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Spectral method simulations show that undriven magnetohydrodynamic turbulence spontaneously
generates coherent spatial correlations of several types, associated with local Beltrami fields, directional
alignment of velocity and magnetic fields, and antialignment of magnetic and fluid acceleration com-
ponents. These correlations suppress nonlinearity to levels lower than what is obtained from Gaussian
fields, and occur in spatial patches. We suggest that this rapid relaxation leads to non-Gaussian statistics
and spatial intermittency.
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Two central features of magnetohydrodynamic (MHD)
turbulence are generally studied independently: the pro-
duction of intermittency and the appearance of distinctive
states associated with turbulent relaxation. It is, for ex-
ample, well known that the random phase approximation
fails as a turbulence description in that it cannot produce
non-Gaussian statistics, such as high kurtosis of vorticity
and current, multifractal scaling of moments, and other
signatures of intermittency [1]. On the other hand, MHD
relaxation theory has led to notable successes associated
with Taylor relaxation, selective decay, global dynamic
alignment, and helical dynamo action [2–5]. Relaxation
is most often viewed as a long-time consequence of mul-
tiple global ideal conservation principles, or global max-
imization of entropy. In a few cases [6,7], relaxation has
been shown to act locally and rapidly, with clear conse-
quence for the statistics of the turbulence. Here, we further
explore several rapid relaxation processes which are nec-
essarily local and that occur rapidly and simultaneously.
These lead to force free magnetic fields, directionally
aligned velocity and magnetic fields, anticorrelation be-
tween advection and Lorentz forces and between magnetic
acceleration components. The net effect in all cases is a
reduction of the strength of nonlinearity to levels substan-
tially below that associated with uncorrelated Gaussian
primitive fields.

Previous studies of incompressible hydrodynamic (NS)
turbulence demonstrate that nonlinear evolution leads to
aligned velocity (v) and vorticity (!) fields in regions of
low dissipation [6–8]. Subsequent study [6] revealed that
this alignment is associated with systematic depression of
the strength of nonlinear couplings relative to values ob-
tained with a Gaussian-distributed velocity field having the
same velocity spectrum. Therefore, arguably the localiza-
tion of kinetic helicity due to this ‘‘beltramization’’ [6,7,9]
is related to coherent structure formation and to small-scale
intermittency [10].

Study of the analogous effects in MHD involves both
velocity v and magnetic b fields and therefore additional

possibilities for correlation and suppression of nonlinear-
ity. In 3D MHD, the Beltrami property of both v and b can
be obtained by variational principles that were previously
applied to long-time (many turnover times) global relaxa-
tion processes [5]. Minimum energy states [4], for 3D
spatially periodic MHD, are determined from the varia-
tional problem

 �
Z
��jvj2 � jbj2� � 2�v � b��a � b�d3x � 0 (1)

where � and � are Lagrange multipliers (for the simplest
case taken as constants), a the potential vector, and b �
r	 a. This equation minimizes incompressible energy
E � hjvj2 � jbj2i=2 while holding constant the magnetic
helicity Hm � ha � bi and cross helicity Hc � hv � bi.
Here, h. . .i denotes a spatial average. The kinetic helicity
Hv � hv �!i is not conserved in ideal MHD and is there-
fore not constrained. The Euler-Lagrange equations imply
in the relaxed state that

 v � �b �
��1� �2�

�
j �

1� �2

�
!: (2)

A special case is the well-known and entirely magnetic
Taylor relaxed state [2], which is ‘‘force free’’ in that v �
0 and the electric current density j � r	 b is parallel to
b. When cross helicity is nonzero, Eq. (2) implies that v �

0, and an Alfvénic solution is described. In this case, the
resulting field need not be force free. Globally aligned and
equipartitioned Alfvénic states are sometimes approxi-
mately realized in the solar wind plasma [11].

Why should such states emerge? From the perspective of
turbulence theory, Taylor states and their generalizations
emerge dynamically as a consequence of relaxation pro-
cess known as selective decay [5] and dynamic alignment
[12]. In this view, constrained energy minimization provide
a means, based on the budgets of conserved quadratic ideal
invariants, to characterize dynamical evolution toward pre-
dictable long-time states [4]. For homogeneous MHD,
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turbulence simulations show that a balance is achieved
between these two relaxation processes. The result is that
the magnetofluid evolves toward long wavelength states
dominated by magnetic (possibly helical) excitations in
which v and b are also highly correlated [4,5]. Typically,
global relaxation requires many nonlinear eddy turnover
times. Steady, driven MHD also shows alignment at small
scales [13].

There has been, prior to this time, little suggestion of the
relevance of the above global relaxation picture to turbu-
lence evolution at shorter time scales. Recently, however, it
has been shown that local directional alignment of velocity
and magnetic fluctuations occurs rapidly in MHD for a
variety of parameters in direct numerical simulations and is
also seen in solar wind data [14]. Here, we look for rapid
relaxation associated with correlations and directional
near-alignments of several types. All of these are found
to occur in less than one turnover time. These processes
suppress nonlinear MHD couplings and need not be asso-
ciated with global alignment, but rather occur indepen-
dently, rapidly, and in spatial patches.

We study numerical solutions of the equations of MHD
in dimensionless variables

 

@v
@t
� v	!� j	 b� rP
 � R�1

� r
2v

@b
@t
� �b � r�v� �v � r�b� R�1

� r
2b;

(3)

where r � b � 0, and R� and R� are kinetic and magnetic
Reynolds numbers. The kinetic pressure P
 � p� �v2=2�
maintains the incompressibility constraint r � v � 0. We
employ direct undriven Fourier pseudospectral [15] simu-
lations of Eqs. (3) using triply periodic boundary condi-
tions (side 2�L), 1283 resolution, and R� � R� � 400.
The scheme ensures ideal continuous time conservation of
E,Hm, andHc. The initial fluctuation amplitudes for v and
b have equal mean square values normalized to 1, are
nonzero in the wave number shell 1 � kL � 4, and have
random phases. The initial Hc, Hv, and Hm are small.
Results with nonzero helicities will be presented at a later
time.

Our approach parallels studies [6] of suppression of
nonlinearity in NS turbulence. We compute the distribu-
tions (PDFs) of the angle

 cos� �
f � g
jfjjgj

(4)

where ff;gg represents one of fv; bg, fv;!g, fj; bg, and
fj;!g. In Fig. 1, these four PDFs are shown. The initial
Gaussian distribution with null (net) helicities corresponds
to imposing a flat initial distribution of Eq. (4). Quickly, as
the nonlinearity develops, strong alignments appear. These
aligned (antialigned) fields correspond to a beltramization
of the magnetofluid, similar to the NS case. Even though
global helicities remain small, the magnetofluid locally

self-organizes into patches (not shown here) which contain
several types of correlations.

The level of alignment can be explored by computing
the following quantities [6]:

 Cf;g �
hjf	 gj2i
hjfj2ihjgj2i

; Df;g �
hjf � gj2i
hjfj2ihjgj2i

: (5)

By randomizing the fields f and g with Gaussian distribu-
tions while retaining the same (average) spectrum, we
arrive at the corresponding ‘‘Gaussianized’’ fields fG and
gG. Then we can compute D0f;g � Df;g=DfG;gG which is a
measure of the degree of alignment with respect to the
phase-randomized reference field. Analogously, we com-
pute C0f;g � Cf;g=CfG;gG . The time behavior of C0 and D0

for several field couples is shown in Fig. 2. The level of
alignment is different for each set of fields: It is stronger for
fj; bg and for fv; bg compared to fv;!g. The stronger
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FIG. 1 (color). PDF of Eq. (4) for the sets of fields: fv;bg (red),
fv;!g (green), fj;bg (blue), fj;!g (pink). The PDFs are eval-
uated at t � 2:0�A (Alfvèn time �A).
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FIG. 2 (color). Time history of the ratio of the alignment
measures to their Gaussian values, D0f;g � Df;g=DfG;gG and
C0f;g � Cf;g=CfG;gG (see text) for ff;gg � fv; bg, fv;!g, fj; bg.
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correlations are those related to quantities (Hm andHc) that
are conserved by nonlinear activity apart from transport
across internal boundaries.

Increased probability of occurrence of Beltrami correla-
tions ( cos� � �1) appears to be associated with rapid
adjustments of the turbulence that occur as a response to
nonlinear forces, leading to regions in which the nonlinear
term has become suppressed and the energy cascade has
become inhibited [8]. Alignment is not destroyed in these
regions in part because of the conservation of Hm and Hc.
On the other hand, for MHD, Hv is not conserved, and
consequently the level of alignment of fv;!g, in contrast
with the NS case, is small, while alignments of fj; bg and of
fv; bg (and indirectly fj;!g) are maintained at larger
levels.

We also look at balance between advection FA � �v	
!�
 and Lorentz FL � �j	 b�
 forces. (The asterisks 

denote the solenoidal part, obtained by k-space projection.
This eliminates forces that are cancelled by the pressure
term.) A similar analysis is performed for the magnetic
accelerations Fb1 � ��b � r�v� and Fb2 � ��v � r�b�.
Several variations of this analysis, not shown, provide
similar results. The hypothesis outlined above, that rapid
adjustments reduce accelerations, can be further explored
with regard to these terms. Figure 3 shows that these
contributions to the momentum and magnetic accelerations
become strongly antialigned. This phenomenon, that we
named secondary alignment, is manifest in strongly
skewed PDFs of FA � FL and Fb1 � Fb2. This is another
signature of the cancellation of accelerations, or suppres-
sion of nonlinearity, following Kraichnan’s terminology.
Indeed, from Eqs. (3), the production of local Beltrami
flows, along with the emergent anticorrelation of accelera-

tion components, causes a reduction of (generalized) ac-
celeration, as we now show.

To quantify suppression of nonlinearity in the momen-
tum and the magnetic induction equations, we introduce

 Q�

��������������������������
hjFA�FLj2i

p
���������������
hjFAj2i

p
�

���������������
hjFLj2i

p ; M�

�������������������������������
hj�Fb1�Fb2j

2i
p
����������������
hjFb1j

2i
p

�
����������������
hjFb2j

2i
p ;

(6)

where we use simple geometric considerations to define
these diagnostics: jQj � 1 and jMj � 1 by a triangle in-
equality. We computed the ratios Q0 � Q=QG and M0 �
M=MG in analogy to the discussion following Eq. (5). QG
and MG are computed from Eq. (6) using the correspond-
ing Gaussianized fields. We do not include viscous or
resistive dissipation in the above diagnostics as these can
modify wave number spectra, but cannot introduce phase
correlations of the type responsible for the observed align-
ments. As reported in Fig. 4(a), the strength of momentum
and magnetic nonlinearities are reduced to 86% and
92%, respectively, of their Gaussianized values. In both
cases, the ratio decreases and reaches a minimum after
’0:7�A. An analogous minimum (peak) is observed in the
antialignment of fFA;FLg and fFb1;Fb2g. In Fig. 4(b), the
skewness as a function of time, for PDFs of Fig. 3, is
reported. The skewness is maximum simultaneously with
the level of the depression, and there is a suggestion of a
major contribution to the suppression from the secondary
alignment.

In order to show the direct relation between this sup-
pression of nonlinearity and intermittency, we computed
time histories of the kurtosis of the electric current density
(Kj) and the vorticity (K!). In Fig. 4(c), the values of Kj
and K!, evaluated for the x component, are shown.
Because of the isotropy of the system, all components
have the same behavior. This quantity is an elementary
measure of the degree of the intermittency of the system.
The skewness and the mean accelerations have peaks at
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FIG. 3 (color). PDFs normalized to the rms value for:
(a) ‘‘FA � FL,’’ (b) ‘‘Fb1 � Fb2,’’ at t � 0 (red) and t � 0:7�A
(green).
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more or less the same time, suggesting that the degree of
beltramization is strongly related to the appearance of
intermittent structures. The interpretation is that the emer-
gence of alignment, the Beltrami property and cancellation
leads rapidly to local regions in which the nonlinearity is
weak, thus concentrating nonlinear stresses near bounda-
ries of these regions. The release of these stresses near the
patch boundaries is associated with generation of small-
scale gradients, e.g., current or vortex sheets, which more
or less define these sharp boundaries, providing signa-
tures of intermittency. Thus, rapid relaxation leads to sup-
pression of nonlinearity and also to the generation of
intermittency.

We conclude that the nonlinear dynamics of decaying,
isotropic, 3D incompressible MHD leads spontaneously to
a complex picture where several kind of alignments appear.
MHD turbulence produces a hierarchy of several rapid,
local relaxation processes, favoring states having strong
alignments or antialignments between fv; bg (Alfvénic
states), fj; bg (force free), fj;!g and more weakly fv;!g.
This process is not related directly to long terms relaxation
processes, since, even if the global alignment is null (Hc �
Hv � Hm ’ 0), the distribution of the cosine of the angle
between these quantities becomes rapidly peaked near�1.
Moreover, we found an additional local relaxation that also
reduces the strength of nonlinearity—that is, a high level
of cancellation between fluid accelerations produced by
mechanical and magnetic stresses, and between magnetic
accelerations produced by advection and field line stretch-
ing. Clearly, the multiplicity of nonlinear terms in MHD
tends to a self-organization in such a way that the total
forces are strongly damped and, consequently, the ampli-
tude of accelerations reduces drastically. The level of
depression is different for Q and M. This phenomenon
may be related to the tendency of MHD to produce a
high level of magnetic energy relative to kinetic energy
[4]. In our simulation, the Alfvènic ratio Ev=Eb reduced
from one (at t � 0) to ’ 0:65 (at t � 2�A).

The production of these spatial patches of correlations
and anticorrelations requires that the statistical distribution
of velocity and magnetic field become non-Gaussian, in
particular, because each type of relaxation requires that at
least the fourth order correlations become non-Gaussian.
Our conclusion is that this multifaceted rapid relaxation is
intimately related to the formation of spatial intermittent
structures. A simple real space picture emerges: when
patches of suppression of nonlinearity are formed, the
fourth order statistics become non-Gaussian, as the gra-
dients become concentrated along boundaries of the
patches. For example, two regions can become approxi-
mately force free, but the boundary between them will not
be force free [16]. Localized nonlinear couplings can
further enhance gradients in these boundary regions.
Magnetic reconnection is one example of the type activity
that can occur at these boundaries. We therefore suggest
that the key to understanding intermittency statistics in

MHD may be to further understand how rapid suppression
of nonlinearity occurs. For example, it may be possible to
represent such patchy relaxation by revisiting solutions to
Eq. (1) with space-dependent Lagrange multipliers.

Further numerical and analytical work is required to
understand the level of suppression of nonlinearity, and
how this might vary with turbulence parameters, for ex-
ample, with the Alfvèn ratio, the Reynolds numbers, and
the presence of forcing. We also suspect that arguments
might be developed, perhaps based on a local entropic
principle, in which relaxation along the lines of Eq. (1)
emerges locally. Recognition of these rapid forms of local
MHD relaxation will likely lead to further insights into the
dynamical evolution of MHD turbulence, as well as the
nature of intermittency in the evolution of strongly dy-
namical fluid plasmas in space and astrophysics.
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