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Abstract

We develop a microscopic model of mutual friction represented by the dissipative dynamics

of a normal fluid flow which interacts with the helical normal modes of vortices comprising a

lattice in thermal equilibrium. Such vortices are assumed to interact with the quasiparticles

forming the normal fluid through a pseudomomentum-conserving scattering Hamiltonian.

We study the approach to equilibrium of the normal fluid flow for temperatures below 1 K,

deriving an equation of motion for the quasiparticle pseudomomentum which leads to the

expected form predicted by the HVBK equations. We obtain an expression for the mutual

friction coefficient B in terms of microscopic parameters, which turns out to be practically

independent of the vortex mass for values arising from diverse theories. By comparing

our expression of B with previous theoretical estimates, we deduce interesting qualitative

features about the excitation of Kelvin modes by the quasiparticle scattering.
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1. Introduction

When a sufficiently fast rotating sample of liquid helium is cooled below the lambda

temperature, all the rotation of the superfluid becomes concentrated in a uniform array

of quantized vortex filaments parallel to the axis of rotation [1, 2]. By contrast, the

macroscopic superfluid velocity field, corresponding to spatial averages over regions

large compared with the spacing between vortices, yields the usual configuration of

solid body flow, vs(r) = Ωrotẑ×r for a rotation frequency Ωrot around the z axis. Just

as the superfluid flow is microscopically formed by vortices, the normal fluid consists

of superfluid quasiparticle excitations, phonons and rotons, the average flow of which

is characterized by the normal fluid velocity field vn. Both fluids must move in

equilibrium at the same velocity, and such a behavior is caused by the mutual friction

force [3]. A well-known phenomenological model for this macroscopic dynamics is

represented by the so-called Hall-Vinen-Bekharevich-Khalatnikov (HVBK) equations

[3, 4]. There is a simple configuration which allows to show the basic features of

this process, namely rectilinear flows of uniform vorticity ∇ × vs = 2 Ωrot ẑ, which

coincides with that of the rotational scheme [5]. The HVBK equations for such flows

are very simple and read

ρn
∂vn

∂t
= F = −ρs

∂vs

∂t
, (1)

where ρn and ρs denote the normal fluid and superfluid mass densities, respectively,

and the mutual friction force F can be written for temperatures below 1 K as [5],

F = −Bρn Ωrot(vn − vs), (2)

being B a dimensionless dissipative coefficient. Such a low temperature regime corre-

sponds to ρn ≪ ρs, which, according to (1), implies that the main time dependence
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should lie within the normal fluid velocity. This suggests that a suitable approach to

the problem may consist in regarding the superfluid component as a thermal equilib-

rium heat bath which interacts with a nonequilibrium normal fluid flow. Keeping such

a picture as our basic premise, we shall analyze in the present paper a microscopic

model of mutual friction, which reproduces the main features of the above macro-

scopic dynamics, yielding an explicit expression of B as a function of microscopic

parameters.

The microscopic basis of mutual friction remains as one of the most intrincate prob-

lems of superfluidity. In such a context, theoretical approaches may strongly differ,

even in significant questions such as the existence of a nondissipative component of

the mutual friction force [6], which is absent from our modelling [5]. A better under-

standing of the microscopic principles governing mutual friction would also contribute

to clarify important issues on the subject of quantum turbulence at finite temperature

[7]. In fact, it is just the mutual friction force which accounts for the strong locking

between superfluid and normal fluid along the turbulent cascade, where recent simu-

lations have shown that the residual slip velocity vs − vn plays a central role [8]. In

addition, such simulations suggest that the cross-over between zero-temperature and

finite temperature quantum turbulence occurs at a lower temperature than the usual

estimation of 1 K, hence partially placing the latter regime within the temperature

range of the present investigation.

Another important source of controversy arises from the mass of quantized vortices.

On the one hand, many works have considered it as a negligible parameter under the

assumption that it should be equivalent to the hydrodynamic mass of a core of atomic

dimensions [1]. Another theories, however, yield several orders of magnitude higher
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values for the vortex mass, casting doubt on models based on massless vortices [9].

Moreover, it has been argued that an unambiguous vortex mass may not exist, and

that inertial effects in vortex dynamics may be scenario-dependent [10]. Finally, we

should also mention that there have been conflicting results for the vortex mass in

superconductors as well [11]. A possible way out to such uncertainties has been

recently suggested based on the concept of pseudomomentum [5]. Our present study

of the dissipative normal fluid dynamics will utilize the concept of pseudomomentum

as an important tool, finding again results which are practically independent of the

vortex mass for a wide range of values.

Our approach will consist in assuming a heat bath formed by a vortex lattice

in thermal equilibrium, which interacts with a quasiparticle flow. The dominant

contribution to the heat capacity of such a lattice should arise from the thermal

excitation of helical waves, corresponding to effectively independent vortices [12]. The

role of such oscillations in mutual friction has been scarcely treated in the literature.

We are only able to mention a couple of papers [13, 14], that long ago reached the

conclusion that the damping of vortex oscillations due to phonon scattering, should

not modify appreciably the value of the friction coefficient calculated for a rigid vortex.

The same conclusion was recently obtained for a high-frequency branch of helical

waves, within a wider temperature range, including a roton-dominated regime [15].

In building a theory with massive vortices, one can readily make use of a close

analogy with the well-known electrodynamical problem of a point charge subjected to

magnetic and electric fields [16]. Particularly, the quantization of the theory, which

greatly simplifies the treatment when the scattering excitation of vortex waves is taken

into account [13], arises immediately from this analogy. Such an analogy also leads
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to an immediate identification of the vortex pseudomomentum, allowing us to build

a proper form for a pseudomomentum-conserving scattering Hamiltonian.

This paper is organized as follows. In the next section, we sketch out our derivation

of the equation of motion for the normal fluid flow. In Sec. 3 we analyze the expression

obtained for the mutual friction coefficient B and in Sec. 4 we summarize our main

results.

2. Equation of motion for the normal fluid flow

We assume vortex filaments performing helical oscillations about their unperturbed

positions parallel to the z axis. The wavelength λ is supposed to be much greater than

the amplitude (radius of the helix), and to have a full description of the helix, one

should also know the direction (right or left) of the helical deformation, or equivalently,

the direction of the wave vector kẑ (k = ±2π/λ). Periodic boundary conditions over

a length L (vortex line length) along the z axis determine the possible values of the

wave vector as k = 2πm/L, where m is an integer. The vortex core position r(z) may

then be written as a summation over generalized two-dimensional coordinates rk(z)

associated to normal modes labeled by the wave vector kẑ [12, 13]. The quantization

of the vortex Hamiltonian arises straightforwardly from the electromagnetic analogy

[16]. Since the vortex core parameter is assumed to be much less than the wavelength,

we have ωk ≪ Ω, being ωk the Kelvin wave frequency and Ω = ρsκ/mv the cyclotron

frequency, with mv the vortex mass per unit length and κ the quantum of circulation

[1]. This in turn ensures that cyclotron and Kelvin modes become decoupled [15],
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yielding a Hamiltonian of oscillatory modes given by

∑

k 6=0

~Ω(α†
kαk +

1

2
) + ~ωk(β

†
kβk +

1

2
), (3)

where α†
k (β†

k) denotes a creation operator of right (left) circular quanta.

The Hamiltonian of the k = 0 modes, corresponding to rigid displacements of the

vortex filament [5], can be exactly solved [16], yielding in the limit Ωrot ≪ Ω the

decoupling of cyclotron and translational modes:

~Ω(α†
0α0 +

1

2
) +

~Ωrot

2
(β†

0 − β0)
2. (4)

Particularly, the translational coordinate r0 =
√

~

2ρsκL
[(β†

0+β0)x̂+i(β†
0−β0)ŷ] evolves

according to the superfluid velocity field

ṙ0 = −2 Ωrot y0 x̂. (5)

The vortex Hamiltonian is given by the sum of (3) and (4), and the nor-

mal fluid Hamiltonian, corresponding to a noninteracting quasiparticle gas, reads

∑

q
~ωq a†

q
aq, where a†

q
denotes a creation operator of quasiparticle excitations of

pseudomomentum ~q and frequency ωq. The interaction Hamiltonian between vortex

and quasiparticles is represented by the pseudomomentum-conserving form:

Hint =
∑

p,q

∫ L

0

dz Λpq a†
p
aq exp[−i(p − q) · r(z) − i(pz − qz)z], (6)

where the parameters Λpq in (6) represent scattering amplitudes depending on wave

vectors of scattered quasiparticles. The vortex pseudomomentum per unit length [5],

integrated along the vortex line yields the generator of vortex translations or vor-

tex pseudomomentum −ρsκL ẑ × r0, which involves only translational coordinates,

as expected. Then, adding such a pseudomomentum to the quasiparticle pseudomo-
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mentum
∑

q
~q a†

q
aq, we have the total pseudomomentum, which can be shown to

commute with Hint.

The interaction Hamiltonian (6) is difficult to deal with, so recalling the low am-

plitude of the helical oscillations, we may rewrite the exponential in (6) as

exp[−i(p − q) · r(z) − i(pz − qz)z] =

exp[−i(p − q) · r0] exp[−i(pz − qz)z] exp[−i(p − q) · (r(z) − r0)] (7)

and next approximate the last exponential to first order in r(z)− r0. This procedure,

however, is not valid for vortex modes with frequencies approaching zero, i.e. the

lowest part of Kelvin’s spectrum, as noted early by Fetter [13]. In fact, he showed

that retaining a finite number of terms of such an exponential expansion leads to di-

vergent results, analogous to those of the “infrared catastrophe” in electrodynamics.

Here it is expedient to recall that within our study, each vortex forms part of a vortex

lattice which will be regarded as a heat bath for the quasiparticle flow. Now, it is

well known that rather simple models of heat bath often provide suitable descriptions

of realistic environments [17]. Relying on this hypothesis and to overcome the above

difficulty, we shall represent Kelvin’s spectrum by a single frequency w0, which will

be eventually regarded as a temperature-dependent parameter in order to take into

account the distinct features of the interaction of such waves with phonons and ro-

tons. In summary, we shall make use of a simplified model of heat bath consisting

of vortex modes of two frequencies (w0 ≪ Ω) of opposite polarization. On the other

hand, neglecting the vortex displacement in the y-direction [5], we shall replace the

translational coordinate operator in the first exponential on the right-hand side of Eq.

(7) by the c-number 〈r0〉 = −2 Ωrot 〈y0〉t x̂ (cf. Eq. (5)). Such a replacement becomes
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equivalent to having time-dependent scattering amplitudes in Eq. (6), i.e. with a time

dependent phase factor, Λpq exp[i(px − qx)2 Ωrot 〈y0〉t]. This factor, however, would

not have any practical incidence, since our results will be shown to be dependent

upon the absolute value of the scattering amplitudes. Finally, taking into account

these approximations we may replace exp[−i(p−q) · r(z)] ≃ 1− i(p−q) · (r(z)− r0)

in Eq. (6) yielding [15]

Hint =

√

~L

2ρsκ

∑

k,p,q

δpzqz
Λpq a†

p
aq {[(qy − py) + i(qx − px)][α

†
k + (1 − δk0)βk]

+ [(py − qy) + i(qx − px)][αk + (1 − δk0)β
†
k]}. (8)

There is an additional parameter to be taken into account in our vortex heat bath,

that is the total number of modes 2L/λmin. We shall assume for simplicity that both

polarizations have a common ‘ultraviolet’ cutoff λmin, which should be greater than

the vortex core parameter (∼ 1 Å) and the mean radius of the helix. Such a radius

turns out to be of the order of the core parameter for cyclotron modes, while for

Kelvin modes in a lattice of Ωrot ∼ 1 s−1 has been estimated [12] as ∼ 103 Å
√

T/K.

So, we have assumed λmin ∼ 103 Å in our calculations.

To study the time evolution of the normal fluid, we have considered the dissipative

dynamics of a quasiparticle flow which interacts with the heat bath formed by a

uniform array of Nv quantized vortex filaments. Then, following the methodology

of Ref. [18], we have derived a system of non-Markovian equations ruling the time

evolution of the quasiparticle populations nq [19], which leads to the following equation

of motion for the quasiparticle pseudomomentum:

∑

q
~q ṅq =

2L2Nv

ρsκλmin

∑

p, q, i

|Λpq|2 δpzqz
(p − q)(p − q)2

∫ t

0

dτ cos[(ωp − ωq + wi)τ ]

× {nq(t − τ)[1 + np(t − τ)] + [nq(t − τ) − np(t − τ)] [e~wi/kBT − 1]−1}, (9)
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where wi denotes the frequencies Ω and w0. Assuming that the quasiparticle numbers

in the above expression are well described by a local equilibrium form, the quasiparticle

pseudomomentum
∑

q
~qnq = ALρn(vn−vs) should correspond to a macroscopically

small area A of the x-y plane containing Nv vortices, where the spatial dependence

of the fields vn and vs can be neglected. In addition, given that the time dependence

stems exclusively from vn(t) (cf. Sec. 1), a straightforward calculation leads to the

following non-Markovian equation:

v̇n = −
∫ t

0

dτ [vn(t − τ) − vs] µ(τ), (10)

with a memory kernel given by

µ(τ) =
L ~ Ωrot

kBTρnρsκ2λmin

∑

p, q, i

|Λpq|2 δpzqz
cos[(ωp − ωq + wi)τ ] {|p − q|4 g+(wi)

+ [|ẑ × (p × ẑ)|4 − |ẑ × (q × ẑ)|4] g−(wi)}n(ωq) [1 + n(ωp)] [1 + n(wi)], (11)

where

g±(wi) =
n(ωp)

n(ωq − wi)
± n(ωq) exp[~(ωq − ωp − wi)/kBT ]

n(ωp + wi)
(12)

and n(w) = [exp(~w/kBT )−1]−1. In the thermodynamic limit, the summations over p

and q in (11) become integrals and µ(τ) acquires a finite lifetime. If such a lifetime can

be regarded as microscopic in comparison with the observational timescale, equation

(10) may be transformed according to the Markov approximation into the differential

equation:

v̇n = −ν[vn(t) − vs] (13)

with

ν =

∫ ∞

0

µ(τ) dτ =
Lh Ωrot

kBTρnρsκ2λmin

∑

p, q, i

|Λpq|2 δpzqz
δ(ωp − ωq + wi)

× |p − q|4 n(ωq) [1 + n(ωp)] [1 + n(wi)], (14)
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where the continuum limit corresponds to the replacement
∑

p,q δpzqz
→

[A2L/(2π)5]
∫

d3p
∫

d3q δ(pz − qz). Actually, we have studied the non-Markovian

equation (10) finding that memory effects are negligible for Ωrot ≪ w0 [19], which will

be assumed hereafter. Finally, taking into account (13), (1) and (2), we may obtain

the expression of the mutual friction parameter from B = ν/Ωrot.

4. Study of the mutual friction parameter B

An explicit expression for the friction parameter B can be extracted by computing

the right-hand side of Eq. (14), which is reduced to the single one-dimensional integral

[20]:

B =
19~

3

70(2π)2c2
sρnρskBTλmin

∑

i

[1+n(wi)]

∫ ∞

0

dp |ω′
p|n(ωp+wi) [1+n(ωp)]

∑

j

Γ(p, q
(i)
j ),

(15)

where ω′
p (cs) denotes the quasiparticle group (sound) velocity and

Γ(p, q) =















p2q(q4 + p4/5 + 2p2q2) (p ≤ q)

q2p (p4 + q4/5 + 2p2q2) (q ≤ p),

(16)

being q = q
(i)
j the roots of the equation ωq = ωp + wi. In obtaining (15) we have

utilized the expression of the scattering amplitude given in ref. [20], which has been

shown to lead to a very good agreement with the experimental determinations of the

longitudinal friction coefficient D for temperatures below 1 K [18]. From (15) we may

see that B consists of two terms arising from the frequencies wi = w0 and wi = Ω. Such

contributions, however, are weighted by respective factors [1 + n(w0)] ≫ [1 + n(Ω)],

so the cyclotron contribution will be always negligible with respect to that arising

from the frequency w0 and we have that, in practice, B will correspond to the limit
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of massless vortices, Ω → ∞. The expression (15) leads to simpler phonon and roton

approximations. If we restrict ourselves to w0 . 1010 s−1, such a frequency may be

neglected everywhere in (15), except in the factor [1 + n(w0)]. Then, to approximate

for phonon temperatures (T<0.4 K), we use the linear dispersion relation ωp = csp

and get

Bph =
254.9 [1 + n(w0)] (kBT )3

~2c4
sρsλmin

. (17)

On the other hand, for temperatures above 0.6 K, only the portion of the dispersion

curve around the roton minimum makes a significant contribution to the integrand

in (15), then making use of the usual approximations in roton calculations [20], we

obtain

Br =
2.079 [1 + n(w0)] ~k3

0

√
kBT

c2
s

√
µρsλmin

, (18)

where µ and k0 are parameters entering the Landau parabolic approximation, ωp =

∆/~ + ~(p − k0)
2/2µ.

Experimental determinations of B have been reported only above 1.3 K. However,

we may utilize the following expression valid for temperatures below 1 K [1],

B =
2D

ρnκ
(19)

and replace D in (19) by means of the Iordanskii theoretical estimate for the phonon

temperature range [21], yielding

Bph = 8.17
kBT

m4c2
s

. (20)

On the other hand, for the roton temperature range, we may replace D = ρnvGσ‖ in

(19) yielding,

Br =
2σ‖

κ

√

2kBT

πµ
≃ 1.5

√
T K− 1

2 , (21)
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being vG the average group velocity of rotons and σ‖ ≃ 8.38 Å the roton scattering

length [1, 2]. Notice that we have replaced the friction coefficient D by expressions

corresponding to a straight vortex, since corrections due to vortex bending should be

negligible, as seen in Sec. 1. This of course does not mean that vortices would remain

straight against the quasiparticle scattering; on the contrary, thermal excitation of

Kelvin waves is undoubtedly expected to occur, although details of this process are

not evident from expressions (20) and (21). However, some features about such a

process may be deduced from our results (17) and (18). First it is convenient to

discuss the physical meaning of the frequency w0. Since such a frequency is intended

for representing the whole spectrum of Kelvin waves in the context of an interaction

with quasiparticles, it should not be surprising to find that quite distinct values of

w0 could be required in order to better estimate interactions with phonons or rotons.

This amounts to assuming a dependence of w0 on temperature, which may be fully

extracted by equating our results with the theoretical expressions (20) and (21). Then,

from (17) and (20) we may conclude that phonon scattering at a temperature T should

be expected to excite Kelvin waves about a representative frequency given by

w0 ≃ 5.64 × 108s−1K−3 T 3, (22)

while (18) and (21) imply that roton scattering should be likely to excite Kelvin waves

about frequency

w0 ≃ 2.08 × 1010s−1K−1 T. (23)

Recall that according to the Markov approximation one should assume w0 ≫ Ωrot ∼

1 s−1, which sets up a lower bound for the validity of the result (22) at temperatures

above ∼ 0.01 K. In addition, the assumption λmin ∼ 103 Å implies an upper bound

12



for the Kelvin spectrum, max(ωk) ∼ 108 s−1, which turns out to be consistent with a

phonon temperature range below 0.4 K in (22). However, the values arising from (23)

seem to be overestimated for roton temperatures, since they would only be consistent

with a λmin of order 102 Å. In addition, such values of ω0 could reach the order of

cyclotron frequencies arising from some theories of the vortex mass [9], contradicting

the previous assumption ωk ≪ Ω. This suggests that only the qualitative trend

w0 ∼ T should be taken into account from the result (23).

5. Summary

We have analyzed a microscopic model of mutual friction represented by the dissi-

pative dynamics of a normal fluid flow, which interacts with the helical normal modes

of vortices comprising a lattice in thermal equilibrium. Such vortices interact with

the quasiparticles forming the normal fluid through a pseudomomentum-conserving

scattering Hamiltonian. Assuming a simplified model for the vortex heat bath, we

have derived an equation of motion for the quasiparticle pseudomomentum leading

to the expected form predicted by the HVBK equations. We have shown that the

mutual friction coefficient B turns out to be practically independent of the values of

vortex mass arising from diverse theories. Finally, from a comparison of our expres-

sion of B with previous theoretical estimates, we have deduced interesting qualitative

features about the interaction of quasiparticles with Kelvin modes, namely phonon

(roton) scattering at a temperature T should be expected to excite Kelvin waves about

representative frequencies proportional to T 3 (T ).
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