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Convergent flow in a two-layer system and plateau development
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In order to describe the development of plateaus such as the Tibet and the Altiplano we extend the
two-layer model used in a previous paper [C. A. Perazzo and J. Gratton, Phys. Fluids 22, 056603
(2010)] to reproduce the evolution of mountain ranges. As before, we consider the convergent
motion of a system of two liquid layers to simulate the crust and the upper mantle that form a
lithospheric plate, but now we assume that the viscosity of the crust falls off abruptly at a specified
depth. We derive a nonlinear differential equation for the evolution of the thickness of the crust. The
solution of this equation shows that the process consists of a first stage in which a peaked range is
formed and grows until its root reaches the depth where its viscosity drops. After that the range
ceases to grow in height and a flat plateau appears at its top. In this second stage the plateau width
increases linearly with time as its sides move outward as traveling waves. We derive simple
approximate formulas for various properties of the plateau and its evolution. © 2011 American

Institute of Physics. [doi:10.1063/1.3578481]

I. INTRODUCTION

Mountains and high plateaus are striking features of our
planet and their origin and evolution have been investigated
for a long time. It is known that the lithosphere (the outer
solid layer of the Earth) is a two-layer structure in which the
crust rests on the denser upper mantle, being separated by the
Mohorovi¢i¢ discontinuity (called Moho). The lithosphere is
divided into several approximately rigid plates that rest on
the hotter and more fluid asthenosphere. The relative motion
of these plates is the cause of orogeny due to the shortening
and consequent thickening of the crust that occurs when two
continental plates collide or when an oceanic plate is sub-
ducted beneath a continent. On the timescale of these pro-
cesses the lithosphere is in local hydrostatic equilibrium, a
condition called isostasy, which implies that the visible re-
gional topography is accompanied by a corresponding anti-
topography of the Moho, called root.

Clearly orogeny involves many disciplines and interests
a broad range of scientists. To attempt a realistic and detailed
theoretical description of these processes is an exceedingly
complex task because across the lithosphere there are large
variations of the temperature, density, and rheological pa-
rameters as well as other properties, many of which, to com-
pound the issue, are poorly known. To this we must add the
complications due to the geometry and the time dependence
of the motion of the plates.

In a recent papelrl we investigated the evolution of the
topographic relief produced by the convergent motion of a
system consisting of two superimposed layers of liquids that
differ in density and viscosity to simulate the crust and the
upper mantle of two lithospheric plates that are pushed to-
gether by basal traction, which we imposed as a boundary
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condition at the lithosphere-asthenosphere boundary (LAB).
Assuming isostasy, we derived a nonlinear differential equa-
tion for the evolution of the thickness of the crust and solved
this equation numerically to obtain the profile of the range.
We found that a peaked topography is produced. We also
found an approximate self-similar solution that describes rea-
sonably well the process and that predicts simple scaling
laws for the height and width of the range as well as an
expression of the shape of its transversal profile. These the-
oretical results given by our model were compared with ap-
proximately straight segments of several mountains belts and
found a good agreement. Notice that in our model we de-
scribe the lithosphere as two stacked layers of liquids despite
that the most elevated part of the topography may have a
brittle elastic and not by ductile strength.

The simple two-layer model in Ref. 1 does not describe,
however, the development of structures as the Tibet or the
Altiplano, which are almost flat plateaus limited laterally by
steep escarpments, as shown in Fig. 1. See also the profiles
of the Tibet and the Altiplano shown in Refs. 2 and 3, re-
spectively.

Although there are several proposed mechanisms as re-
sponsible of the plateau formation, none of them is generally
accepted. However, some researchers® agree with the idea
that a plateau is produced when the motion of the upper crust
decouples from the basal traction, as happens if a very low
viscosity layer lies above the place where the traction is
acting.sflo The formation of plateaus due to the presence of a
low viscosity layer in the lithosphere has been addressed by
several authors by means of the so-called “channel flow-
extrusion” hypothesis in connection with the Tibet'''® and
the Altiplano.lL19 In these works it is assumed that the low
viscosity layer lies within the lower crust and that the basal
traction is exerted at the Moho by the mantle lithosphere,
which is otherwise ignored and plays no role in the model.
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FIG. 1. (Color online) Topography of real plateaus. (a) Contour maps of
Tibet (left) and Altiplano (right) from the digital elevation data GTOPO30
(these data are available in the website of U.S. Geological Survey’s Earth
Resources Observation and Science Center); the rectangles denote the re-
gions where the averages are calculated. (b) and (c) Average profile of Tibet
and Altiplano, respectively (the altitude and the horizontal coordinates are in
kilometers).

For example, Royden7 assumed that the crust is divided into
an upper part, whose viscosity is uniform, and a lower part,
in which the viscosity falls off exponentially with depth.
Then, as the crust thickens the root of the range eventually
attains the depth where the viscosity falls off, so that the
basal traction is decoupled from the motion of the upper part
of the crust. As a consequence the relief ceases to grow in
height and a plateau develops and widens as more crustal
mass is added by the convergent motion of the plates.

According to the model in Ref. 1 a similar decoupling
that may lead to the formation of a plateau occurs only when
the root of a range touches the asthenosphere, but a simple
calculation shows that this would produce an absurdly high
plateau (typical values yield 20 km).

In this paper we change slightly the two-layer model in
Ref. 1 to include the possibility that the viscosity of the crust
falls off abruptly at a specified depth, as it was assumed in
the previously mentioned papers. However, it is important to
remark that our two-layer model' and its extension in the
present paper take into account the dynamics of the upper
mantle and not only that of the crust as it is done by other
authors that assume that the basal traction acts on the Moho.
In consequence, while our results are qualitatively similar to
those obtained by other authors, they differ quantitatively as
they depend on the lithospheric mantle parameters. Here we
keep the model as simple as possible as our aim is to de-
scribe the essentials of the process in order to clarify the
basic physics involved.

This paper is organized as follows. In Sec. I we present
the two-layer model with the changes needed to describe the
formation of plateaus. In Sec. III we describe the numerical
solutions and show that the development of a plateau is a
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FIG. 2. Geometry of the two-layer model employed to describe the forma-
tion of a plateau. The upper figure shows the ridge that appears in the first
stage and the lower one shows the plateau that develops in the second stage
(see Sec. III) when the root arrives at the low viscosity region of the crust
(dashed line).

process consisting of two stages. In the first stage a peaked
ridge grows until the root reaches the low viscosity region of
the crust. At this moment the second stage begins in which
the plateau develops. In Sec. IV we show that during the
second stage both sides of the plateau behave as traveling
waves. Finally, Sec. V contains the discussion and conclu-
sions.

Il. THE TWO-LAYER MODEL

In this section we parallel the derivation of the evolution
equations obtained in our previous paper,1 highlighting the
changes introduced to describe the formation of a plateau.
We consider a two-layer liquid film as shown in Fig. 2 and
we assume for simplicity plane symmetry. The upper layer
(the crust) has a density p,, a thickness H.(X,T), and a vis-
cosity . that is not constant as assumed in Ref. 1 but de-
pends on the vertical coordinate Z. The lower layer (the
lithospheric mantle) has a density p,,, a thickness H,,(X,T),
and a viscosity u,,. Typically, for a continental plate p,
~2.7 g/cm® and p,~3.2 g/cm’.

Initially, both layers are uniform, with H.(X,0)=C and
H,,(X,0)=M. To model the basal traction that is believed to
drive the plate motion we assume that at 7=0 the bottom of
the lithosphere (Z=0) starts moving with a prescribed veloc-
ity U,(X). We next assume isostasy, which means that for
0=Z=H,, the pressure does not depend on X. Notice that
this implies that as the thickness of the crust increases, part
of the mass of the lithospheric mantle crosses the LAB and
passes into the asthenosphere, so that the mass of the litho-
spheric mantle is not conserved. We assume a slow viscosity-
dominated flow and employ the lubrication approximation
(see Refs. 20-22). We neglect inertia and assume that the
slope of the free surface is gentle, so that the horizontal
components of the velocities of the fluids are much larger
than the vertical ones and that their vertical gradients are
much larger than the horizontal gradients. In this way the
Stokes equation takes the form
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for H,=Z=H,+H,. In these equations P is the pressure,
U(X,Z,T) is the horizontal velocity, and g is the gravity.”
The second equations in Egs. (1) and (2) mean that the pres-
sure is hydrostatic; integrating them and using the isostasy
condition (9P/dX=0 for 0=Z=H,,) we find p,,dH,,/IX=
—p.dH./dX. Integrating this equation and using the initial
condition we obtain

8Pc,, (9H. JH,
U,—>~H/|— +—|Z,
Mo X  dX
U= U (&HC aHm> HoAH) 2 4z f
+gp, +— || - (H.+ +
b gp¢ &X (9X c m Hm ,U«L(Z,) Hm

Notice that, in general, the velocity profile in the crust is not
parabolic except when . is a constant as in Ref. 1.

We then define the vertically averaged horizontal veloc-
ity in the crust as

] H, m+H c
V.=— J UdZ.
HC Hy,

We set Up(X)=Uyu(X), where U, is the maximum basal ve-
locity so that |u| < 1. Next we introduce the following dimen-
sionless quantities:

(5)

h=HJC, h,=H,/C, v=V.,U,,

x=X/Xp, z=ZIC, t=TUyX,. (6)

We also describe the dependence of w,. on the dimensionless
vertical coordinate z by means of

o= pop(z), 0<¢p=1. (7)
In Eq. (6) the horizontal scale X, is given by
.\ pgMC?
X0:<1—&)L. (8)
Pm /'LmUO

Finally, inserting the second equation of Eq. (4) in Eq. (5)
and using Eq. (6), we obtain
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where
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H,=M+2(c-H).

Pm

3)

Using this result to eliminate H,, we find a single equation
for the dependent variable H..

The first equation in Eq. (1) and the isostasy condition
imply that the velocity profile in the lithospheric mantle is
linear. To complete the derivation of the velocity profile we
assume that U(Z=0)=U,(X) is the prescribed basal velocity,
which the velocity and the shear stress are continuous at Z
=H,, and which the shear stress vanishes at Z=H,,+ H,_.. Then
we integrate twice the first equations in Egs. (1) and (2) with
respect to Z to obtain

0=Z=H,
zdz. HH,| . “
———"\|, H,=<Z=H,+H,.
NC(Z) M”’L " ¢
[
h+h,, (z dZ’dZ h+h,, (z Z,dZ,dZ
Ji= > = ; (10)
hm hm ¢(Z ) hm hm ¢(Z )
are functions of .
From isostasy condition (3) we have
M .
h,=—+2(1-p). (11)

p m

Then Eq. (9) can be expressed in terms only of 4. Equations
(9)-(11) together with the continuity equation

dh  d(vh)
— +
ot ox

=0 (12)

govern the dimensionless thickness of the crust when the
viscosity of the crust changes with depth, provided ¢(z) is a
known function. The visible dimensionless topography r is
given by

(13)

r=

Hm+HC—(M+C)_(1 Pe

C pm>(h_1)’

To describe the convergence of two plates we assume
u(x)=1 for x<0 and u(x)=-1 for x>0 as in Ref. 1. In this
way the thickness of the crust starts to increase in the region
of convergence. The initial condition is 4(x,0)=1, and the
boundary conditions are h(+,7)=1. At x=0 we impose the
continuity of /4 and v.

In the process we are describing that the mass of the
crust is conserved, but as said before this is not true for the
lithospheric mantle. It is easy to show that the flow rate Q
(per unit of transversal length) of lithospheric mantle mate-
rial through the LAB (z=0) is
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FIG. 3. (Color online) Numerical solutions of Egs. (9)-(12) and (15) for ten
equispaced times between 7=0.24 and t=7.44. It can be appreciated that
initially a ridge is formed and grows until the root touches the low viscosity
region. After that a plateau develops.

Q=2U0M(1+;’C—;). (14)

Notice that Q is larger than the lithospheric mantle mass
inflow 2UyM.

To describe the decoupling that leads to the formation of
a plateau we assume that the viscosity of the crust falls
abruptly around Z=Z, (see the dashed line in Fig. 2) by a
few orders of magnitude. To facilitate the numerical calcula-
tions it is also convenient to chose ¢(z) in order to obtain
closed expressions for J; and J,. To take into account these
requirements we have assumed in the numerical calculations

b(z) = $o(n + 1) + ¢o(n — 1)(2/zp)"
(n+1)+ ¢o(n = D(2/zg)"

In this formula zy=Z,/ C, n governs the thickness of the tran-
sition and ¢y=¢p(0). We shall assume that n>1 and ¢y<<1
so that the viscosity reduction is abrupt and large. The choice
[Eq. (15)] was made for convenience, but any other function
with a similar behavior can be used.

(15)

lll. PLATEAU FORMATION

Equations (9)—(15) must be solved numerically. As an
example we show in Fig. 3 some solutions for C=30 km,
M=100 km, p.=2700 kg/m?, p,,=3200 kg/m?, and
Mo/ =10 (the values of these parameters are not essential
for the formation of the plateau, in particular, it is not nec-
essary to have uy>pu,,). We have also assumed n=1000,
70=2.4333, and ¢=107> (the effect of different values of n
and ¢, will be discussed later).

The most relevant result of the calculations is that a pla-
teau is produced. However, the plateau does not appear from
the beginning. Initially a ridge is formed and grows as de-
scribed approxirnatelyl by the self-similar solution ry given
by

rs.f(t)=<1—&) ,if(w), (16)
m/ N1+ a
where
e"/’2 X
f('/f)=v—;—l/ferf0(¢), wfm, (17)
erfc is the complementary error function, and «

=, C/3 oM.
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FIG. 4. (Color online) The sides of a plateau move as traveling waves. Plots
of the topography r vs x—u/(t—1;) with u, given by Eq. (19) and #,=5.36 for
1=5.36, 5.8, 6.24, 6.68, 7.12, 7.56, and 8. As all the right sides overlap on a
unique curve we infer that the right side moves with the constant speed u;
without changing its shape.

When the bottom of the root of the ridge arrives at z; this
first stage ends, the ridge ceases to grow, and a second stage
begins in which a flat top appears and widens, thus produc-
ing a plateau as all the added mass accumulates at the sides
of the relief. We call #, the moment when the plateau begins
to develop.

The height r, of the plateau is determined by z, accord-
ing to

r0:<%':_’—1><%—z0). (18)

IV. PLATEAU EVOLUTION AS A TRAVELING
WAVE

The profiles in Fig. 3 strongly suggest that during the
evolution of the plateau (second stage, r>1,) each slope
moves with a constant speed, which we shall call us (thus the
rate of widening is 2u), and maintains the shape it had at ¢,
If this was true the conservation of crustal mass yields

U= Pc - Pm — Pc
T pu(MIC=20) P

(19)

This can be verified shifting the profiles in Fig. 3 to overlap
them. In Fig. 4 we plot r as a function of x—u/t-t;), where
t; is any instant after #,; it can be seen that the right slopes of
the topographies do, in fact, overlap, which means that they
move as a traveling wave. In consequence, the visible topog-
raphy of the plateau can be described by means of a simple
formula. For x>0 we have

Tos 0=x=x=udt-1t)

" FLx - - 1)1, (20)
The topography for x <0 is the mirror image of that given by
this equation. In Eq. (20) F=r(x,t=t,) is the relief corre-
sponding to the solution of Egs. (9)—(15) at the moment of
the decoupling. As long as r is small it can be approximated
by the self-similar solution (16) and (17) evaluated at r=1,. A
similar expression for the shape of the sides of the plateau
was obtained by Medvedev and Beaumont’ based on the
channel flow hypothesis.

xzxf.
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V. DISCUSSION AND CONCLUSIONS

We have modified our previous model' to reproduce the
formation of a plateau due to the decoupling between the
basal traction and the crustal flow. To this purpose we as-
sume that at a certain depth z; there is a sharp reduction of
the viscosity of the crust. With this change the convergent
motion produces a ridge that grows as described in Ref. 1
until the root arrives at zy; after that a plateau is formed. The
resulting equations are a generalization of those in Ref. 1;
however, the velocity profile is linear in the lithospheric
mantle as before. On the other hand, the velocity within the
crust vanishes under the plateau and has a parabolic profile
elsewhere (of course the profile is flat far from the plateau,
where the thickness of the crust is approximately C).

The results of the present model are similar to those
derived by means of the channel flow hypothesis.7 On the
other hand, the calculation based on the last hypothesis as-
sumes a prescribed basal traction acting on the Moho, while
in our model the basal traction acts on the level of the litho-
sphere. This is the main difference between these two ap-
proaches and implies that the present model takes into ac-
count the dynamics of the entire lithosphere in contrast with
the channel flow calculations in which only the crust is con-
sidered, while the dynamics of the mantle lithosphere is ig-
nored.

The topography shown in Fig. 3 reproduces the qualita-
tive features of the field data for plateaus such as the Tibet
and the Altiplano (see Fig. 1). However, we do not attempt a
quantitative comparison because these plateaus are three-
dimensional objects and our calculations were made assum-
ing planar symmetry.

A perfectly flat plateau whose sides are traveling waves
as shown in Figs. 3 and 4 is obtained from the present model
if the viscosity drop is extremely abrupt and large, i.e., n
>1 and ¢y<<1 (these figures were calculated with n=1000
and ¢,=107). If the viscosity change is not so large and/or
less abrupt the plateau is not perfectly flat and its escarp-
ments do not behave as an ideal traveling wave (their shape
as well as their speed change slightly with time).

Finally, we remark that the present model, besides de-
scribing peaked ranges and flat plateaus, can be employed to
reproduce other type of orogens by adequate choices of the
parameters and can also be generalized to describe nonsym-
metrical convergence as well as to include three-dimensional
effects.!
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