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ABSTRACT

Previously, we have demonstrated that 17α-ethynylestradiol (EE) induces rat 

multidrug-resistance associated protein 3 (Mrp3, Abcc3) expression 

transcriptionally through estrogen receptor-α (ER-α) activation. We explored the 

effect of EE on MRP3 expression of human origin. HepG2 cells were 

transfected with ER-α and incubated with EE (1-10-50 µM) for 48 h. MRP3 

protein and mRNA levels were measured by Western blotting and Real time 

PCR, respectively. EE up-regulated MRP3 protein and mRNA at 50 µM only in 

ER-α(+)-HepG2 cells. The in silico analysis of mrp3 promoter region 

demonstrated absence of estrogen response elements, but showed several Ap-

1 binding sites. We further evaluated the potential involvement of the 

transcription factors c-JUN and c-FOS (members of Ap-1) in MRP3 up-

regulation. ER-α(+) HepG2 cells were incubated with EE and c-FOS and c-JUN 

levels measured by Western blotting in nuclear extracts. EE up-regulated only 

c-JUN. Experiments of overexpression and knock-down of c-JUN by siRNA 

further demonstrated that this transcription factor is indeed implicated in MRP3 

upregulation by EE. Co-immunoprecipitation assay demonstrated that EE 

induces c-JUN/ER-α interaction, and chromatin immunoprecipitation assay 

showed that this complex is recruited to the AP-1 binding consensus element 

present at the position (-1300/-1078bp) of human mrp3 promoter. We conclude 

that EE induces MRP3 expression through ER-α, with recruitment of ER-α in 

complex with c-JUN to the human mrp3 promoter.

Key words: drug transporter, AP-1, estrogen, multidrug resistance, nuclear 

receptor, c-JUN.
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1. INTRODUCTION.

Multidrug resistance-associated protein 3 (MRP3/ABCC3) is a member 

of the superfamily of adenosine tri-phosphate (ATP)-binding cassette (ABC) 

transporters. It is expressed in several epithelial cells including hepatocytes (1). 

Due to its basolateral localization it transports into blood a wide range of 

endogenous and exogenous compounds such as sulphated bile salts, bilirubin 

glucuronides, specific anti-cancer drugs such as methotrexate, etoposide,

teniposide, etc (2-6). Under physiological conditions its expression is low, but it 

is highly inducible by drugs such as acetaminophen (7) and phenobarbital (8),

or under several cholestatic situations such as later stages of primary biliary 

cirrhosis and extrahepatic cholestasis of different etiology (9). Induction of

MRP3 activity results in re-directioning the secretion of common MRP 

substrates from the apical to the basolateral pole.

It is known that estrogens are involved in the pathogenesis of both oral 

contraceptive-induced cholestasis and cholestasis of pregnancy (10, 11). In 

previous work we demonstrated that 17α-ethynylestradiol (EE), a synthetic 

estrogen widely used in contraceptive formulations and in estrogen replacement 

therapies, up-regulates hepatic Mrp3 in rats (12, 13). We later demonstrated 

that induction of Mrp3 by EE in rat liver is independent of cholestasis and 

occurs via activation of ER (14), though the underlying mechanism down-

stream ER remains unknown. The canonical model for ER-mediated regulation 

of gene expression involves the direct binding of dimeric ER to DNA sequences 

known as estrogen response elements (ERE), which are specific, inverted 
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palindromic sequences. In addition, ER can indirectly associate with promoters 

through protein-protein interactions with other DNA-binding transcription factors 

such as specificity protein 1 (Sp1) or activator protein-1 (AP-1), a complex 

composed of c-JUN protein homodimers or c-JUN/c-FOS heterodimers. In 

either case, interaction of ERs with estrogens leads to transcriptional activation 

of the associated genes via recruitment of co-activators and components of the 

basal transcriptional machinery (15). The liver expresses predominantly ER-α 

(16) and its expression is under multihormonal regulation.

Until present there are no reports about the effect of estrogens on human 

MRP3 expression. As interactions of nuclear receptors with selective ligands 

may vary between species and considering the differences between rat and 

human mrp3 promoters (17, 18), we explored whether EE is also able to induce 

MRP3 in HepG2 cells, a human hepatoma cell line, and whether ER-α is 

involved. Additionally, we explored in these cells the intervention of potential 

candidates that can mediate the response downstream ER-α, such as the 

transcription factor AP-1.
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2. MATERIALS AND METHODS.

2.1. Chemicals.

EE, leupeptin, phenylmethylsulfonyl fluoride, pepstatin A, were obtained 

from Sigma Aldrich Chemical Company (St. Louis, MO). All other chemicals 

were of analytical grade purity, and used as supplied.

2.2. Cell culture and treatment with EE.

HepG2 cells were grown in monolayer culture and maintained in F-12 

(Invitrogen, Carlsbad, CA, USA) and phenol-red DMEM (1:1) supplemented 

with 10% FBS (PAA, Pasching, Austria) (v/v) in a humidified atmosphere of 5% 

CO2 and 37ºC. Three days prior to harvesting, 3.5 x 105 cells were seeded into 

six-well plates and 24 h later, the medium was changed to phenol red-free 

DMEM/F-12 supplemented with 10% charcoal-dextran treated FBS (Hyclone 

Laboratories, Logan, UT), and treated with EE at 1, 10 or 50 µM for 48 h.

2.3. Transfection and treatment with EE.

The expression vector encoding human ER-α (pCMV5-hERα) and the 

estrogen-responsive reporter plasmid 4XERE-TK-Luc, which contains four 

copies of ERE in front of a thymidine kinase promoter reporter construct, were 

a gift from Dr. Benita Katzenellenbogen (University of Illinois, Urbana-

Champaign, IL). The expression vectors encoding c-JUN and the empty vector
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were a gift from Dr. Beatriz Caputto (Universidad Nacional de Córdoba, 

Córdoba, Argentina). Plasmid DNA was purified by using EndoFree Plasmid 

Maxi kit from Qiagen Sciences (Maryland, USA). HepG2 cells were grown as 

described above. A day before transfection, 3.5 x 105 cells were subcultured 

into 6 well-plates in phenol red-free DMEM/F12 supplemented with 10% 

charcoal stripped FBS and glutamine. Transfections were performed by using 

Lipofectamine2000 (Invitrogen, Carlsbad, CA) following manufacturer’s 

instructions. Cells were transfected with 5 µg of pCMV5-hERα or pCMV5 

(empty vector) as a negative control. In transcription factor over-expression 

experiments, cells were transfected with 4 µg of pCMV5-hERα and 1 µg of c-

JUN plasmids or with their respective empty vectors. To monitor the estrogen-

induced transcriptional activation, cells were subcultured into a 10 cm plate, 

and 24 h later, transfected with 5 µg of the estrogen-responsive reporter 

plasmid 4X ERE-TK-Luc, and 5 µg of pCMV5-hERα or 5 µg of empty vector 

pCMV5 as a negative control. Eighteen h after transfection, the media were 

removed and the cells washed twice with PBS and re-plated in a 96-well plate. 

The cells were treated with vehicle (dimethyl sulfoxide) or estrogens (EE at 1, 

10 or 50 µM or 17β-estradiol at 1, 10 or 100 nM). The final concentration of 

dimethyl sulfoxide was adjusted to 0.08% (v/v). After 48 h, cells were washed 

with PBS and luciferase activity measured using Luciferase Assay System 

following the manufacturer’s protocol (Promega, Madison, WI). For Western 

blot or real time PCR studies, the media were removed 18 h after transfection, 

the cells washed twice with PBS, and replaced with fresh media containing EE 

(1, 10 or 50 µM). After 48 h of incubation, cells were washed with PBS and 

harvested for preparation of whole-cell extract or total RNA extraction.
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2.4. Western blot studies.

HepG2 cells were harvested and lysed in RIPA buffer (Pierce, Rockford, 

IL), 0.1 µM phenylmethylsulfonyl fluoride and 35 nM leupeptin. Nuclear extracts 

were prepared for detection of c-JUN and c-FOS. Briefly, HepG2 cells were 

harvested in sucrose 0.3 M, 0.1 µM phenylmethylsulfonyl fluoride and 35 nM 

leupeptin (Sigma Aldrich Chemical Company, St. Louis, MO), and samples 

sonicated and centrifuged at 500 g for 10 min. The pellets were resuspended in 

RIPA buffer plus protease and phosphatase inhibitors and protein concentration 

measured using bovine serum albumin as standard (19). Equal amounts of cell 

protein extract were resolved on an 8% (to detect MRP3) or 12% (to detect c-

FOS and c-JUN) SDS-PAGE and transferred to nitrocellulose membranes. The 

blots were then exposed to primary antibodies: anti-MRP3 (M3II-21, Sigma, St. 

Louis, MO), anti-ER-α, anti c-JUN, anti c-FOS, anti-histone or anti-β-Actin 

(Santa Cruz Biotechnology Inc., Santa Cruz, CA). Immunoreactive bands were 

detected using a chemiluminescence kit (ECL + Plus, Amersham Pharmacia 

Biotech, Inc., Piscataway, NJ) and quantified using the Gel-Pro Analyzer 

(Media Cybernetics, Silver Spring, MD) software.

2.5. Quantitative Real Time PCR.

Total RNA was isolated from HepG2 cells using Trizol (Invitrogen,

Carlsbad, CA) following the manufacturer’s protocol. cDNA was produced by 

using the SuperScript Preamplification System for first-strand cDNA synthesis 
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according to the manufacturer’s instructions (Invitrogen, Carlsbad, CA). Real-

time quantitative PCR was performed on cDNA samples using the MX3000P 

system (Agilent Technologies, Santa Clara CA, USA) with Platinum Taq DNA 

Polymerase (Invitrogen, Carlsbad, CA). The amount of template was quantified 

with SYBR green (Invitrogen) (20). For MRP3 mRNA amplification the forward 

primer sequence was 5´ gtccgcagaatggacttgat 3´ while the reverse primer 

sequence was 5´ tcaccacttggggatcattt 3´. Results for MRP3 were normalized to 

18S rRNA as housekeeping gene using the following primers: forward 5´

cgccgctagaggtgaaattc 3´ and reverse 5´ ttggcaaatgctttcgctc 3´. All the primers 

were used at a final concentration of 1 µM. The thermocycling regime was 95 

°C for 2 min followed by 40 cycles of 95 °C for 15 s, 55 °C for 30 s and 72 °C 

for 30 s. The amplified product size was 120 and 62 bp for mrp3 and 18S, 

respectively. PCR product sizes were confirmed by gel electrophoresis. 

Relative levels of MRP3 mRNA normalized to 18S rRNA were calculated based 

on the 2-ΔΔCt method. Specificity of the reaction was verified with a dissociation 

curve between 55°C and 95°C with continuous fluorescence measure (20).

2.6. RNA interference experiment.

HepG2 cells (5x104 cells/well) were seeded in 24 well plates, incubated 

at 37°C and subjected to transfection 24 h later. Human c-JUN was transiently 

knocked down with c-JUN siRNA (Santa Cruz Biotechnology, sc-29223), 

targeting the human transcription factor mRNA. Control siRNA-A (Santa Cruz 

Biotechnology, sc-37007), a non-targeting siRNA, was used as a negative 

control. Both groups of cells were transfected also with ER-α plasmid. 
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Transfections were performed using Dharmafect4 Transfection Reaction 

(Dharmacon, Lafayette, CO, USA) according to the manufacturer’s instructions. 

At 24 h post-transfection, the cells were exposed to EE (50 µM) for additional 

48 h, and then harvested and subject to Western blot analyses.

2.7. Co-immunoprecipitation assay.

2.5x106 HepG2 cells were plated into a 100-mm plate, transfected with 

ER-α, and treated as described in section 2.2. They were harvested 48 h after 

EE treatment. Cell lysates and immunoprecipitation were performed using 

Protein A agarose (Roche Applied Science, Germany). The antibodies used for 

immunoprecipitation were anti ER-α, c-JUN or normal rabbit IgG (H-184, SC-

45X, SC-2027, respectively, Santa Cruz Biotechnology, Inc.). Western blotting 

of immunoprecipitated ER-α and c-JUN was performed using anti ER-α or anti 

c-JUN (2Q418, SC-1694, respectively, Santa Cruz Biotechnology, Inc.).

2.8. Chromatin immunoprecipitation (ChIP) assay.

2.5x106 HepG2 cells were plated into a 100-mm plate and transfected 

with ER-α as described above. ER-α transfected HepG2 cells were treated with 

EE (50 µM, 48 h) or vehicle and cross-linked with 1% formaldehyde (37°C, 10 

min). ChIP assay was performed following manufacturer protocol (Upstate 

Biotech, NY) using rabbit antibodies to c-JUN or normal rabbit IgG as a

negative control (SC-45X, SC-2027, respectively, Santa Cruz Biotechnology, 

Inc.). An aliquot of lysates (20 µl) was taken out as input control. DNA was 
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purified by phenol/chloroform extraction and ethanol precipitation. For PCR 

analysis, we used primers that amplify 222 and 183 bp fragments of the human 

mrp3 promoter region from -1300 to -1078 and -501 to -318 bp, relative to the 

transcription start site, which include the two putative AP-1 binding sites ChIP-

1: 5´gagtccgccgtccacaccca3´ and ChIP-2: 5´cttctgtcccgttgtcgcccta3´ for AP-1 

(A) and ChIP-3: 5´tagacattttacccttcccgaa3´ and ChIP-4: 

5´cacatagggtcaagggggaac3´ for AP-1 (B) (Fig 4). The thermocycling regime

was 35 cycles at 95°C for 30 sec, 55°C for 30 sec, and 72°C for 30 sec.

2.9. Statistical Analysis.

Results are expressed as mean ± S.D. Statistical analysis was 

performed using Student t test or one-way ANOVA followed by Newman Keuls 

test. Values of p< 0.05 were considered to be statistically significant.
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3. RESULTS.

3.1. ER-α is necessary for EE to up-regulate MRP3 in HepG2 cells.

HepG2 are well differentiated cells, retain many hepatocyte-specific 

features, and represent a tool for understanding the regulation of MRP3 in a 

human liver cell line (21). We found no changes in MRP3 protein expression at 

any concentrations of EE analyzed (1, 10 or 50 µM) (Fig 1). HepG2 cells 

express ER at low levels that are insufficient for ligands to induce 

transactivation of an ERE-containing synthetic target gene under transient 

transfection conditions (22, 23). We therefore transfected HepG2 cells with a 

plasmid encoding human ER-α, and confirmed ER-α expression by Western 

blotting (data not shown). The activity of ER-α was monitored by introducing an 

estrogen-responsive indicator in which four copies of the ERE were linked to a 

thymidine kinase promoter of a luciferase expression plasmid (4XERE-TK-Luc). 

As shown in Fig 2, EE (upper panel) and 17β-estradiol (positive control, lower 

panel) treatments activated 4XERE-TK-Luc in a dose dependent manner in 

HepG2 cells transfected with ER-α but not in those transfected with the empty 

vector. These data demonstrate that ER-α was active and able to transduce the 

estrogen signal in HepG2 cells. Western blot studies indicate that MRP3 

expression significantly increased (270%) in cells transfected with ER-α and 

incubated with 50 µM EE (Fig 3A), whereas it remained unchanged in the 

empty vector-transfected HepG2 cells at all concentrations of EE tested (Fig 

3B). Real time PCR studies showed an increase in the content of MRP3 mRNA 

in ER-α transfected HepG2 cells incubated with 50 µM EE (180%) with respect 
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to control cells, whereas no changes were observed in empty vector-

transfected cells (Fig 3C).

3.2. Changes in the expression of AP-1 are responsible for MRP3 up-

regulation by EE.

To understand how ER-α might mediate MRP3 induction by EE, we 

performed an in silico analysis using the TFSearch database 

(http://www.cbrc.jp/research/db/TFSEARCH.html). Although we could not 

identify any ERE in the mrp3 promoter sequence, the analysis located two

binding sites for AP-1 (Fig 4). This led us to hypothesize an indirect action of 

the ER-α involving these transcription factors. To test this, we evaluated the 

effect of EE on expression of c-JUN and c-FOS. We found that c-JUN but not c-

FOS protein level was increased in ER-α expressing HepG2 cells after 

treatment with 50 µM EE (Fig 5A-B). To explore if c-JUN up-regulation may be 

a mediator of MRP3 induction, we analyzed the effect of c-JUN over-expression

on MRP3 levels. HepG2 cells were co-transfected with c-JUN together with ER-

α cDNA or their empty vectors as controls. As shown in Fig 5C, over-

expression of c-JUN in ER-α expressing cells led to up-regulation of MRP3, 

even in the absence of incubation with EE, and to a similar extent to that

produced by EE treatment in cells transfected with ER-α only. This same Fig 

also shows that EE treatment of cells overexpressing c-JUN did not further 

increase MRP3 expression when compared with these same cells incubated

with EE vehicle. ER-α non-expressing HepG2 cells did not show any increase

in MRP3 protein levels in response to transfection with c-JUN (Fig 5D). To 
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further confirm that c-JUN modulation is unambiguously involved in MRP3 up-

regulation, we knocked down c-JUN and tested the effect of EE on MRP3 

expression. Figure 6A demonstrates a decrease of 50% in c-JUN protein level

in ER-α-transfected HepG2 cells after treatment with small interference RNA 

(siRNA), either in the presence or absence of EE in the incubation medium. As 

shown in Fig 6B, knock-down of c-JUN prevented from any MRP3 induction by 

EE. In contrast, treatment of control siRNA scrambled-transfected HepG2 cells 

with EE resulted in up-regulation of MRP3 by 230% (Fig 6B). This induction is

similar in extent to that shown above for cells not transfected with siRNA or its 

control (Fig 3A).

3.3. c-JUN interacts with ER and binds to the mrp3 promoter after EE 

stimulus.

The mrp3 proximal promoter region lacks ERE elements but contains 

AP-1 binding consensus elements (Fig 4). Our results strongly suggest that ER-

αpresence and c-JUN up-regulation are needed for EE to induce MRP3 

expression. Because both actions are needed at the same time, we further 

investigated whether EE treatment promotes ER-α/AP-1 interaction. We 

performed co-immunoprecipitation studies in ER-α-transfected HepG2 cells.

We observed that a greater fraction of ER-α co-precipitated with c-JUN in the 

EE treated cells (Fig 7A). This ER-α/c-JUN interaction was confirmed by 

reverse co-immunoprecipitation with ER-α. In this case, the amount of c-JUN

associated with ER-α was greater in EE-treated cells than in control cells (Fig

7B).
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To address whether c-JUN is recruited to the promoter region of mrp3

after EE treatment, we performed ChIP assays using two pairs of primers that 

include the two putative AP-1 binding sites identified in the mrp3 promoter 

region (Fig 4). The data show that specific anti c-JUN antibody, but not the non-

immune IgG control, successfully co-immunoprecipitated c-JUN with significant 

quantities of the mrp3 promoter (-1300/-1078 bp). Interestingly, in cells treated 

with EE, the amount of mrp3 promoter immunoprecipitated with c-JUN

increased significantly (Fig 7C), indicating that EE promotes the binding of AP-1 

to the (-1300/-1078 bp) region of the endogenous mrp3 promoter. No 

amplification product was detected with the primers ChIP 3 and ChIP 4 (-501/ -

318 bp) (data not shown).

4. DISCUSSION.

ER activated by ligand can regulate transcription through either a

classical or a non-classical mechanisms (15). The in silico analysis of the mrp3

promoter region did not show any ERE sequence but showed several potential

binding sites for AP-1. Based on this information, we proposed that EE-

induction of mrp3 transcription is mediated by ER-α acting not on ERE 

sequences but on Sp1 or AP-1 elements (non-classical pathway). Regulation of 

AP-1 activity can be achieved through changes in transcription of genes

encoding AP-1 subunits, independent of changes in its phosphorylation status

(24, 25). We found that c-JUN protein expression was increased in nuclear 

extracts from HepG2 cells transfected with ER-α and incubated with EE, and
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that over-expression of c-JUN led to induction of MRP3 expression to the same 

extent as found under EE treatment conditions. Experiments in c-JUN knock-

down cells confirmed that this transcription factor is indeed involved in MRP3 

up-regulation by EE. Whether AP-1 non-classical pathway is the only 

mechanism mediating MRP3 induction by EE is uncertain, however, the 

experiments showing that MRP3 induction by c-JUN over-expression was not

further exacerbated by EE treatment (Fig 5C), strongly pointed to c-JUN 

induction as a key player.

Several other studies indirectly implicate AP-1 as a key mediator in 

increasing Mrp3/MRP3 expression. AP-1 transcriptional activity is increased 

300% in HepG2 cells after exposure to taurolithocholic acid (26), and could 

explain findings of Teng et al. (27) demonstrating that taurolithocholic acid 

increased MRP3 mRNA in human hepatoma HuH7 cell line. Bile duct ligation in 

mice increases AP-1 binding activity in liver (28), which could be linked to 

studies demonstrating that Mrp3 is up-regulated in liver of bile-duct ligated rats 

(29). Liver of mice treated with lipopolysaccharide showed an increase of AP-1 

binding activity detected by gel shift assays (30), whereas independent studies 

described an up-regulation of Mrp3 after similar treatment in rats (31, 32). It was 

reported that binding of c-Jun to electrophile responsive elements (EpRE)

sequences increased subsequent to 4-hydroxy-2-nonenal exposure in HepG2 

cells (33), and at the same time produces a marked up-regulation of MRP3 in 

human bronchial epithelial and Keap1 wild-type non-small-cell lung carcinoma

(NSCLC) cells (34). Appropriate experiments are needed to establish whether 

AP-1 activation and Mrp3 up-regulation are causally or casually related under 
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conditions different from that of EE treatment. MRP3/Mrp3 up-regulation was 

demonstrated to be an adaptive response to deal with liver toxicity of harmful 

endogenous metabolites, xenobiotics and drugs, either under cholestatic or 

non-cholestatic conditions (7, 35). We proposed AP-1 activation to be a 

significant participant in this adaptive response.

The mechanisms to explain the increased expression of c-JUN by EE, 

and the subsequent interaction with the promoter region of mrp3, remain poorly 

understood. It was demonstrated that human c-Jun promoter region has 

several transcription factor binding sites including AP-1 sites (36), indicating 

that c-Jun could be positively auto-regulated. Oxidative metabolites of EE, i.e., 

the 2-OH and 4-OH catechols, produce reactive oxygen species in rat liver (37), 

which in turn up-regulate AP-1 (38). It is thus possible that these same species 

contribute to AP-1 induction in our experimental conditions. Further studies are 

necessary to elucidate the mechanism of AP-1 up-regulation by EE. Our 

findings demonstrating that the over-expression of AP-1 requires the presence 

of ER-α to induce MRP3 suggest that they might need to interact with each 

other. This hypothesis was confirmed by co-immunoprecipitation assays, which 

further demonstrated that EE likely exacerbated this interaction. Moreover, 

ChIP analysis shows that from the two putative mrp3 promoters containing AP-

1 binding sites, only the distal one (-1300/-1078 bp) binds the complex c-JUN/

ER-α.

In conclusion, the present data demonstrate for the first time that EE 

induce MRP3 in HepG2 cells via ER-α through the non-classical pathway 
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mediated by AP-1. A graphical scheme summarizes the proposed mechanism 

(Fig 8).

ACKNOWLEDGEMENTS:

This work was supported by grants from Agencia Nacional de Promoción 

Científica y Tecnológica [PICT 2011-0360 and PICT 2010-1072], Consejo Nacional 

de Investigaciones Científicas y Técnicas [PIP 112-2008-01-00029/00691], 

Universidad Nacional de Rosario [BIO 214], and Fundación Alberto J. Roemmers, 

Argentina, and by the National Institute of Child Health and Human Development 

[Grant HD58299].

AUTHOR CONTRIBUTIONS.

Participated in research design: Ruiz, Banchio, Mottino, Catania.

Conducted experiments: Ruiz, Rigalli, Arias, Villanueva.

Contributed analytic tools: Banchio, Vore.

Performed data analysis: Ruiz, Rigalli, Mottino, Catania.

Wrote or contributed to the writing of the manuscript: Ruiz, Rigalli, Vore, 

Mottino, Catania.



Page 19 of 37

Acc
ep

te
d 

M
an

us
cr

ip
t

19

REFERENCES

1. König J, Rost D, Cui Y, Keppler D. Characterization of the human 

multidrug resistance protein isoform MRP3 localized to the basolateral 

hepatocyte membrane. Hepatology 1999;29:1156-1163.

2. Akita H, Suzuki H, Hirohashi T, Takikawa H, Sugiyama Y. Transport 

activity of human MRP3 expressed in Sf9 cells: comparative studies with rat 

MRP3. Pharm Res 2002;19:34-41.

3. Hirohashi T, Suzuki H, Sugiyama Y. Characterization of the transport 

properties of cloned rat multidrug resistance-associated protein 3 (MRP3). J 

Biol Chem 1999;274:15181-15185.

4. Hirohashi T, Suzuki H, Takikawa H, Sugiyama Y. ATP-dependent 

transport of bile salts by rat multidrug resistance-associated protein 3 (Mrp3). J 

Biol Chem 2000;275:2905-2910.

5. König J, Nies AT, Cui Y, Leier I, Keppler D. Conjugate export pumps of 

the multidrug resistance protein (MRP) family: localization, substrate specificity, 

and MRP2-mediated drug resistance. Biochim Biophys Acta 1999;1461:377-

394.

6. Kool M, van der Linden M, de Haas M, Scheffer GL, de Vree JM, Smith 

AJ, Jansen G, et al. MRP3, an organic anion transporter able to transport anti-

cancer drugs. Proc Natl Acad Sci U S A 1999;96:6914-6919.

7. Ghanem CI, Ruiz ML, Villanueva SS, Luquita MG, Catania VA, Jones B, 

Bengochea LA, et al. Shift from biliary to urinary elimination of acetaminophen-

glucuronide in acetaminophen-pretreated rats. J Pharmacol Exp Ther 

2005;315:987-995.



Page 20 of 37

Acc
ep

te
d 

M
an

us
cr

ip
t

20

8. Ogawa K, Suzuki H, Hirohashi T, Ishikawa T, Meier PJ, Hirose K, 

Akizawa T, et al. Characterization of inducible nature of MRP3 in rat liver. Am J 

Physiol Gastrointest Liver Physiol 2000;278:G438-446.

9. Chai J, He Y, Cai SY, Jiang Z, Wang H, Li Q, Chen L, et al. Elevated 

hepatic multidrug resistance-associated protein 3/ATP-binding cassette 

subfamily C 3 expression in human obstructive cholestasis is mediated through 

tumor necrosis factor alpha and c-Jun NH2-terminal kinase/stress-activated 

protein kinase-signaling pathway. Hepatology 2012;55:1485-1494.

10. Reyes H, Simon FR. Intrahepatic cholestasis of pregnancy: an estrogen-

related disease. Semin Liver Dis 1993;13:289-301.

11. Vore M. Estrogen cholestasis. Membranes, metabolites, or receptors? 

Gastroenterology 1987;93:643-649.

12. Ruiz ML, Villanueva SS, Luquita MG, Ikushiro S, Mottino AD, Catania 

VA. Beneficial effect of spironolactone administration on ethynylestradiol-

induced cholestasis in the rat: involvement of up-regulation of multidrug 

resistance-associated protein 2. Drug Metab Dispos 2007;35:2060-2066.

13. Ruiz ML, Villanueva SS, Luquita MG, Vore M, Mottino AD, Catania VA. 

Ethynylestradiol increases expression and activity of rat liver MRP3. Drug 

Metab Dispos 2006;34:1030-1034.

14. Ruiz ML, Rigalli JP, Arias A, Villanueva S, Banchio C, Vore M, Mottino 

AD, et al. Induction of hepatic multidrug resistance-associated protein 3 by 

ethynylestradiol is independent of cholestasis and mediated by estrogen 

receptor. Drug Metab Dispos 2013;41:275-280.

15. Marino M, Galluzzo P, Ascenzi P. Estrogen signaling multiple pathways 

to impact gene transcription. Curr Genomics 2006;7:497-508.



Page 21 of 37

Acc
ep

te
d 

M
an

us
cr

ip
t

21

16. Alvaro D, Alpini G, Onori P, Perego L, Svegliata Baroni G, Franchitto A, 

Baiocchi L, et al. Estrogens stimulate proliferation of intrahepatic biliary 

epithelium in rats. Gastroenterology 2000;119:1681-1691.

17. Bohan A, Chen WS, Denson LA, Held MA, Boyer JL. Tumor necrosis 

factor alpha-dependent up-regulation of Lrh-1 and Mrp3(Abcc3) reduces liver 

injury in obstructive cholestasis. J Biol Chem 2003;278:36688-36698.

18. Tzeng SJ, Chang WC, Huang JD. Transcriptional regulation of the rat

Mrp3 gene promoter by the specificity protein (Sp) family members and 

CCAAT/enhancer binding proteins. J Biomed Sci 2005;12:741-761.

19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement 

with the Folin phenol reagent. J Biol Chem 1951;193:265-275.

20. Rigalli JP, Ruiz ML, Perdomo VG, Villanueva SS, Mottino AD, Catania 

VA. Pregnane X receptor mediates the induction of P-glycoprotein by 

spironolactone in HepG2 cells. Toxicology 2011;285:18-24.

21. Chen W, Cai SY, Xu S, Denson LA, Soroka CJ, Boyer JL. Nuclear 

receptors RXRalpha:RARalpha are repressors for human MRP3 expression. 

Am J Physiol Gastrointest Liver Physiol 2007;292:G1221-1227.

22. Hanet N, Lancon A, Delmas D, Jannin B, Chagnon MC, Cherkaoui-Malki 

M, Latruffe N, et al. Effects of endocrine disruptors on genes associated with 

17beta-estradiol metabolism and excretion. Steroids 2008;73:1242-1251.

23. Marino M, Distefano E, Trentalance A, Smith CL. Estradiol-induced IP(3) 

mediates the estrogen receptor activity expressed in human cells. Mol Cell 

Endocrinol 2001;182:19-26.

24. Karin M, Liu Z, Zandi E. AP-1 function and regulation. Curr Opin Cell Biol 

1997;9:240-246.



Page 22 of 37

Acc
ep

te
d 

M
an

us
cr

ip
t

22

25. Wagner EF. AP-1-Introductory remarks. Oncogene 2001;20:2334-2335.

26. Pusl T, Vennegeerts T, Wimmer R, Denk GU, Beuers U, Rust C. 

Tauroursodeoxycholic acid reduces bile acid-induced apoptosis by modulation 

of AP-1. Biochem Biophys Res Commun 2008;367:208-212.

27. Teng S, Jekerle V, Piquette-Miller M. Induction of ABCC3 (MRP3) by 

pregnane X receptor activators. Drug Metab Dispos 2003;31:1296-1299.

28. Bird MA, Lange PA, Schrum LW, Grisham JW, Rippe RA, Behrns KE. 

Cholestasis induces murine hepatocyte apoptosis and DNA synthesis with 

preservation of the immediate-early gene response. Surgery 2002;131:556-563.

29. Donner MG, Keppler D. Up-regulation of basolateral multidrug resistance 

protein 3 (Mrp3) in cholestatic rat liver. Hepatology 2001;34:351-359.

30. Trauner M, Arrese M, Lee H, Boyer JL, Karpen SJ. Endotoxin 

downregulates rat hepatic ntcp gene expression via decreased activity of critical 

transcription factors. J Clin Invest 1998;101:2092-2100.

31. Cherrington NJ, Slitt AL, Li N, Klaassen CD. Lipopolysaccharide-

mediated regulation of hepatic transporter mRNA levels in rats. Drug Metab 

Dispos 2004;32:734-741.

32. Donner MG, Warskulat U, Saha N, Haussinger D. Enhanced expression 

of basolateral multidrug resistance protein isoforms Mrp3 and Mrp5 in rat liver 

by LPS. Biol Chem 2004;385:331-339.

33. Levy S, Jaiswal AK, Forman HJ. The role of c-Jun phosphorylation in 

EpRE activation of phase II genes. Free Radic Biol Med 2009;47:1172-1179.

34. Mahaffey CM, Zhang H, Rinna A, Holland W, Mack PC, Forman HJ. 

Multidrug-resistant protein-3 gene regulation by the transcription factor Nrf2 in 



Page 23 of 37

Acc
ep

te
d 

M
an

us
cr

ip
t

23

human bronchial epithelial and non-small-cell lung carcinoma. Free Radic Biol 

Med 2009;46:1650-1657.

35. Villanueva SS, Ruiz ML, Soroka CJ, Cai SY, Luquita MG, Torres AM, 

Sanchez Pozzi EJ, et al. Hepatic and extrahepatic synthesis and disposition of 

dinitrophenyl-S-glutathione in bile duct-ligated rats. Drug Metab Dispos 

2006;34:1301-1309.

36. Angel P, Hattori K, Smeal T, Karin M. The jun proto-oncogene is 

positively autoregulated by its product, Jun/AP-1. Cell 1988;55:875-885.

37. Yager JD. Endogenous estrogens as carcinogens through metabolic 

activation. J Natl Cancer Inst Monogr 2000:67-73.

38. Dalton TP, Shertzer HG, Puga A. Regulation of gene expression by 

reactive oxygen. Annu Rev Pharmacol Toxicol 1999;39:67-101.



Page 24 of 37

Acc
ep

te
d 

M
an

us
cr

ip
t

24

FIGURE LEGENDS

Figure 1: MRP3 protein expression in wild type HepG2 cells. Cells were 

incubated with 17α-ethynylestradiol (EE 1, 10 or 50 µM, 48 h) or vehicle (C). 

MRP3 was detected by Western blotting. Equal amounts of protein (15 µg) were 

loaded in all lanes. Uniformity of protein loading and transfer from gel to 

nitrocellulose membrane were controlled with Ponceau S and detection of β-

actin. Densitometric analyses represent means ± SD of 4 independent 

experiments.

Figure 2: Activity of estrogen receptor-α (ER-α) in transfected HepG2 cells.

HepG2 cells were transfected with expression plasmid vectors for ER-α or 

empty vector together with an estrogen reporter gene (4XERE-TK-Luc), and 

treated with the indicated concentrations of 17α-ethynylestradiol (EE, upper 

panel) or 17β-estradiol (E2, lower panel). Data represent mean ± SD of 4

independent experiments. a: Significantly different from control, p<0.05.

Figure 3: MRP3 protein expression in ER-α-transfected HepG2 cells.

A- MRP3 protein expression in HepG2 transfected with estrogen receptor-α 

(ER-α) vector.

B- MRP3 protein expression in HepG2 transfected with empty vector. Cells 

were incubated with 17α-ethynylestradiol (EE) or vehicle [control (C)] for 48 h. 

Equal amounts of protein (15 µg) were loaded in all lanes. Uniformity of protein 

loading and transfer from gel to nitrocellulose membrane were controlled with 

Ponceau S and detection of β-actin. Densitometric analyses represent means ± 
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SD of 4 independent experiments. a: significantly different from C, p<0.05. b: 

significantly different from 17α-ethynylestradiol (EE) 1 µM, p<0.05.

C- MRP3 mRNA expression in HepG2 cells transfected with ER-α or empty 

vector. Cells were incubated with EE (50 µM) or vehicle (C) for 48 h and mRNA 

levels were detected by real time PCR. Data are presented as a percent of 

control (100%) and were expressed as means ± SD of 4-6 independent 

experiments. 18S rRNA was used as an internal control. a: significantly different 

from C, p<0.05

Figure 4: MRP3 proximal promoter region analysis. Consensus elements for

AP-1 nuclear factors identified by TF-Search database are underlined. Numbers 

represent the positions of nucleotides in relationship to the transcription 

initiation site +1 indicated by arrows. ChIP 1, ChIP 2, ChIP 3 and ChIP 4 

represents the primers utilized in ChIP assay.

Figure 5: Involvement of c-JUN in MRP3 induction.

A- c-JUN, and B- c-FOS, protein expression in nuclear extracts from HepG2 

cells transfected with estrogen receptor-α (ER-α) and incubated with EE (50 

µM) or vehicle (C).

C- HepG2 cells transfected with ER-α vector (ERα (+)), and D- HepG2 cells 

transfected with empty vector (ERα (-)), were transfected with c-JUN (c-JUN 

(+)) or empty vector (c-JUN (-)), and incubated with EE (50 µM) or vehicle (C). 

MRP3 protein expression was then assessed by Western blotting in cell lysates.

Equal amounts of protein (5 µg for nuclear extracts and 15 µg for total lysates) 

were loaded in all lanes. Uniformity of protein loading and transfer from gel to 
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nitrocellulose membrane were controlled with Ponceau S and detection of 

histone or β-actin. Densitometric analyses represent means ± SD of 4 

independent experiments. a: significantly different from c-JUN(-) C, p<0.05.

Figure 6: MRP3 and c-JUN protein expression in c-JUN knock down HepG2 

cells.

A- c-JUN protein expression in nuclear extracts from HepG2 cells transfected 

with ER-α and c-JUN siRNA (c-JUN-) or siRNA scramble (c-JUN+).

B- MRP3 protein expression in cell lysates from HepG2 cells transfected with 

ER-α and c-JUN siRNA (c-JUN-) or siRNA scramble (c-JUN+).

Cells were incubated with 17α-ethynylestradiol (EE, 50 µM for 48 h) or vehicle 

(control (C)).

Equal amounts of protein (5 µg for nuclear extracts and 15 µg for total lysate) 

were loaded in all lanes. Uniformity of protein loading and transfer from gel to 

nitrocellulose membrane were controlled with Ponceau S and detection of 

histone or β-actin. Densitometric analyses represent means ± SD of 4 

independent experiments. a: significantly different from c-JUN (+) and c-JUN (-) 

EE, p<0.05. b: significantly different from c-JUN (+) C, c-JUN (-) C and c-JUN (-

) EE, p<0.05.

Figure 7: Interaction of ER-α with c-JUN and recruitment of c-JUN to MRP3 

promoter. ER-α-transfected HepG2 cells were treated with EE (50 µM, 48 h) or 

vehicle (control (C)). Co-immunoprecipitation assays were performed by 

treating cell lysates with either c-JUN antibody or normal rabbit IgG followed by 

Western blot detection of ER-α (A) or by treating cell lysates with either ER-α 
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antibody or normal rabbit IgG followed by Western blot detection of c-JUN (B). 

The inputs represent 2% of total proteins in the cell lysates. (C) ChIP assay for 

detection of c-JUN association to MRP3 promoter. An unrelated antibody, anti 

IgG, was used as control. Similar results were obtained in a separated 

experiment.

IP: immunoprecipitation.

Figure 8: ER-α and c-JUN mediation of human MRP3 up-regulation by 17-

α-ethynylestradiol (EE). The graphical scheme represents a sequence of 

events starting with EE treatment of the HepG2 cells and leading ultimately to 

induction of human MRP3 protein expression. As a first step of this sequence, 

EE induces up-regulation of a major component of AP-1, c-JUN. Secondly, in 

order to induce the expression of MRP3, c-JUN interacts with ER-α and the 

resulting complex is recruited to a specific promoter region of the human mrp3

gene. On this regard, two putative regions were found to be potential targets for 

the complex to bind to, but only one of them showed to be involved in the 

current experimental conditions.
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FOOTNOTES.

These experiments were partially presented as a poster in the 47th

International Liver Congress 2012 in Barcelona, Spain. The presentation was 

selected as TOP 10% by the EASL committee.

Abbreviations: MRP3, multidrug resistance-associated protein 3; EE, 17α-

ethynylestradiol; ER, estrogen receptor; AP-1, activating protein-1; DMEM, 

Dulbecco´s Modified Eagle´s Medium; FBS, fetal bovine serum; ERE, estrogen 

response elements.
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http://ees.elsevier.com/bcp/download.aspx?id=308956&guid=5a7a8f79-f220-4aeb-adbd-a96c0ef17187&scheme=1
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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*Graphical Abstract (for review)
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