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The relation between large-scale brain structure and function is an outstanding open problem in

neuroscience. We approach this problem by studying the dynamical regime under which realistic

spatiotemporal patterns of brain activity emerge from the empirically derived network of human brain

neuroanatomical connections. The results show that critical dynamics unfolding on the structural

connectivity of the human brain allow the recovery of many key experimental findings obtained from

functional magnetic resonance imaging, such as divergence of the correlation length, the anomalous

scaling of correlation fluctuations, and the emergence of large-scale resting state networks.
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Understanding the relation between brain architecture and
function is a central question in neuroscience. In that direc-
tion, important efforts over recent years have been devoted
to map the large-scale structure of the human cortex, includ-
ing attempts to build brain structural connectivity matrices
from imaging data. An example is the connectivity matrix of
the entire human brain, recently derived from fiber densities
measured between a large number (500–4000) of homoge-
neously distributed brain regions [1]. This and related work
encompasses a large collaborative project dubbed the brain
‘‘connectome’’ [2], whose ultimate goal is to understand in
detail the architecture of whole-brain connectivity. However,
‘‘like genes, structural connections alone are powerless";
thus, "the connectome must be expressed in dynamic neural
activity to be effective in behavior and cognition’’ [3]. The
results presented in this Letter show that very relevant
aspects of brain dynamics can be predicted from the struc-
ture provided that the underlying dynamics are critical.

To guide our comparison with available experimental
results, we choose to concentrate on robust findings con-
cerning brain dynamics. Specifically, we ask how sponta-
neous brain dynamics at the large scale organize into the
relatively few spatiotemporal patterns revealed experimen-
tally in recent years [4]. This is important because a wide
range of experiments using functional magnetic resonance
imaging (fMRI) has emphasized that these spatial clusters
of coherent activity, termed resting state networks (RSN)
[5], are specifically associated with neuronal systems re-
sponsible for sensory, cognitive, and behavioral functions
[6]. Furthermore, the pattern of correlations in these net-
works has been shown to change with various cognitive
and pathophysiological conditions [4]. Of interest here are
studies showing that the RSN activity exhibits peculiar
scaling properties, resembling dynamics near the critical

point of a second order phase transition [7–9], consistent
with evidence showing that the brain at rest is near a
critical point [10]. These empirical findings are in line
with computational modeling results [11–13].
Here we study whether a simple dynamical model run-

ning over the empirical structure of neuroanatomical con-
nections [1] suffices to replicate the aforementioned
fundamental features of spontaneous brain activity repeat-
edly seen in fMRI experiments. The model consists of a
network of interconnected nodes (i.e., the connectome),
together with a dynamical rule. The matrix of connections
follows the neuroanatomical connectivity described
recently by Hagmann et al. [1], who studied healthy human
subjects and reported the average fiber tract density
between any two brain areas (from a gray matter parcella-
tion into 998 areas). To complete the model we need to
specify the dynamics of each node. For simplicity, we
choose discrete state excitable dynamics following the
Greenberg-Hastings model [14]. Thus, each node is
assigned one of three states: quiescent Q, excited E, or
refractory R, and the transition rules are (1) Q ! E with a
small probability r1 (�10�3), or if the sum of the connec-
tion weightswij with the active neighbors (j) is higher than

a threshold T, i.e.,
P

wij > T, otherwise Q ! Q,

(2) E ! R always, and (3) R ! Q with a small probability
r2 (�10�1) delaying the transition from the R to the Q
state for some time steps. We held fixed parameters r1 and
r2, which determine the time scales of self-excitation and
of recovery from the excited state, respectively, and
changed T. For the numerical analyses, the time series of
each node was binarized by assigning state E ¼ 1 and the
remaining states into 0’s and convolved with a standard
hemodynamic response function [15] mimicking the brain
neurometabolic coupling.
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As depicted in Fig. 1, the dynamics of the model show a
transition as a function of the threshold T. For relatively
small values of T even the weakest connections are enough
for the activity to spread, resulting in a regime with a
relatively high activity level. On the contrary, for high
values of T the activity only flows through the few stron-
gest connections and therefore the overall activity
decreases. To characterize the transition between these
regimes an order parameter was defined considering the
sizes of the active clusters. Clusters are groups of nodes
simultaneously activated and linked to each other through a
nonzero w. At each time step the sizes of the largest cluster
(S1) and the second largest cluster (S2) were computed.
These calculations [see panel (c) of Fig. 1] unveil a tran-
sition between a phase in which a giant cluster covers
�15% of the system (while the second largest cluster is
of negligible size) and another phase in which only scarce
activations occur and the nodes fail to coalesce into large
clusters. At an intermediate value, a critical point [Tc in

panel (c) of Fig. 1] can be identified by the peak in the size
of the second largest cluster, as done usually in percolation
[16] as well as recently in human fMRI experiments [10].
The finite size of the available connectome makes the usual
demonstration of criticality in the thermodynamical limit
impractical; thus, a range of alternative indicators is pro-
vided instead (see also the Supplemental Material [17]).
We compare now the dynamics of the model with pre-

vious experimental results, in particular, with two robust
features exhibited by the spontaneous activity of human
brain RSN [18]: (1) the correlation length of brain activity
increases with size (as expected by the divergence of the
correlation length), and (2) the variance of the short-term
correlations between pairs of brain sites remains high,
independently of the number of pairs considered. Since
these two properties are often seen as generic features of
criticality, we decided to explore first whether the model
exhibits similar dynamics. To compare with the experi-
mental results, each node of the model was labeled as
belonging to the closest human RSN by matching the
node’s coordinates provided by Hagmann et al. [1] with
a spatial mask of the RSN [5,18]. Nodes that were farther
than 1 cm from the closest RSN were discarded from the
analysis (see the Supplemental Material [17]).
Divergence of the correlation length.—The correlation

length represents the average distance at which two points in
the system behave independently, and is known to diverge at
criticality [19]. Following a standard procedure [18,19],
we computed the average correlation function of the signal
fluctuations between all pairs of nodes in each cluster
which are separated by a distance r, yielding the correlation
function CðrÞ (see the Supplemental Material [17]).
Figure 2(a) corresponds to the two-point correlation

function as a function of distance for all cluster
sizes obtained experimentally and in the model at Tc.
Figure 2(b) shows the dependence of � with the cluster
size N. Both numerical estimations clearly show that near
Tc the divergence of the correlation length found in the
experiments [18] is reproduced by the model.
Temporal fluctuations of the mean correlation in the

RSN.—As recently shown in Ref. [18], the time evolution
of the correlation within these patterns exhibits bursts of
high correlation intermixed with instances of discoordina-
tion. Figure 3(a) shows examples of the fluctuations in the
short-term mean correlation hCi between all pairs of nodes
within a given cluster, in this case calculated in nonover-
lapping time windows of 10 steps. At the critical state, the
variance of hCi is of the same order as observed in the
experiments for different cluster sizes. Figure 3(b) shows
the dependence of the fluctuations in hCi with the cluster
size N. At the subcritical regime the fluctuations decrease
as 1=N, which reveals the asynchrony of the active nodes.
On the other hand, at the critical state they remain approxi-
mately constant, similar to what is observed in experi-
mental fMRI data [18]. In the supercritical regime, the

(a)

(c)

(b)

(d)

FIG. 1 (color online). The model. Panel (a) shows the model
adjacency matrix (i.e., the connectome) and panel (b) the edge
weights distribution. Data obtained from the white matter tracts
connecting a parcellation of 998 nodes covering the entire human
brain [1]. RH and LH refer to the right and left brain hemisphere,
respectively. Panel (c) shows the giant cluster’s size, (i.e., the
order parameter, S1, solid line) and the second largest cluster’s
size (S2, dashed line) as a function of the threshold T (control
parameter) as well as the critical point Tc � 0:05. Panel
(d) illustrates examples of clusters (denoted with different colors)
at the three T values denoted with the filled circles in panel (c).
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vanishingly low level of activity prevents high correlations
and therefore the fluctuation amplitudes are close to zero
for all cluster sizes. To compare with the experimental
human fMRI data, we computed the root mean square
distance between the model (m) and the experimental

data (e) as � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Nc
ð�ðeÞ

hCi � �ðmÞ
hCi Þ2=Nc

q
, where the sum

is over all clustersNc. Figure 3(c) shows that the distance is
minimum precisely at the critical point of the model.

RSN spatial patterns emerge only at criticality.—One of
the most revealing features of large-scale spontaneous
brain activity is its spatial organization into RSN. Their
functional relevance is highlighted by the fact that the
spontaneous activity closely parallels brain activation pat-
terns seen during task execution [6]. We studied whether
these patterns can be seen in the model using the same
methods employed to reveal RSN in experimental data
[independent component analysis (ICA)] as implemented
in the FSL MELODIC software [20]. First, we identified the
cortical locations of the model’s 998 nodes, by parcellating
the brain gray matter in cortical patches via a random
growth algorithm (see the Supplemental Material [17]).
Then the model time series of each region of interest was
assigned to the corresponding parcellation patch (plus
Gaussian noise of 0.15 times the variance of the signal),
and an ICA decomposition into eight independent compo-
nents was done (100 trials for each T value). For each T,
we computed the maximal spatial correlation between the
location of the model ICA components and the spatial
maps of a set of well-established human RSN [5]. The
statistical significance of these findings was explored by
computing T statistics against a null hypothesis con-
structed with a randomized version of the connectome. In

all cases, the model dynamics near Tc best replicates the
empirical findings (see Fig. 4). This implies that the RSN
coordinated spontaneous activity unfolds at the same ana-
tomical locations both in the human brain and in the model
close to Tc, something already evident by visual inspection
of the patterns presented in Fig. 4.
Discussion.—This is the first demonstration that a hybrid

modeling approach (realistic anatomical connectivity plus
a simple dynamical rule) suffices to capture relevant spa-
tiotemporal aspects of brain dynamics, provided that the
dynamical regime is critical. These aspects include generic
features of critical systems, but also the emergence of
structures having a well-established neurobiological mean-
ing, namely the cortical RSN. While experimental evi-
dence for the aforementioned signatures of criticality in
brain systems had already been discussed [8], here we
made a stronger point: in the model, the critical regime
appears as a necessary condition for the emergence of
neurobiologically relevant aspects of brain dynamics.
Our result also represents an important first step in the
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FIG. 3 (color online). The short-term correlation hCi in the
model at Tc exhibits transient fluctuations at all cluster sizes as
seen in human brain data [17]. Panel (a) shows examples of hCi
fluctuations for three cluster sizes N at critical (Tc) and sub-
critical (T < Tc) dynamical regimes of the model, as well as for
the human brain data (Exp). Panel (b) shows that the variance
of the fluctuations in hCi remains approximately constant only
for the human brain data (black circles) and for the model at Tc

(red circles). For T < Tc (blue circles) the variance decreases
faster with N. The three small arrows denote the sizes used in the
examples of panel (a). Panel (c) shows a plot of the distance
between the scaling of the fluctuations of the human fMRI data
and those from the model for a wide range of T. Notice that the
best agreement occurs for Tc. Filled circles in panel
(c) correspond to the Tc and T < Tc. values used in panels (a)
and (b).
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FIG. 2 (color online). The correlation length � of the activity
in the model near Tc increases with the cluster size (N), as
reported for human brain data [17]. Panel (a) shows the corre-
lation function CðrÞ computed from human data (Exp) and from
the model at Tc (colored lines are used for the different clusters).
The correlation length � is the distance r where CðrÞ ¼ 0, (range
denoted with the arrows). Panel (b) shows the � values for the
functions plotted on panel (a), demonstrating that �� N1=3

(dashed line), both in the experiment and model data.
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direction of realistic hybrid computational modeling of
large-scale brain function both in health and disease. As
an example, many altered brain states are associated with
RSN alterations, a prominent example being the loss of
consciousness in the comatose state [21]. In light of the
present results such brain state alterations can be regarded
as a displacement from an optimal dynamical point.

Summarizing, the results show that by endowing with
critical dynamics the brain network of anatomical connec-
tions (or connectome), key observations about brain

dynamics can be replicated. These results contribute to
close the gap between structural and functional network
connectivity in the human brain, by emphasizing the dy-
namical regime at which models should predict a wide
range of observations about large scale brain function.
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FIG. 4 (color online). The spatial organization of the human
brain RSN (left column) emerges spontaneously in the model
near Tc. RSN obtained from the model with ICA (averaged
across all trials) are shown for three values of T: T < Tc

(0.03), T > Tc (0.1), and the correlation maxima with the human
RSN from Ref. [5] (‘‘fMRI’’), which is always �Tc (filled
circle). Right column, tðW �WrandÞ, shows the T statistic for
the difference in the correlations between the model using the
connectome and a randomized version. The dashed horizontal
line indicates the level of p < 0:001, corrected. In the insets, the
mean spatial correlation hri is shown for the real (black) and
randomized (red) connectomes as a function of T. Medial visual
(VisM), lateral visual (VisL), auditory (Aud), sensory motor
(SM), default mode network (DMN), executive control (EC),
dorsal visual stream left (DorL), and right (DorR). Numbers
beneath each brain slice denote its horizontal coordinate.
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