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ABSTRACT. We investigate the connections between Weyl-Titchmarsh—
Kodaira theory for one-dimensional Schrédinger operators and the theory of
n-entire operators. As our main result we find a necessary and sufficient con-
dition for a one-dimensional Schrédinger operator to be m-entire in terms of
square integrability of derivatives (w.r.t. the spectral parameter) of the Weyl
solution. We also show that this is equivalent to the Weyl function being
in a generalized Herglotz—Nevanlinna class. As an application we show that
perturbed Bessel operators are n-entire, improving the previously known con-
ditions on the perturbation.

1. INTRODUCTION

The Weyl-Titchmarsh-Kodaira theory for a self-adjoint operator H associated
with the differential expression

d2
(1.1) Ti= o +q(z), —-co<a<b< oo,
where the potential ¢ is real-valued and satisfies
(1.2) q € Liye(a,b),

has been an active and alluring subject of research for a long time, particularly
nowadays. The current interest concerns the case where both endpoints are gener-
ically singular. Recent developments show that, under a necessary and sufficient
additional condition on g(x) (see Hypothesis [Il below), there exists an entire sys-
tem of fundamental solutions ¢(z, z), 8(z, z) of the equation T7¢ = zp such that the
Wronskian of these two solutions equals one, and one of the solutions (say ¢(z,x))
is in the domain of H near the left endpoint. A singular Weyl function M(z)
(associated with the left endpoint) is then defined as a function that makes

(1.3) P(z,x) :=0(z,2) + M(2)d(z, x)

be in the domain of H near the right endpoint (more details are accounted for in
the next section). As in the regular case, M(z) encodes all the spectral information
related to H. However, contrary to the regular case, there is not a natural choice
of normalization for the entire system of fundamental solutions and, therefore, the
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singular Weyl function M (z) does not generically belong to a particular class of
functions as in the regular case.

This indeterminacy has been overcome for the class of perturbed spherical
Schrodinger operators (also known as Bessel operators), a class of operators that
has attracted considerable interest recently; see for example [ILBH5L7HI7,19]. For
this class of operators, and assuming some mild additional conditions on ¢(x), a
technique for constructing the system of fundamental solutions ¢(z, x), 8(z, x) based
on the Frobenius method has been proposed as the natural choice. In particular, it
has been proved that in this case, M (z) belongs to a specific class of the generalized
Nevanlinna functions N°.

In this paper we address the issue of elucidating some properties of M(z) and the
singular Weyl solution 9 (z, z) given in (3] from a different perspective, although
restricted to the cases where H has only discrete spectrum. Here we consider H
as a self-adjoint extension of some symmetric, regular (hence completely non-self-
adjoint) operator A with deficiency indices (1, 1) (for all of the technical definitions
see Section B). Among these operators there exists a distinguished class, the so-
called n-entire operators [20], defined by the condition

H =ran(A — zI) + span{po + zp1 + - -+ 2"pn}, 2z €C,

for some fixed po,...,pun € H; here H stands for the Hilbert space in which A
is defined. As discussed in [20], every n-entire operator can be unitarily trans-
formed into the operator of multiplication by the independent variable acting on a
de Branges space B4. Moreover, B4 is such that the linear manifold assoc,,(5B4)
of n-associated functions contains a zero-free entire function. On the basis of this
setup, we establish in this work an equivalence between (a) the operator A being
n-entire, (b) the (n — 1)-th derivative of the singular Weyl solution t(z, z) being
square integrable with respect to the spectral measure, and (c) the possibility of
choosing the solution (z,x) such that M(z) € N2°,. Precise formulations of this
assertion, tied to the fulfillment of an increasing number of technical conditions,
are given in Theorems .7 [£.9] and 101

Reciprocally, the connection between the Weyl-Titchmarsh—-Kodaira theory for
one-dimensional Schrodinger operators and the theory of n-entire operators can be
exploited in another direction, as it allows us to broaden the classes of differential
operators that are known to be n-entire. A first investigation of this matter has
been done in [2I], where it is shown that perturbed Bessel operators on a finite
interval are n-entire, with n given in terms of the angular momentum number,
provided that g(z) obeys a certain rather restrictive technical condition that arises
from the perturbation arguments used in that paper. As an application of the
results obtained in this work, we generalize the classes addressed in [21] by lifting
this technical restriction; this is asserted in Theorem E.I11

We conclude this introduction with an outline of this paper. All the relevant
aspects of the Weyl-Titchmarsh-Kodaira theory are reviewed in Section The
theory of n-entire operators as well as their connection with the theory of de Branges
spaces is briefly recalled in Section Bl Finally, Section [] contains the main results
of this work.

2. SINGULAR WEYL-TITCHMARSH-KODAIRA THEORY

One of our fundamental ingredients will be singular Weyl-Titchmarsh-Kodaira
theory and hence we begin by recalling the necessary facts from [I3]. Consider
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one-dimensional Schrédinger operators on L2 (a,b) with —oo < a < b < oo associ-
ated with the differential expression ([T]) with potential (I2]). We use H to denote
a self-adjoint operator given by 7 with separated boundary conditions at a and/or
b. For further background we refer to [22, Chap. 9] or [23].

As mentioned in the Introduction, to define the singular Weyl function at the,
in general singular, endpoint a, we need a fundamental system of solutions 6(z, x)
and ¢(z,x) of the equation 7¢ = z¢ which are entire with respect to z and such
that ¢(z, ) lies in the domain of H near a and the Wronskian

(2.1) W(0(2), ¢(2)) = 0(z, )¢ (2, 2) — 0'(z,2) (2, 7) = 1.

Recall that the Wronskian does not depend on x when its arguments are solutions
of the same equation. Thus, (ZI)) tells us that the function of z on the 1.h.s is
identically 1.

Denote the restriction of H to (a,c) with a Dirichlet boundary condition at ¢ by
H (?1 o e dom(H, (Da ’C)) consists of all functions which are restrictions of functions
from dom(H) to (a,c) and satisfy f(c) =0.

Lemma 2.1 ([13]). The following properties are equivalent:
(i) The spectrum of H(D(Lc) is purely discrete for some c € (a,b).
(i) There is a real entire solution ¢(z,x), which is nontrivial and lies in the
domain of H near a for each z € C.
(#ii) There exist real entire solutions ¢(z,x), 0(z,x) with W(0(z),#(z)) = 1,
such that ¢(z,x) lies in the domain of H near a for each z € C.

Thus, for dealing with the singular Weyl function M(z) as defined in the In-
troduction, it is necessary and sufficient that item (i) holds. This will be our first
hypothesis.

Hypothesis 1. Suppose that the spectrum of H(?l o) is purely discrete for one (and

hence for all) ¢ € (a,b).

Note that this hypothesis is for example satisfied if ¢(z) — 400 as z — a (cf.
Problem 9.7 in [22]).

Remark 2.2. Tt is important to point out that a fundamental system satisfying the
conditions we have imposed on ¢(z, z) and (z, z) is not unique and any other such
system is given by

g(z, x) = e_g(z)Q(z,az) — f(2)¢p(z, ), (E(z,ac) = eg(z)¢(2,x),

where f(z), g(z) are entire functions with f(z) real and g(z) real modulo iw. The
singular Weyl functions are related via

M(z) = e 29G M (2) +e 93 f(2).

The singular Weyl function M (z) is by construction analytic in C\R and satisfies
M(z) = M(z*)*. Recall also from [13, Lemma 3.3] that associated with M (z) there
is a spectral measure p given by the Stieltjes—Livsi¢ inversion formula

1 ™

(2.2) % (p((z0, 1)) + p([x0, 21])) = 161?01 = im (M (z + ie)) da.

In all assertions of this section Hypothesis [l is assumed.
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Theorem 2.3 ([10]). Define
c
Foo=tim [ 600 (@)
ctb Ja
where the right-hand side is to be understood as a limit in L*(R,dp). Then the map
(2.3) U:L*a,b) — L*(R,dp),  f+ [,

is unitary and its inverse is given by

T
~

f(x) = lim [ o(X, ) f(A)dp(N),

r—00 —r

where again the right-hand side is to be understood as a limit in L?(a,b). Moreover,
U maps H to multiplication by .

Remark 2.4. We have seen in Remark 2.2 that M (z) is not unique. However, given
M (z) as in Remark [22] the spectral measures are related by

dp(\) = e~ 29N dp(N).
Hence the measures are mutually absolutely continuous and the associated spectral

transformations just differ by a simple rescaling with the positive function e =29V,

Finally, M(z) can be reconstructed from p up to an entire function via the
following integral representation.

Theorem 2.5 ([13]). Let M(z) be a singular Weyl function and p its associated
spectral measure. Then there exists an entire function g(z) such that g(\) > 0 for
AER and e 9N € L2(R,dp).

Moreover, for any entire function §(z) such that g(A) > 0 for A € R and
(1 4+ X)71g\)~t € LY(R,dp) (e.g. §(2) = €*3)) we have the integral represen-

tation
1 A\ dp(N)
()\—z - 1+/\2) a0y 2 E G\,

where E(z) is a real entire function.

M) = BE) +30) |

R

As a consequence one obtains a criterion when the singular Weyl function is a
generalized Nevanlinna function with no nonreal poles and the only generalized pole
of nonpositive type at co. We will denote the set of all such generalized Nevanlinna
functions by N2° (see Appendix C in [I3] for a definition and further references).

Theorem 2.6 ([13]). Fiz the solution ¢(z,x). Then there exists a corresponding
solution 0(z,x) such that M(z) € N2° for some k < k if and only if (1+A2)~k~1 ¢
LY(R,dp). Moreover, k =k if k=0 or (1+X2)"% & LY(R, dp).

In order to identify possible values of k one can try to bound A~* by a linear
combination of ¢(\,x)? and ¢'(\,x)? which are in L'(R, (1 + A\?)~1dp) by [13]
Lemma 3.6].

Remark 2.7. Choosing a real entire function g(z) such that exp(—2g(\)) is inte-
grable with respect to dp, we see that

1
M(z) = 292 / e W dp(N) — B(2).
R —Z
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Hence if we choose f(z) = exp(—g(z))E(z) and switch to a new system of solu-
tions as in Remark 2.2] we see that the new singular Weyl function is a Herglotz—
Nevanlinna function

M) = [ L o2
M(z)f/R/\_Ze dp(N).

3. N-ENTIRE OPERATORS AND DE BRANGES SPACES

In a separable Hilbert space, let A be a closed symmetric operator with deficiency
indices (1,1) such that, for every z € C, there is a positive constant ¢, for which

(3.1) [(A=2Dfll z c.Ifll, V[ € dom(A).

The operator A is said to be n-entire (n € Z") if moreover there exist n+ 1 vectors
10y - - -5 by, € H such that

(3.2) H =ran(A — zI) + span{uo + zp1 + - + 2" pn}

for all z € C [20]. The operator A is called minimal n-entire whenever there is no
smaller n with this property. Notice that a necessary but not sufficient condition
for A to be minimal n-entire is that w, # 0.

To any closed symmetric operator A with deficiency indices (1, 1) satisfying (31]),
there corresponds a de Branges space B4 in which the operator becomes multipli-
cation by the independent variable [20]. Recall that a de Branges Hilbert space is
a linear manifold given by

(3.3) B := {F(2) entire : F(2)/E(z), F#(z)/F(z) € H*(C")}

with the inner product

(3.4) (G, F)y = %/ﬂ{%d%

where E(z) is in the Hermite-Biehler class, that is, an entire function such that
|E(2)] > |E(z*)]| for all z € C*. Above we have used the notation F'#(2) := F(2*)*.
A de Branges space is a reproducing kernel Hilbert space with reproducing kernel

FRRBW) - EQEA W)
K(z,w) = 27i(z — w*) ’ ’

% E# (2)E(z) — E'(2)E*(2)|, w=z".

For further details we refer to [6].
Given n € Z™, the set of n-associated functions is defined by

(3.5) assocy(B) :=B+zB+---+2"B.

Clearly, assoc, (B) C assocy,+1(B) for n € Z*. Also, it is straightforward to verify
that E(z) is in associ(B) but not in B [6].

Lemma 3.1 ([20]). The operator A is n-entire if and only if assoc,(Ba) contains
a zero-free function. Moreover, A is minimal n-entire if and only if, additionally,
no zero-free function lies in assoc,,(Ba) for every m < n.
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Theorem 3.2 ([20]). The following statements are equivalent:

(i) The operator A is n-entire.

(i1) Let Ag, and Ag,, B1 # B2, be canonical self-adjoint extensions of A (that
is, self-adjoint restrictions of A*). Set {z;}jen = {l”;_}jeN U{z; }jen =
o(Ag, ), where {x;' }tien and {x} }jen are the sequences of positive and non-
positive, respectively, elements of 0(Ag, ), arranged according to increasing
modulus. Then the following assertions hold true:

1
(C1) The limit lim Z — emists.

r—00 €T
0<la;|<r 7
R
(C2) lim —& = — lim “= < oo.
j—oo ] Jj—oo .

(C3) Assuming that {b;}nen = 0(Ag), define

z
lim 1—-— if 0 & o(Ap),
Hoolbl_llr ( b; 70 a(4p)
hg(z) = 7= .
zrlirgo H (1 — E) otherwise.
0<‘bJ‘ST‘
The series Z 1 18 convergent
;0 3" hp, ()1, () '

4. MAIN RESULTS

We begin this section by introducing and discussing a hypothesis that is used to
obtain the auxiliary results leading to the main results.

Hypothesis 2. (i) Suppose H has a purely discrete spectrum and let ¢(z,x),
X(z,x) be entire solutions such that ¢(z,x) is in the domain of H near a
and x(z,x) is in the domain of H near b. Abbreviate

(4.1) W (z) := W(¢(2), x(2))
which is of course also entire.
(ii) For every compact subset K of C x p(H), there exists F € L'(a,b) such
that
|¢(w, x)x (2, 2)| < F(x)
for every (w,z) € K.
(i) We have

lim Wa(6(w), x(2)) = W(z) and TmWs(é(w), x(2)) = W(w),
where the Wronskian here depends on x since ¢(w,x) and x(z,x) are so-

lutions of equations with different spectral parameters.

Item (i) above amounts to assuming that M (z), hence the Weyl solution #(z, z),
is a meromorphic function with (necessarily simple) poles at o(H). Thus, given an
entire function W(z) whose zero set includes o(H),

(4.2) X(z,x) = W(2)(z, )
is the entire solution that obeys (@IJ]). Note by the way that this item implies
Hypothesis [l
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The reason for Hypothesis 2l — in particular, items (ii) and (iii) — will become
clear later. For now we just point out that it holds for example if both endpoints
are in the limit circle case as can be seen from Appendix A in [I3] (for item (ii)
see the proof of Lemma A.3 and for (iii) use x(z,2) = W(x(2), ¢(2))0(z,z) —
W(x(2),0(2))o(z,x) plus Corollary A.4). In the general case we first show that the
items in the above hypothesis are not independent. Our first result exploits the

fact that

¢(z,2)x(2,7)
W(z)
is the diagonal of the kernel of the resolvent of H.

G(z,z,x) =

Lemma 4.1. Consider the condition

b
(4.3) / lo(z, z)x (2, z)|dx < oo

for some z € C.

(i) Assume that H is bounded from below. The inequality [@3)) holds for one
(and hence for all) z < inf o(H) if and only if (H —2)~! is trace class. In
this case we have

b
%/ ¢(z,2)x(z,z)de = tr((H — 2)7 ), 2 € p(H).

(i) If [@3) holds for one = € C\R, then it holds for all = € p(H) and (H—z)"1
is Hilbert—Schmidt.

Proof. (i) For z < inf o(H) the resolvent is a positive operator and hence the claim
follows from the lemma on page 65 in [I8, Section XI.4]. Conversely, if (H — z)~*
is trace class, then the above equality holds for all z € p(H) by Theorem 3.1 from
[2).

(i) That (H — 2z)~! is Hilbert—Schmidt follows from the proof of Lemma 9.12 in
[22]. The rest follows from the first resolvent formula which implies

b
G(z,z,y) — Glw,z,y) = (2 — w)/ G(z,z,t)G(w, t,y)dt. O

Corollary 4.2. Assume that H is bounded from below. Then assertion ([&3) holds
for one (and hence for all) z < inf o(H) if and only if o(H) obeys condition (C1)
of Theorem [3.21

The Lagrange identity implies
d
(w=2) [ ow,z)x(z.a)de = We((w, o). X(2,2)) = Wa((w.2). x(z,3)

for arbitrary a < ¢ < d < b. By item (ii) of Hypothesis 2 we can take limits ¢ | a
and d 1 b to obtain

b
(w - Z)/ P(w, 2)x(z, x)dr = Wa(d(w, 2), x(2, 7)) = We($(w, ), x(2, 2))

with both limiting Wronskians being entire functions of both z and w. Moreover,
note that W,(¢(w,z),x(z,2)) has the same zeros as W(z), and also
Wy(p(w, ), x(z,z)) has the same zeros as W(w). However, it is not immediate
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that there is always equality and hence we have imposed item (iii) of Hypothesis
which finally yields
~W(z) - W(w)

Z—w '

(4.4) /(wa (2, 2)dz =

In the limit w — z this gives

b d
[ etz is = - S

Next we want to relate this to Weyl-Titchmarsh-Kodaira theory from Section2 Of
course x(z, ) is related to the Weyl solution via (2] and we obtain the following
formula which will be crucial for us.
Lemma 4.3. Assume Hypothesis Bl and abbreviate

: I
D (z,z) = T’(/J(Z,JI).

2J

Then
(4.5) &/ o(w, 2)D (2, z)dx

Il — o\
=1- Z %Wb(qb(w,x),w(k)(z,x)).

k=0

Proof. The case j = 0 follows from (4] upon using ([£2). The case j > 1 follows
from induction by differentiation with respect to z. Note that by Cauchy’s integral
formula the derivatives w.r.t. z of x(z,z) also satisfy item (ii) of Hypothesis@ O

Note that when X is an eigenvalue we obtain:

Corollary 4.4. Assume Hypothesis Bl If\€o(H) and z € p(H), then

4!
Proof. The assertion for j = 0 follows from (@3 by taking into account that
Wi(p(A,x),9(z,2)) = 0 whenever A € o(H). Now use induction as before. O

The next assumption will allow us to associate H with a certain symmetric non-
self-adjoint operator. Also, in combination with Hypothesis [l it will imply item
(i) of Hypothesis

Hypothesis 3. The endpoint b is in the limit circle case.

Let A be the closure of the restriction of H to functions vanishing in a neigh-
borhood of b. By Hypotheses [Il and Bl this operator has deficiency indices (1,1)
and satisfies (B)). One way of constructing the corresponding de Branges space
B4 is the following. Fix two real-valued solutions ¢(z) and s(x) corresponding to
the same spectral parameter with W(c, s) = 1. Now introduce the entire function

(4.7) E(z) = Wi(c,¢(2)) + iWy(s, #(2)).
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Note that by our limit circle assumption the limit of the Wronskians exist at b and
are indeed entire with respect to z (cf. Appendix A in [I3]). Moreover, an analogous
computation as before verifies
E(2)E* (w*) — E(
2i(w* — z)

/(bwfc (z,x)dx, w,z¢€C.

In particular, taking w = z shows that F(z) is a Hermite-Biehler function. More-
over, note that F(z) does not have any real zero, since otherwise, both Wy(c, ¢(z2))
and Wp(s, ¢(z)) would vanish, contradicting W(c, s) = 1. Now, B4 is the de Branges
space generated by E(z) as specified in (83]). The reproducing kernel of this space

is given by

(4.8) K(w,z) = /b d(w,z)* (2, x)de, w,zeC.
This also shows that the de Br:nges norm equals the spectral norm,
(1.9) (.G, = [ F@)Gladp(o).

Remark 4.5. (a) Identities (&S] and ([@9) imply that B4 and L?(R,dp) are uni-
tarily equivalent in the sense that the restriction to R of every function in B4
belongs to L?(R, dp) while for every function in L?(R, dp) there exists one, and
only one, function in B4 whose restriction to R belongs to the same equivalence
class (with respect to the measure p).

(b) Since assoc, B(E) = B(E,) with E,(z) := (2+1)"E(z) (as sets) [10], one easily
obtains

assoc,, B(E) = L? (R, %) ,
where the isomorphism is in the sense given in (a).
(c) Since E(z) € assocy(B4) \ Ba and A is densely defined, the functions
# _ E#

also belong to assocy(Ba) \ Ba [6].

and Wy(s, é(z)) =

Theorem 4.6. Assume Hypotheses 2 and [ and let A be the operator defined
above. If there is z € p(H) such that "~V (z,x) € L?(a,b), then the operator A
18 m-entire.

Proof. Our assumption implies, by letting j := n — 1 in ([@3]), that the left-hand
side in (@A) is in assoc,(Ba). The same is true for the sum on the right-hand
side which is a sum of a polynomial in w of degree n — 1 times W(c, ¢(w)) and

W (s, $(w)) since

Wi(d(w), vV (2)) = Wiy (s, 419 (2)Wa(e, p(w)) = Wi (e, 7 (2)) Wi (s, d(w)).
In view of item (@) of Remark 5 one has that 1 € assoc,, (B4) which in turn implies
the assertion by Lemma 311 O
Theorem 4.7. Let the assumptions of Theorem hold. Then, the following are
equivalent:

(i) The operator A is n-entire.
(i) There is a choice of the entire solution 6(z,x) such that M(z) € NZ° for
k<n-—1.
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2112 L. O. SILVA, G. TESCHL, AND J. H. TOLOZA

Proof. (i) = (ii). Since A is n-entire, there exists a zero-free function in assoc,, (B4).
Without loss of generality we can assume this function to be equal to 1. By item
(@) of Remark one has that (1 + A?)~" is in L*(R,dp). Hence Theorem
yields (ii).

(ii) = (i). By Theorem 26| (ii) implies that (1 + A?) € L*(R,dp). The claim
follows now from item ([ of Remark and Lemma [3.1] O

Corollary 4.8. Let the assumptions of Theorem hold. Suppose moreover that
one of the following holds true:

(a) There is a choice of the entire solution 0(z,xz) such that M(z) € NZ° for
k<n-—1.

(b) There exists z € p(H) such that "~V (z,z) € L*(a,b).
Then there is another self-adjoint extension H' of A such that o(H) and o(H')
satisfy (C1), (C2), (C3) of Theorem B.2

Proof. The claim is obtained immediately from Theorems and 7 in combina-
tion with Theorem O

Hypothesis 4. Let ¢(z,x) and ¥(z,x) be such that if

b
/ d(\, 2)v W (2, 2)dx € L*(R, dp)

for some j € N and z € p(H), then

T b
v (ez) = tim [ o02) ( / ¢<A,y>wm<z,y>dy> ao()

where the limit is understood as a limit in L*(a,b).

Theorem 4.9. Let the assumptions of Theorem hold and assume Hypothesis Ml
Then, the following are equivalent:

(i) The operator A is n-entire.
(i1) There is a choice of the entire solution 0(z,x) such that M(z) € N° for
k<n-—1.
(iii) Y=V (z,x) € L*(a,b) for one (and hence for all) z € p(H).

Proof. In view of Theorems and @7 one only has to show that (ii) = (iii).
By Theorem 28] (ii) implies that (1 + A?)™" is in L'(R,dp), so the function
(n — YA —2)7" is in L?*(R,dp). Therefore there is a function 7(z,z) € L*(a,b)
such that n(z,2) = U~} ( ((;L:zl))i ) By Corollary 4] Hypothesis @l implies that, at

least for one z € p(H), n(z,z) = ™Y (z,z). O

The proof of the previous assertion can be complemented to obtain the following
sharpened version of it.

Theorem 4.10. Under the assumptions of Theorem L9, the following are equiva-
lent:
(i) The operator A is minimal n-entire.
(i) There is a choice of the entire solution 6(z,x) such that M(z) € N2° ;.
(iii) "V (z,2) € L*(a,b) but "2 (z,2) & L?(a,b), for one (and hence for
all) z € p(H).
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A class of operators attracting attention nowadays, and for which Hypotheses 2]
B, and [ are satisfied, is the class of spherical Schrodinger operators.

Theorem 4.11. Fiz [ > —% and b > 0. Suppose

(4.10) 7= —dd—; + W; b, q(z), = €(0,b),
where

zq(z) € L*(0,b), 1>-1,
) {xu ~log(a/b)a(w) € L'(0.D), 1=,

If T is a limit circle at a = 0, we impose the usual boundary condition (corresponding
to the Friedrichs extension; see also [3], [9])

11
4.12 lim 2! 1 —xf'(x)) = —=, ).
(112) lim o (14 1) () —af @) =0, 1 [, 3)
Then the assumptions of Theorem are satisfied and, whenever n € Z1 obeys
2n >[I+ %J (equivalently, n > % + %), the corresponding operator A is n-entire.

Proof. Ttem (ii) of Hypothesis @l follows from Lemmas 2.2 and 2.6 in [I2] and item
(iii) follows from Corollary 3.12 in [I5]. The first part of Lemma 4.4 in [I5] im-
plies that Hypothesis [ is satisfied. Moreover, that ("~ (z,z) € L?(a,b) for the
proposed values of n is shown in Lemma 4.4 of [15]. O

In particular, this generalizes Theorem 4.3 from [2I]. Note that we could even
allow a nonintegrable singularity at b as long as 7 is a limit circle at b. Of course
this also generalizes Corollary 4.4 from [21]:

Corollary 4.12. Under the assumptions of Theorem LT1], the spectra of two canon-
ical self-adjoint extensions Hy, Ha of A satisfy conditions (C1), (C2) and (C3) of
Theorem whenever 2n > |1+ 2.

Finally, one has the following consequence of Theorem .10

Corollary 4.13. Under the assumptions of Theorem 1], the underlying operator
A is minimal |1 + 2]-entire.
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