR-product sizes are indicated. Below. Long distance PCR (left panel) for genotyping 
EX4_EX10del (primers 3a and 11b) and the normal allele (primers 3a and 4b) samples from the proband (Pr), the proband’s 
mother (Pr.Mo) and a normal individual (Co); and in the right panel, the same analysis by multiplex standard PCR (S-PCR) 
(primers i3f, i10r and 4b). These two analysis show that the proband and his mother carry the specific deletion. M1 (λ-EcoRI-
HindIII), M2 (50-bp ladder). (b) Restriction maps from the proband to analyze EX4_EX10del specific amplimers. H (HindIII), 
E (EcoRI), M (MspI), Ha (HaeIII). This map was drawn using genomic sequence data (GenBank accession AL645722.2) 
assuming unequal crossing over between Alu-elements within IVS3 and IVS10 of F8. Below. Electrophoretic analysis of DNA 
fragments obtained from the proband´s 5.7-kb LD-PCR product (primers 3a and 11b) (left) and the 441-bp S-PCR product 
(primers i3f and i10r) (right). M3 (1-kb hyperladder), Und. (undigested PCR-product). The restriction maps that were obtained 
perfectly coincided with those that were predicted assuming homologous Alu mediated recombination. 
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    1 GGCGGGCGGA GGCCGGGCGC GGTGGCTCAC GCCTGTAATC CCAGCACTTT GGGAGGA--- -------AGA TCACCTGAGG AluSx   
+3411 GCAGAAAGTA GGCCGGGTGT GGTGGTTCGC GCCTGTAATC CCAGCACTTT GGGAGGCTGA GGCGGGTGGA TCAC--AAGG IVS3  
+2149 AAAATTTTCC CGCTGGGTGC GGTGGCTCAC GCCTGTAATC CCAGCACTTT GGGAGGCCGA GGCGGGCAGA TCACTTGAGG IVS10 
    1 GCAGAAAGTA GGCCGGGTGT GGTGGTTCGC GCCTGTAATC CCAGCACTTT GGGAGGCTGA GGCGGGTGGA TCACTTGAGG EX4_EX10del
 
   71 TCAGGAGTTC GAGACCAGCC TGGCCAACAT GGTGAAACCC CGTCTCTACT AAAAATACAA AAAT--TAGC CGGGCGTGGT AluSx    
+3490 TCAGGAGTTT AAGACCATCC TGACCAACAT GATGAAACCC CATCTCTACT AAAAATACAA AAT---TAGC CGGGCATGGT IVS3       
+2230 TCAGGAGTTC AAGACCAGCT TGGCCAACAT GGTGAAAACC CATCTCTACT AAAAATACAA AAAAAATAGC CGGGCATTGT IVS10    
   81 TCAGGAGTTT AAGACCATCC TGACCAACAT GATGAAACCC CATCTCTACT AAAAATACAA AAAAAATAGC CGGGCATTGT EX4_EX10del
 
  149 GGCGCGCGCC TGTAATCCCA GCTACTCGGG AGGCTGAGGC AGGAGAATCG CTTGAACCCG GGAGGCGGAG GTTGCAGTGA AluSx    
+3567 GGCACGTGCC TGTAATCCCA GCTGCTGGGG AGTCTGAGGC AGGAAAATCA CTTGAACCTG GGAGGCGGAC GTTGCTGTGA IVS3 
+2310 GGCGTGTGCC TGTAATCCCA GCTACTCAGG AGGCTGAGGC AGGAGAATTG CTTGAAACTG GGAGGTGAAG GTTGCAGTGA IVS10  
  161 GGCGTGTGCC TGTAATCCCA GCTACTCAGG AGGCTGAGGC AGGAGAATTG CTTGAAACTG GGAGGTGAAG GTTGCAGTGA EX4_EX10del
 
  229 GCCGAGATCG CGCCACTGCA CTCCAGCCTG GGCGACAGAG CGAGACTCCG TCTCAAAAAA AA                290 AluSx     
+3647 GCCGAGATC- ---------- ---CAGCCTG GGCAACAGAG TGAGACTCCG TCTCAAAACA AC              +3694 IVS3     
+2390 GCCAAGATCA CCCCACTGCA CTCCAGCCTG GGCAACAGAG CAAGACTGCA TCTCAAAAAA AA              +2451 IVS10  
  241 GCCAAGATCA CCCCACTGCA CTCCAGCCTG GGCAACAGAG CAAGACTGCA TCTCAAAAAA AA                302 EX4_EX10del

Figure 2. Sequence alignment of the full-length AluSx consensus (GenBank accession U14574) (AluSx) (Batzer et al., 1996), 
the parental IVS3 position c.338+3411 to c.338+3694 (GenBank accession AL645722.2: 48595-48878), the parental IVS10 
position c.1687+2149 to c.1687+2451 (GenBank accession AL645722.2: 83287-83589) and the chimeric DNA sequence from 
EX4_EX10del. Sequence gaps are indicated by [-], bold type indicates base disagreement between IVS3 and IVS10; underlined 
letters represent base disagreements with the AluSx consensus. The open box indicates Alu-core sequence and the shaded box, 
the Chi-like motif. 

 

 
Figure 3. Hypothetical scheme for mechanism of recombination that generated the EX4_EX10del mutation. The best 
alignment of F8 IVS3 and IVS10 involves two almost full-length AluSx elements. This alignment starts at nucleotide IVS3 
+3421 and IVS10 +2159, and ends at IVS3 +3694 and IVS10 +2451 (figure 2). Solid lines are sequences represented in 
EX4_EX10del, while dashed lines are not; short vertical lines indicate mismatched bases between either the IVS3 or IVS10 
Alu-element, and the observed nucleotide sequence of EX4_EX10del; loops are sequence gaps. The tract of DNA sequence 
homology (292 bp including gaps) is arbitrarily divided into seven zones (I, II,..., VII). Segment sizes in nucleotides is 
indicated. Under the most likely hypothesis, the cross over (CO) [X] occurred in zone VI associated with the conversion of a 
short sequence within zone IV to the corresponding sequences from IVS10, indicated by the upward arrow (at least 3 bases, 
IVS3 nt. +3485 “A” was replaced by “TTG” of IVS10 nt. +2223 to +2225 on figure 2). However, other molecular mechanisms 
cannot be ruled out. For example the CO could have been located at the most 5´ six nucleotides of zone IV (from the last 
mismatch of zone III up to the 2-bp gap, IVS3 nt +3479 to +3484, figure 2) associated with the conversion (a patch of IVS3 
sequence as information donor) of more than 29 bases spanning the entire zone V. Alternative, more complex molecular 
outcomes (for example a CO associated with two separated gene conversion-like events) reconcile less well with the current 
theoretical background (Szostak et al., 1983). 
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A formal and precise description of the deletion associated sequences has been assessed according current 
recommendations (Dunnen & Antonarakis, 2000), as c.[338+3485delins1687+2223_1687+2225; 
338+3551_1687+2291del]. These data provide conclusive evidence that the seHA-causing EX4_EX10del large 
deletion originated by recombination between two AluSx-derived sequences.  

Analysis of sequence features associated with the EX4_EX10del 
Alignment of the parental intron 3 and intron 10 Alu-elements involved in the origin of the deletion showed the 

presence of 38 single-base mismatches, two tracts of sequence identity (one of 28 bases spanning the Alu-core and 
the Chi-like pentanucleotide and the other of 24 bp) and three gap-loops each of 2, 3 and 14 nucleotides, 
respectively; through the 292 bp of sequence homology (including gaps) (Figs. 2 and 3). The overall figure for 
sequence identity between the homeologous parental tracts involved in EX4_EX10del was 81% and reached 86% 
when gaps were excluded and only single-base mismatches were considered (Fig. 3, sequence details in Fig. 2). 
This degree of nucleotide sequence identity classified the sequences as homeologous (Nicholson et al., 2000). 

In order to describe possible outcomes of the event, the homeologous tracts were arbitrary divided into seven 
zones (I, II, III, IV, V, VI and VII) (Fig. 3). Under the most likely hypothesis, the CO occurred within zone VI 
associated with the ectopic presence of an area of IVS10 embedded in IVS3 sequence (zone IV, Fig. 3). Although 
no direct evidence of this hypothesis can be obtained, in order to rule out the possibility of errors in the published 
sequence of F8 IVS3 in zone IV (GenBank accession AL645722.2: 48661-48682) that could mimic IVS10 zone IV 
sequence; four X-chromosomes from healthy individuals were sequenced. Only the published DNA sequence was 
obtained. 

DISCUSSION 

This study presents the second report of a partial genomic deletion causing hemophilia in which Alu-sequences 
were involved (Vidal et al., 2002) and the first one where full-length Alu-elements were identified. The event 
reported here is particularly interesting as it involved two divergent copies of the AluSx subfamily and where 
sequence differences between the repeats allowed us to further explore some aspects of homeologous 
recombination in human meiosis. 

Alu repeats represents over 10% of the mass of the human genome (Lander et al., 2001), but repeat density 
varies greatly. Evidence has been presented in yeast that retrotransposable elements may aid in healing 
chromosomal breaks via homologous recombination (Moore & Haber, 1996). In addition to the potential impact of 
Alu element insertions, it has been shown that the abundance of Alu-elements provides several opportunities for 
unequal homologous recombination to cause disease (Deininger & Batzter, 1999). Moreover, Rudiger et al. (1995) 
have shown that a 26 bp region of Alu (the Alu-core) is associated with both homologous and non-homologous 
recombination breakpoints. Since then, a number of studies have reported the involvement of Alu-Alu 
recombination in causing cancer as well as in germ-line disease including α-thalassaemia (α-globin) (Harteveld et 
al., 1997), hypercholesterolemia (LDLR), Ehlers-Danlos syndrome (Lys hydroxilase), thrombophilia 
(antithrombin); (reviewed in Deininger & Batzer, 1999), Lesch-Nyhan syndrome (HPRT) (Tvrdik et al., 1998), 
hereditary non polyposis colorectal cancer (mismatch repair MLH1) (Viel et al., 2002) and Ewing’s sarcoma gene 
(EWS) (Zucman-Rossi et al., 1997) among other Alu-rich genes, in which Alu-Alu recombination is frequently 
involved in causing disease. To our knowledge, these studies have never focused on the extent and type of 
sequence identity among the Alu-homologs involved. Most of these studies found a relatively short tract of 
sequence identity (often reduced to the Alu-core or a subsequence of it) to which the single CO could be narrowed-
down; or alternatively, full-length Alu-copies with a high degree of homology (> 90-95%). Under the hypothesis 
that the full-length Alu-partners play the leading role in promoting the recombinogenic event; with 86% of 
sequence identity through 292 bp and 3 gaps of different length, our patient demonstrates how quite divergent 
copies of Alu can still recombine using the homologous recombination mechanism (Fig. 3). Seventeen of 38 of the 
single-base mismatches between the Alu-sequences from IVS3 and IVS10 were related to CpG dinucleotides, thus 
reinforcing the observation that this is the main mechanism of sequence divergence and helps to prevent aberrant 
unequal rearrangements between duplicons (Kricker at al, 1992). However, the case reported here demonstrates 
that Alu sequences divergences (average homology among old Alu-subfamilies in the human genome is 81% 
overall), is unable to completely abolish events of unequal homologous recombination. On the other hand the 
possibility that the CO event was mediated entirely by the sequence identity provided by the Alu-core (embedded 
in zone II, Fig. 3) as has been observed by others (Vidal et al., 2002) cannot be dismissed.  
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Lopes et al. (1999) provided robust evidence associating the homologous DNA exchange in humans with the 
yeast double-strand break repair (DSBR) model (Szostak et al., 1983). This model provides the theoretical 
background to explain a hallmark associated with this specific EX4_EX10del cross over; a short stretch of 
sequence conversion probably confined to zone IV (Fig. 3). In the context of meiotic homologous recombination, 
the association of CO with a tract of gene conversion is not uncommon (Borts & Haber, 1989). Although less 
likely, alternative predictions can be made to explain the deletion's origin (Fig. 3). In the DSBR model for 
homologous recombination, the CO may occur by resolution of two Holliday junctions, and the gene conversion 
may arise either obligated within the region of the gap produced by extension of the double-strand break, or 
facultative, by the repair of DNA heteroduplex intermediates formed at either side of the gap (Sztosak et al., 1983). 
This model provides a likely explanation for IVS10 specific sequence embedded into a tract of IVS3 sequence. 
Several studies have indicated that Alu-elements, as well as other mobile elements, undergo a large amount of gene 
conversion (Deininger & Batzer, 2002). Although associated with unequal CO, the stretch of sequence from one 
parental Alu-element between two DNA segments from the other parental Alu observed in the EX4_EX10del; may 
be added as further indirect evidence of the phenomenon of Alu gene conversion already mentioned.  

At the clinical level, the deletion reported here causes severe HA associated with the most serious complication 
for HA therapy, the development of inhibitory antibodies directed against therapeutic FVIII. The analysis of the 
HA mutation database permits the assignment of the highest risk of inhibitor development to patients with partial 
deletions involving more than one F8 exon (67%) (Goodeve et al., 2003). As predicted, our proband has developed 
an inhibitor. 

The common involvement of unequal recombination among homologs as a cause of disease points to the utility 
of performing DNA sequence-alignments as these may provide accurate predictions for the bench experiments. 
Inspection of flanking intron sequence in other patients with partial F8 deletions may also suggest involvement of 
Alu sequences in the mutations. Design of deletion specific primers based on such prediction may enable deletion 
specific amplification analysis, which is particularly important for carrier diagnosis in female relatives of the 
patient. Our data support the hypothesis that unequal recombination of homologous Alu-related sequences in F8 
may be an important cause of HA by promoting large partial deletions. Large deletions involved in hemophilia 
may therefore originate by an Alu-mediated homologous mechanism (Vidal et al., 2002; this study) as well as by 
non-homologous recombination (Wood-Samuels, 1990; Shibata et al., 2000). 
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