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Abstract. Let D be the Drinfeld double of the bosonization B(V )#kG of a finite-
dimensional Nichols algebra B(V ) over a finite group G. It is known that the simple
D-modules are parametrized by the simple modules over D(G), the Drinfeld double of G.
This parametrization can be obtained by considering the head L(λ) of the Verma module
M(λ) for every simple D(G)-module λ. In the present work, we show that the projective
D-modules are filtered by Verma modules and the BGG Reciprocity [P(µ) : M(λ)] =
[M(λ) : L(µ)] holds for the projective cover P(µ) of L(µ). We use graded characters to
prove the BGG Reciprocity and obtain a graded version of it. As a by-product we show
that a Verma module is simple if and only if it is projective. We also describe the tensor
product between projective modules.

1. Introduction

The representation theory of the universal enveloping algebras of Lie algebras
has plenty of powerful and beautiful methods and results which have served as
inspiration to the study of modules over many other algebras. The first property
that was extended to other contexts is that the simple modules are in bijective
correspondence with the simple modules of the Cartan subalgebra. This was made
by several authors for the Drinfeld double D of the bosonization B(V )#kG of a
finite-dimensional Nichols algebra B(V ) over a finite group G; see for instance
[8], [5], [31], [18] for G abelian, and [23], [24], [28] for general G. In these works
D(G), the Drinfeld double of the underlying group, plays the role of the Cartan
subalgebra. Namely, let Λ be a complete set of non-isomorphic simple D(G)-
modules and M(λ) denote the generalized Verma module of λ ∈ Λ. Then, the
head L(λ) of M(λ) is simple and every simple D-module can be obtained in this
way, see loc. cit.
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Here we continue this approach and investigate the projective modules over D.
We obtain the following results.

(I) Every projective D-module P has a (graded) standard filtration.

That is, there is a sequence of (graded) submodules 0 = N0 ⊂ N1 ⊂ · · · ⊂ Nn = P
such that each Ni/Ni−1 is isomorphic to a Verma module. We denote by [P : M(λ)]
the numbers of subquotients isomorphic to the Verma module M(λ), λ ∈ Λ.

(II) The BGG Reciprocity holds in our setting.

More precisely, let P(µ) be the projective cover of L(µ), µ ∈ Λ (it exists because D
is a finite-dimensional algebra over an algebraically closed field k of characteristic
zero). Then, for all λ ∈ Λ,

[P(µ) : M(λ)] = [M(λ) : L(µ)]

where the last square brackets denote the numbers of occurrences of L(µ) as
composition factor of M(λ).

We also give analogous results to (I) and (II) for co-Verma modules. As conse-
quence, we show that

(III) A Verma module is simple if and only if it is projective.
(IV) The tensor product between projective modules is isomorphic to the in-

duced module from a semisimple D(G)-module.

The BGG Reciprocity has its origin in the work of Bernstein–Gelfand–Gelfand
[10] for modules in the category O. To achieve our goals we imitate the strategy in
[19, Sect. 3] developed by Irving [20], who has also defined axiomatically a class of
highest weight categories for which the BGG Reciprocity holds [21]. However, our
algebra D does not completely fit in these frameworks. Indeed, a highest weight
category has finite global dimension but a finite-dimensional non-semisimple Hopf
algebra is Frobenius and then it has infinite global dimension.

A more general definition of highest weight category was given by Kleshchev
[22]. Although this can have infinite global dimension, there must exist a partial
order ≤ on Λ such that µ ≤ λ if L(µ) is a composition factor of the Verma module
M(λ), as in the definition of Cline–Parshall–Scott [13]. This property may fail
in our case. For instance, if B(V ) is the Fomin–Kirillov algebra FK3 and G is
the symmetric group S3, we have shown that the composition factors of M(τ, 0)
and M(e, ρ) are the same: L(τ, 0), L(σ,−) and L(e, ρ) [28, Thms. 9 and 10]. Then,
such an order on Λ will imply that (τ, 0) = (e, ρ), a contradiction. The order
also ensures that the simple modules are identified by their characters but the
characters of L(τ, 0) and L(e, ρ) are equal [28, Cors. 22 and 24].

After this work appeared, Bellamy and Thiel [9] introduced a highest weight
theory for finite-dimensional graded algebras with triangular decomposition. They
show that the category of graded modules over such an algebra is highest weight.
They noted that D fits in their framework [9, Sect. 8.5] and hence some of our
results can be deduced. As D is a finite-dimensional Hopf algebra, there are some
peculiarities in this setting which are not present in [9] but are instrumental in our
proofs. For instance, (a) the dual of a Verma module is isomorphic to a Verma
module and (b) the tensor product between a Verma module and a co-Verma
module is the induced module from a semisimple D(G)-module (Lemma 4).
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Let us summarize the main ideas in the present work. First, we observe that
the Nichols algebra B(V ) is finite-dimensional and graded. Thus, we can consider
graded characters that allow us to distinguish the simple modules (Theorem 9)
since they are characterized by their highest-weights. The finiteness assumption
is useful to lead to the standard filtrations of projective modules (Theorem 15)
using (b). It also implies that the homogeneous component of maximal degree in
B(V ) is one-dimensional. We use this fact to prove that the set of Verma modules
is closed by taking duals (see (10)). Then, we find some identities among the
graded characters of a Verma module, its dual and a co-Verma module (Theorem
10). As a consequence we give a graded version of the BGG Reciprocity similar
to [22, Thm. 7.6]. More explicitly, for all λ, µ ∈ Λ there exist Laurent polynomials
pP(µ),M(λ), pM(λ),L(µ) ∈ Z≥0[t, t−1] such that the graded characters of P(µ) and
M(λ) satisfy

ch• P(µ) =
∑
λ∈Λ

pP(µ),M(λ) ch•M(λ) and ch•M(λ) =
∑
µ∈Λ

pM(λ),L(µ) ch• L(µ)

in the ring ZΛ[t, t−1]. Then, we show in Corollary 12 that

pP(µ),M(λ) = pM(λ),L(µ)

in the ring Z[t, t−1], where the ring automorphism ( ) : Z[t, t−1] → Z[t, t−1]
interchanges t and t−1. By evaluating these polynomials at t = t−1 = 1 we obtain
the BGG Reciprocity (Theorem 15).

Finally, we point out some by-products of our results. Let us assume that we
know the graded characters of the simple modules. Then, we can deduce the graded
structure of the indecomposable projective modules from the graded version of the
BGG Reciprocity. Moreover, we can infer the tensor product between simple and
projective modules from the multiplication of their graded characters in the ring
ZΛ[t, t−1]. We carry out this plan for B(V ) = FK3 and G = S3 jointly with
Barbara Pogorelsky in [29].

The article is organized as follows. We set our conventions and notations in
Section 2, and state immediate properties of the D-modules. We consider the
graded characters in Section 3. The results (I)–(IV) are proved in Section 4. We
give some examples in Section 5.

Acknowledgments. I thank N. Andruskiewitsch for the interesting and guiding
discussions, and his comments which helped me improve this work. Also, I want to
thank I. Angiono and V. Ostrik for the useful conversations. Part of this work was
carried out during a visit to the University of Antwerp. I am grateful to F. Van
Oystayen and Y. Zhang for their warm hospitality and interesting discussions.
Finally, I thank the referees for the careful reading of the manuscript and for
pointing out the reference [16] for Lemma 5.

2. Preliminaries

We assume that the reader is familiar with Hopf algebras and Nichols algebras.
For a survey on Nichols algebras we refer to [6].
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Throughout this work we adopt the conventions and notations from [28, Sect.
3] about finite quantum groups which we briefly recall below. Although the results
in [28] were stated for non-abelian groups, they also hold for abelian groups. These
were proved for instance in [8], [5], [31], [18], [23], [24] by different methods.

Let k be an algebraically closed field of characteristic zero. We fix a finite group
G and a Yetter–Drinfeld module V ∈ kG

kGYD such that its Nichols algebra B(V ) is
finite-dimensional. Let B(V ) be the Nichols algebra of the Yetter–Drinfeld module

V ∈ kG
kGYD determined by the isomorphism

B(V )#kG ' (B(V )#kG)∗op.

We denote by D the Drinfeld double of the bosonization B(V )#kG and by
D(G) the Drinfeld double of kG. Then B(V )#kG and D(G) are Hopf subalgebras
of D. Moreover, D admits a triangular decomposition, i.e., the multiplication gives
a linear isomorphism

B(V )⊗D(G)⊗B(V )→ D.

The usual Z-grading on the Nichols algebras induces a Z-grading on D by setting

Dn =
⊕
n=j−i

Bi(V )⊗D(G)⊗Bj(V ).

Via the adjoint action in D, V identifies with the dual object of V in the category
of D(G)-modules. Moreover, it holds that

Bn(V ) ' Bn(V )∗ (1)

as D(G)-modules for all n ≥ 0, see the remark below.
The Hopf subalgebra D≥0 generated by B(V ) and D(G) satisfies

D≥0 ' B(V )#D(G).

Analogously, we will consider the Hopf subalgebra

D≤0 ' B(V )#D(G).

Remark 1. In [28, Lem. 11(iii) and (iv)] we claim that B(V ) and B(V ) are the
Nichols algebras of V and V in D(G)M, and B(V ) is isomorphic to B(V )∗bop in

D(G)M, the category of D(G)-modules. However, we made a mistake in the proof
and these properties do not hold. The correct version of them is the following.

(i) B(V ) is isomorphic to the Nichols algebra B(V , c−1) corresponding to the
dual object of V in D(G)M and the inverse braiding of the usual one in

D(G)M.

(ii) There is an isomorphism B(V )'B(V , c) of algebras in D(G)M. Moreover,

their defining ideals coincide in the tensor algebra T (V ).

(iii) Bn(V ) ' Bn(V )∗ as D(G)-modules for all n ≥ 0, that is (1).
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In fact, (i) is a straightforward computation, (ii) follows like [4, Lem. 1.11] and
(iii) is a consequence of (ii) and [3, Prop. 3.2.30].

The comultiplication in D satisfies

∆(x) ∈ x⊗ 1 + gx⊗x+
n−1∑
i=1

(D≤0)i−n⊗(D≤0)−i, (2)

for all x ∈ Bn(V ) where gx ∈ G, and

∆(y) ∈ y⊗ 1 + y(−1)⊗ y(0) +

n−1∑
i=1

(D≥0)n−i⊗(D≥0)i (3)

for all y ∈ Bn(V ) where y(−1)⊗ y(0) is the coaction of y since Bn(V ) ∈ kG
kGYD.

Let ntop be the maximal degree of the Nichols algebra B(V ). The homogeneous
component Bntop(V ) is one-dimensional and coincides with the space of integrals.
We fix a non-zero monomial xtop = x1 · · ·xntop

∈ Bntop(V ) with xi ∈ V . The
antipode S applied to this element is

S(xtop) = (−1)ntop(g−1
xtop

xntop
) · · · (g−1

1 x1) = c xtopg
−1
xtop

(4)

for some non-zero scalar c.
The maximal degree of B(V ) also is ntop. We fix a basis element ytop of

Bntop(V ).
Let β1 and β2 be non-zero right integrals of B(V )#kG and B(V )#kG, respecti-

vely. According to our convention, D∗ ' (B(V )#kG)⊗(B(V )#kG) as algebras.
Then β = β1⊗β2 is a non-zero right integral of D∗.

The Drinfeld double of a finite-dimensional Hopf algebra is a symmetric algebra,
see [25, p. 488] and [27], [30]. That is, D has a non-degenerate bilinear form (−,−)
which is associative and symmetric. It is known that (a, b) = β(ab) for all a, b ∈ D.
Hence (Dn,Dm) = 0, if n+m 6= 0.

An important property of a symmetric algebra is that the socle and the head
of every indecomposable projective are isomorphic, see for instance [14, (9.12)].

Conventions. In this work we consider finite-dimensional left modules over D.
When there is no place for confusion, we will refer to them just as modules. We
will use N, N′, N1, ... to denote them. Projective D-modules are injective (and vice
versa) because D is Frobenius. We will consider the D-modules as D≤0-modules
or D(G)-modules by restricting the action. We will use N to denote the D(G)-
modules.

Let N be a module and N a D(G)-submodule. We emphasize that the action
B(V )⊗N → N is a morphism of D(G)-modules, cf. [28, Equation (31)], and in
particular so is kxtop⊗N → N.

2.1. Weights

We fix a representative set Λ of isomorphism classes of simple D(G)-modules.
We call weights the elements of this set. The counit ε of D(G) gives the trivial
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representation. Then, by abuse of notation, we assume that ε ∈ Λ. The dual
weight of λ will be denoted λ∗.

It is well known that the weights are parametrized by conjugacy classes Og and
irreducible representations % of the centralizer of g ∈ G, see, e.g., [3]. For instance,
for G abelian, the weights are one-dimensional and are in bijective correspondence
with G×Ĝ where Ĝ is the group of characters of G. For G non-abelian, the weight
λ = M(g, %) attached to the pair (g, %) has dimension #Og · dim %.

Let N be a D(G)-module and λ ∈ Λ. We define

[N : λ] = dim HomD(G)(λ,N). (5)

We say that λ is a weight of N if [N : λ] 6= 0. Since D(G) is a semisimple algebra,
N = ⊕λ∈Λ[N : λ] ·λ. In particular, any module over D, D≥0 and D≤0 decomposes
as D(G)-module into the direct sum of its weights.

Let K be the Grothendieck ring of the category of D(G)-modules. This was
described in [33], and anticipated in [26]. We think of K as the free abelian group
generated by Λ. Then the character of N is the element in K

chN =
∑
λ∈Λ

[N : λ] · λ.

The product in K between λ, λ′ ∈ Λ is given by the tensor product

λ · λ′ = ch(λ⊗λ′).

Then ε is the unit of K. For G non-abelian λ⊗λ′ could not belong to Λ but it
decomposes into the direct sum of weights. Recall that K is a commutative ring
because D(G)M is a braided category.

2.2. Highest and lowest weights

A weight is a simple D≥0-module if we let B(V ) act via the counit. In this case,
we call it a highest-weight. Up to isomorphisms, all the simple D≥0-modules are
highest-weight. A module generated by a highest-weight is called highest-weight
module. Notice that the tensor product of highest-weights decomposes into the
direct sum of highest-weights since ∆(V ) ⊂ V⊗1 + kG⊗V .

Similarly, we consider weights as D≤0-modules and call these lowest-weights. In
particular, the space of lowest-weights of a D≤0-module N coincides with its socle

socD≤0 N = {n ∈ N | V · n = 0} ' ⊕λ∈Λ dim HomD≤0(λ,N) · λ. (6)

Since the maximal degree component of a Nichols algebra is one-dimensional,

λV = chBntop(V ) and λV = chBntop(V )

are one-dimensional weights. These are the unique lowest-weight and highest-
weight of the regular left modules D≤0D≤0 and D≥0D≥0. Tensoring by λV induces
a bijection between weights because (1) implies

λV = λ∗V and hence λV · λV = ε.
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2.3. Verma modules

We fix a weight λ ∈ Λ. The corresponding Verma module [28, Def. 12] is the
induced module

M(λ) = D⊗D≥0λ. (7)

It is a highest-weight module and any highest-weight module of weight λ is a
quotient of it. By the triangular decomposition, we see that

M(λ) ' B(V )⊗λ

as D(G)-modules and it is a free B(V )-module and inherits the Z-grading from D.

Verma modules as D≤0-modules. Clearly, we have that

M(λ) ' D≤0⊗D(G)λ (8)

and, since the top degree of a Nichols algebra is one-dimensional,

socD≤0 M(λ) = Bntop(V )⊗λ ' λV · λ. (9)

Lemma 1. As D≤0-module, M(λ) is the projective cover of the lowest-weight λ
and the injective hull of the lowest-weight λV · λ.

Proof. By (8), M(λ) is an induced module from a semisimple algebra and hence it
is projective. Also, it is injective because D≤0 is a finite-dimensional Hopf algebra.
By (9), M(λ) is indecomposable and the lemma follows. �

The next remark is very useful and follows directly from (8).

Remark 2. A morphism f : M(λ) → N of D-modules is injective if and only if
xtop · f(λ) 6= 0.

The dual of a Verma module. For all λ ∈ Λ it holds that

M(λ)∗ ' M ((λV · λ)∗) . (10)

In fact, we can see that (Bntop(V )⊗λ)∗ ' (λV⊗λ)∗ is a highest-weight of M(λ)∗

by using the Z-grading. This induces a morphism f : M((λV · λ)∗) → M(λ)∗. We
apply f to socD≤0 M ((λV · λ)∗) and evaluate in the space 1⊗λ ⊂ M(λ):

〈xtop · f((λV · λ)∗), 1⊗λ〉 = 〈(Bntop(V )⊗λ)∗,S(xtop)⊗λ〉
= 〈(Bntop(V )⊗λ)∗, xtop⊗g−1

xtop
· λ〉 6= 0;

here we use (4) and the fact that the action of g−1
xtop

is bijective on λ. Therefore
(10) follows from Remark 2 using the finiteness assumption.

For all 0 ≤ j ≤ ntop, we immediately deduce from (10) that

(Bntop−j(V )⊗λ)∗ ' Bj(V )⊗(λV · λ)∗ (11)

as D(G)-modules. Using (1), we can rewrite the above isomorphism as

Bntop−j(V )⊗λ∗ '
(
Bj(V )⊗(λV · λ)

)∗
. (12)
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The co-Verma modules. Let us consider λ as a lowest-weight. We set

W(λ) = D⊗D≤0λ ' B(V )⊗λ, (13)

where the isomorphism is of D(G)-modules and it inherits the Z-grading from D.

2.4. Simple modules

The Verma modules have simple head and simple socle. This is a well-known fact,
see for instance [8], [5], [31], [18] for G abelian, and [23], [24], [28] for general G.
Therefore the simple D-modules are in bijective correspondence with Λ.

The co-Verma modules have analogous properties to the Verma modules. In
fact, we can see that W(λ) have simple head and simple socle as in the proof of
[28, Thms. 3 and 4]. These are isomorphic to the socle and the head of M(λV ·λ),
respectively. Also, they are indecomposable projective as D≥0-modules.

We adopt the next conventions.

• L(λ) is the head of M(λ). It is the unique simple highest-weight module of
weight λ. It inherits the Z-grading from M(λ) [28].

• S(λ) is the socle of M(λ). It is the unique simple lowest-weight module of
weight λV · λ. The lowest-weight of S(λ) is realized by Bntop(V )⊗λ.

• λ denotes the lowest-weight of L(λ). Then the assignment λ 7→ λ is a bijection
in Λ.

• We think of M, W, L and S (and also P and Ind, see below) as maps from K
to DM which transform sums of weights into direct sums of modules. We will
use this fact to abbreviate the notation. For instance, we will write M(λ · µ)
instead of ⊕ini ·M(λi) if λ · µ =

∑
i niλi.

Then

L(λ) ' S(λV · λ) and L(λ)∗ ' L
(
λ
∗)
, (14)

the first isomorphism follows by the characterization of the simple modules and
the second one follows by [28, Thm. 5].

2.5. Projective modules

The next lemma is inspired by [25, Lem. 2.4].

Lemma 2. Let P be projective. Then

socD≤0 P '
⊕

λ∈Λ dim HomD≤0(λ,P) · λ,

if and only if, as D≤0-modules,

P '
⊕

λ∈Λ dim HomD≤0(λ,P) ·M
(
λV · λ

)
.

Proof. Since D is free over D≤0, P is D≤0-projective. Hence P decomposes into
the direct sum of indecomposable projective D≤0-modules, which are precisely the
Verma modules by Lemma 1. Then, the lemma follows using (9). �
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Definition 1. Given a weight λ, P(λ) denotes the projective cover of the simple
highest-weight module L(λ).

Lemma 3. Let λ be a weight. Then

(i) P(λ) is the injective hull of L(λ).
(ii) P(λ) is the projective cover of M(λ).

(iii) P(λ) is the injective hull of M
(
λV · λ

)
.

(iv) P(λ) is the projective cover of W(λ).
(v) P(λ) is the injective hull of W (λV · λ).

(vi) P(λ)∗ ' P
(
λ
∗)

.

Proof. (i) holds because D is a symmetric algebra.
(ii), (iii) As the Verma modules have simple socle and simple head, we can

deduce that P(λ) is the projective cover of M(λ) and the injective hull of M(λV ·λ),
see for instance [14, (6.25)].

We show (iv) and (v) in a similar way, cf. (13).
(vi) is a consequence of (i) and (14) because P(λ)∗ is the injective hull of L(λ)∗.

�

By the above lemma we have the next commutative diagrams of injective and
surjective morphisms:

M(λV · λ)

P(λ)W
(
λV · λ

)
L(λ) M(λ)P(λ)

W(λ) L(λ)

. (15)

We deduce from the morphisms in the first rows that

λ and λV · λ are weights of socD≤0 P(λ). (16)

The numbers of occurrences of L(λ) as composition factor of N will be denoted by
[N : L(λ)]. It is known that [N : L(λ)]=dim HomD(P(λ),N)=dim HomD(N,P(λ)),
the last equality is thanks to Lemma 3(i).

2.6. Induced modules

Definition 2. Given a weight λ, Ind(λ) denotes the induced module D⊗D(G)λ.

We can consider Ind(λ) as a submodule of the left regular module DD since
D(G) is a semisimple subalgebra. Moreover, it is a direct summand and hence
projective. Then

Ind(λ) = ⊕µ∈Λ[L(µ) : λ] · P(µ). (17)

In fact, if λ is a weight of L(µ), then there is a non-trivial epimorphism f : Ind(λ)→
L(µ) just by the definition of induced module. Thus f factors through P(µ)
and we deduce (17) because of the Frobenius reciprocity HomD(Ind(λ), L(µ)) '
HomD(G)(λ, L(µ)).
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The triangular decomposition of D gives linear isomorphisms

Ind(λ) ' B(V )⊗B(V )⊗λ ' B(V )⊗B(V )⊗λ (18)

and Ind(λ) inherits the Z-grading of D. Therefore we see that

socD≤0 Ind(λ) ' λV⊗B(V )⊗λ. (19)

Hence, by Lemma 2, we have the next isomorphism of D≤0-modules:

Ind(λ) ' M
(
chB(V ) · λ

)
. (20)

Lemma 4. Let λ, µ be weights and

f : Ind(λ · µ)→W(λ)⊗M(µ)

the morphism induced by λ⊗µ ∼→ (1⊗λ)⊗(1⊗µ). Then f is an isomorphism.

Proof. We will see that f is injective using Remark 2 and hence f is an isomorphism
because the modules have the same dimension.

Let z ∈ socD≤0 Ind(λ · µ). By (19), z = xtop

∑
i yi(hi⊗ki) where yi ∈ B(V ) and

(hi⊗ki) ∈ λ⊗µ. Then

f(z) = xtop

∑
(yihi)⊗ki ∈

∑
gxtop(yihi)⊗(xtopki) + W(λ)⊗

(⊕ntop−1
i=0 M−i(µ)

)
,

using that µ is a highest-weight, (2) and (3). Then f is injective in socD≤0 Ind(λ·µ)
because gxtop

⊗gxtop
⊗xtop : B(V )⊗λ⊗µ→ B(V )⊗λ⊗Bntop(V )µ is injective. �

2.7. Tensor identity

The next lemma is well known, see for instance [16, Prop. 1.7] and the remark
after it.

Lemma 5. Let A be a Hopf algebra and B a Hopf subalgebra of A. Let N be an
A-module, U a B-module and U⊗N →

(
A⊗BU

)
⊗N the inclusion of B-modules

given by u⊗n 7→ 1⊗u⊗n. Then the induced morphism

f : A⊗B
(
U⊗N

)
→
(
A⊗BU

)
⊗N

is an isomorphism of A-modules.

We can apply the above to A = D and B = D≥0.

Lemma 6. Let M(λ) be a Verma module and µ a highest-weight of a module N.
Then M(λ · µ) is a submodule of M(λ)⊗N.

Proof. By assumption we have an inclusion λ⊗µ→ λ⊗N of D≥0-modules and the
functor D⊗D≥0(−) is exact because D is a free D≥0-module. Then

M(λ · µ) = D⊗D≥0(λ⊗µ)→ D⊗D≥0(λ⊗N)

is an inclusion of D-modules and the lemma follows by Lemma 5. �

Lemma 7. Let P be the injective hull of M
(
λV · λ · µ

)
for some weights λ and µ.

Then P is a direct summand of P(λ)⊗L(µ).

Proof. By Lemma 3 iii, P(λ) is the injective hull of M(λV · λ). By Lemma 6,
M
(
λV · λ · µ

)
is a submodule of P(λ)⊗L(µ). Since P(λ)⊗L(µ) is injective, the

lemma follows. �
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3. Graded modules

We start by summarizing some notions about graded modules.
Let N =

⊕
i∈Z N(i) be a Z-graded D-module, that is Dn · N(i) ⊆ N(n + i) for

all n, i ∈ Z. A morphism f : N → N′ between Z-graded D-modules has degree `
if f(N(i)) ⊆ N′(i+ `). The space of such morphisms is denoted by Hom•D(N,N′)`.
Thus, the morphisms in the category of Z-graded D-modules are the 0-degree ones.
The `-shift T` is an endofunctor in the category of Z-graded D-modules such that
N[`] = T`(N) is N as D-module with homogeneous components N[`](i) = N(i − `)
for all i ∈ Z. These functors satisfy T` ◦ T`′ = T`+`′ for all `, `′ ∈ Z.

The Hom-spaces satisfy Hom•D(N[`],N′)0 = Hom•D(N,N′)` = Hom•D(N,N′[−`])0

and

HomD(N,N′) =
⊕

`∈Z Hom•D(N,N′)`. (21)

Given a Laurent polynomial p =
∑
i∈Z ait

i ∈ Z≥0[t, t−1], we set

p · N =
⊕

i∈Z ai · Ti(N).

This induces an action of Z[t, t−1] over the Grothendieck ring R• of the category
of Z-graded D-modules.

The modules L(λ)[i], with λ ∈ Λ and i ∈ Z, form a complete set of non-
isomorphic simple Z-graded D-modules.

Since each N(i) is a D(G)-module, we define the graded character of N by setting

ch• N =
∑
i∈Z

chN(i) ti ∈ K[t, t−1]. (22)

Clearly, there exist unique pN,λ ∈ Z[t, t−1], λ ∈ Λ, such that

ch• N =
∑
λ∈Λ

pN,λ · λ. (23)

The tensor product between Z-graded D-modules is Z-graded with the natural
grading for a tensor product and it holds that

ch•(N⊗N′) = ch• N · ch• N′. (24)

The dual of N also is a Z-graded D-module by setting

N∗(j) = (N(−j))∗.

This is compatible with the grading of D because the antipode is an homogeneous
morphism.

Therefore ch• : R• → K[t, t−1] is a ring homomorphism and ch• N∗ = ch• N,
where p(t, t−1) = p(t−1, t) for any p ∈ K[t, t−1].
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3.1. Graded projectives

Thanks to [17, Cor. 3.4] every projective module admits a Z-grading. Moreover,
up to a shift, every indecomposable projective module admits only one Z-grading
[17, Thm. 4.1].

For each λ ∈ Λ we fix a Z-grading P(λ) =
⊕

n∈Z P(λ)(n) such that there is a
homogeneous weight S of degree 0 generating P(λ) with chS = λ. Thus, we have
a commutative diagram of Z-graded D-module epimorphisms and a section

P(λ) L(λ).

Ind(λ)

(25)

Also, the diagram on the right hand of (15) is of Z-graded D-modules.
Given λ ∈ Λ, we denote lλ the minimal degree of L(λ). Thus, (14) implies that(

L(λ)[i]
)∗ ' L

(
λ
∗)

[−i− lλ] and lλ = lλ∗ . (26)

Lemma 8. Let λ be a weight and i ∈ Z. In the category of Z-graded D-modules
it holds that

(i) P(λ)[i] is the projective cover and the injective hull of L(λ)[i].
(ii) P(λ)[i] is the projective cover of M(λ)[i].

(iii) P(λ)[i] is the injective hull of M
(
λV · λ

)
[i+ lλ + ntop].

(iv) P(λ)[i] is the projective cover of W(λ)[i+ lλ].
(v) P(λ)[i] is the injective hull of W (λV · λ) [i− ntop].

(vi) (P(λ)[i])
∗ ' P

(
λ
∗)

[−i− lλ].

Proof. (i) The first part is clear. Let e ∈ D0 be a primitive idempotent such that
P(λ) ' De [17, Prop. 5.8(iii)], and S be the socle of De which is homogeneous by
[17, Prop. 3.5(ii)]. Since the symmetric bilinear form of D satisfies (1, eS(0)) =
(1, eS), recall Section 2, we can argue as in the proof of [14, (9.12)] to show that
eS(0) 6= 0. Hence P(λ)[i] is the injective hull of L(λ)[i].

(vi) follows from Lemma 3(i) and (26).
The remaining items are deduced from (i) and Lemma 3(iii). �

Let P be a projective module with a fixed Z-grading. Therefore there exist
unique polynomials pP,P(λ) ∈ Z≥0[t, t−1] such that

P '
⊕

λ∈Λ pP,P(λ) · P(λ) if and only if ch• P =
∑
λ∈Λ pP,P(λ) ch• P(λ) (27)

by [17, Prop. 5.8 (iii)]. If [P : P(λ)] = pP,P(λ)(1), then

P '
⊕

λ∈Λ[P : P(λ)] · P(λ) (28)

as ungraded modules.
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Let us consider P as a D≤0-module. Since D≤0 is a graded subalgebra of D,
P also is a projective Z-graded D≤0-module. Hence, by [17, Prop. 5.8(iii)] and
Lemma 1, there exist unique polynomials pP,M(λ) ∈ Z≥0[t, t−1] such that

P '
⊕

λ∈Λ pP,M(λ) ·M(λ) as D≤0-modules (29)

if and only if

ch• P =
∑
λ∈Λ

pP,M(λ) ch•M(λ). (30)

Moreover, for each λ ∈ Λ and i ∈ Z, we assume that the lowest-weight λV · λ is
concentrated in degree 0 and set

aP,M(λ),i = dim Hom•D≤0(λV · λ,P)i−ntop . (31)

Therefore dim HomD≤0(λV · λ,P) = pP,M(λ)(1) and

pP,M(λ) =
∑
i

aP,M(λ),i t
i ∈ Z[t, t−1] (32)

by Lemma 2.
In particular, we have that pInd(µ),P(λ) = pL(λ),µ and pInd(µ),M(λ) = pB(V )⊗µ,λ for

all λ, µ ∈ Λ. Thus, we obtain graded versions of (17) and (20), that is

Ind(µ) ' ⊕λ∈Λ pL(λ),µ · P(λ) ' M(ch•B(V ) · µ) (33)

as Z-graded D-modules and Z-graded D≤0-modules, respectively.

Remark 3. Let R•proj be the Grothendieck ring of the subcategory of projective

modules. Clearly, {ch• P(λ) | λ ∈ Λ} is a Z[t, t−1]-bases of R•proj. Moreover, the
sets {ch•M(λ) | λ ∈ Λ} and {ch•W(λ) | λ ∈ Λ} so are by (29) and (38).

3.2. The simple modules are identified by their graded characters

Let N =
⊕

i∈Z N(i) be a Z-graded D-module. For each λ ∈ Λ and i ∈ Z, we define

aN,L(λ),i = dim Hom•D(P(λ)[i],N)0 = dim Hom•D(N,P(λ)[i])0; (34)

these dimensions are equal by Lemma 8(i). It is the number of composition factors
of N isomorphic to L(λ)[i]. We also define the Laurent polynomial

pN,L(λ) =
∑
i

aN,L(λ),i t
i ∈ Z[t, t−1]. (35)

By the next theorem the ring morphism ch• : R• → K[t, t−1] is injective.

Theorem 9. The set {ch• L(λ) | λ ∈ Λ} is a Z[t, t−1]-basis of R•. More explicitly,
if N =

⊕
i∈Z N(i) is a Z-graded D-module, then the Laurent polynomials pN,L(λ)

are the unique ones such that

ch• N =
∑
λ∈Λ

pN,L(λ) ch• L(λ).

Therefore [N : L(λ)] = pN,L(λ)(1).
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Proof. Suppose that 0 =
∑
λ∈Λ pλ ch• L(λ) with pλ ∈ Z[t, t−1]. Multiplying by a

suitable tj with j < 0, we can assume that pλ ∈ Z[t−1] for all λ. Then, we deduce
that pλ = 0 for all λ since ch• L(λ) = λ+

∑
j<0 ch

(
L(λ)(j)

)
tj , and the uniqueness

follows.
Let L be a simple submodule of N. As L is graded and a highest-weight module,

there is i ∈ Z such that L(j) ⊆ N(i + j) and the quotient N/L is a Z-graded D-
module. Then ch• N = ti ch• L + ch• N/L and the theorem follows by induction
on the length of N; we use that P(λ)[i] is a Z-graded projective module and then
HomD(P(λ)[i],−)0 is an exact functor.

The equality [N : L(λ)] = pN,L(λ)(1) is clear. �

3.3. Graded character identities

Irving has defined a class of highest weight categories for which the BGG Recipro-
city holds [21]. These categories have a duality functor δ which is trivial on simple
modules. Using the order on the weights, he shows that the characters of a Verma
module M and δM are equal.

Although we do not have either such a duality or an order on the weights, we
can prove the following identities among the graded characters of Verma modules,
their duals and the modules W(λ) = D⊗D≤0λ, recall (13). Such identities are key
in the proof of the BGG Reciprocity.

Theorem 10. Let λ be a weight. Then

tntop ch•W(λV · λ)∗ =
(i)

ch•W(λ∗) =
(ii)

ch•M(λ)∗ =
(iii)

tntop ch•M ((λV · λ)∗) .

Proof. We have that
(
Bj(V )⊗λ

)∗ ' Bj(V )∗⊗λ∗ ' Bj(V )⊗λ∗ by (1) and hence
ch•W(λ∗) = ch•M(λ)∗, it is (ii).

On the other hand, (11) and (12) imply (i) and (iii), respectively:

ch•M(λ)∗ = tntop ch•M ((λV · λ)∗) and tntop ch•W(λV · λ)∗ = ch•W(λ∗). �

We compare the graded composition factors of a Verma module and its dual
using that {ch• L(λ) | λ ∈ Λ} is a Z[t, t−1]-basis. Recall that M(µ)∗ ' M ((λV · µ)∗)
by (10).

Corollary 11. Let λ and µ be weights. Then

tlµ+ntop pM(λ),L(µ) = pM((λV ·λ)∗),L(µ∗).

In particular, [M(λ) : L(µ)] = [M ((λV · λ)∗) : L(µ∗)] by evaluating the above
polynomials at t = t−1 = 1.

Proof. We have the linear isomorphisms

Hom•D(P(µ)[i],M(λ))0 ' Hom•D(M(λ)∗, (P(µ)[i])∗)0

' Hom•D(M(λ)∗,P (µ∗) [−lµ − i])0.

Then aM(λ),L(µ),i = aM(λ)∗,L(µ∗),−lµ−i and hence pM(λ),L(µ) = t−lµ pM(λ)∗,L(µ∗).
Thus, the corollary follows from Theorem 10. �
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We do not know yet whether the projective modules are filtered by Verma
modules. Instead, we know that they decompose into the direct sum of Verma
modules as Z-graded D≤0-modules (29). Such decomposition is related to the
graded composition factors of the Verma modules, as we see below in a graded
version of the BGG Reciprocity.

Corollary 12. Let λ and µ be weights. Then

pP(µ),M(λ) = pM(λ),L(µ).

Proof. We have the linear isomorphisms

Hom•D≤0(λV · λ,P(µ))i−ntop
' Hom•D(W(λV · λ),P(µ))i−ntop

' Hom•D(P(µ)∗, (W(λV · λ)[i− ntop])
∗
)0

' Hom•D(P(µ∗)[−lµ],W(λV · λ)∗[−i+ ntop])0

' Hom•D(P(µ∗)[i− ntop − lµ],W(λV · λ)∗)0;

the first one is the Frobenius reciprocity and the third one is by Lemma 8(vi).
Thus, by (31), Theorem 10 and Corollary 11, we have that

t−ntop−lµ pP(µ),M(λ) = pW(λV ·λ)∗,L(µ∗) = pM((λV ·λ)∗),L(µ∗) = t−lµ−ntop pM(λ),L(µ)

and the corollary follows. �

4. Standard filtrations and the BGG Reciprocity

We say that a (graded) module N has a (graded ) standard filtration, so-called
Verma flag, if there exists a sequence of (graded) submodules 0 = N0 ⊂ N1 ⊂ · · · ⊂
Nn = N such that each subquotient Ni/Ni−1 is isomorphic to a Verma module.
The multiplicity of a Verma module M(λ) in N is

[N : M(λ)] = # {i | Ni/Ni−1 ' M(λ)} .

We also define [N : M(λ)[`]] = # {i | Ni/Ni−1 ' M(λ)[`]} for the graded case.
The following lemmas are analogous to [19, Thm. 3.6 and Prop. 3.7 (b)].

Lemma 13. Let λ be a weight and N a (graded ) module. Then M(λ)⊗N has a
(graded ) standard filtration.

Proof. Let 0 = N0 ⊂ N1 ⊂ · · · ⊂ Nr = λ⊗N be a filtration of λ⊗N by (graded)
D≥0-modules such that Ni/Ni−1 is a highest-weight µi, i.e., a Jordan–Hölder series
as (graded) D≥0-module. Applying the exact functor D⊗D≥0(−) we obtain the
desired filtration on M(λ)⊗N using Lemma 5 with U = λ. �

Lemma 14. Let N be a (graded ) module which has a (graded ) standard filtration
and N = N′ ⊕ N′′ as (graded ) modules. Then N′ and N′′ have (graded ) standard
filtrations.
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Proof. By the (graded) standard filtration of N we have an inclusion of ι : M(λ)→
N. Let p′ : N → N′ be the natural projection and ι′ its section. We can assume
that (p′ ◦ ι)(1⊗λ) 6= 0 since the Verma modules have simple socle. Therefore
(ι′ ◦ p′ ◦ ι) : M(λ) → N′ is an inclusion and the lemma follows by induction since
N/M(λ) = N′/M(λ)⊕ N′′. �

The main result of the section is the following, cf. [19, Thms. 3.10 and 3.11].
Recall the definition of aP,M(λ),i from (31).

Theorem 15. Every projective module P has a graded standard filtration and

[P : M(λ)[i]] = aP,M(λ),i

holds for all λ ∈ Λ. Therefore the BGG Reciprocity

[P(µ) : M(λ)] = [M(λ) : L(µ)]

holds for all λ, µ ∈ Λ.

Proof. By Lemma 4 and Lemma 13, Ind(λ) ' M(λ)⊗W(ε) has a graded standard
filtration. The indecomposable projective P(λ) is a graded direct summand of
Ind(λ) by (17) and the above section. Hence it has a graded standard filtration by
Lemma 14. Therefore all the projective modules have a standard filtration.

The equality [P : M(λ)[i]] = aP,M(λ),i is clear and therefore the BGG Reciprocity
follows from Corollary 12 by evaluating the polynomials at t = t−1 = 1. �

We point out the information about the structure of the indecomposable projec-
tive modules which can be deduced from the above results.

Remark 4. Let 0 = N0 ⊂ N1 ⊂ · · · ⊂ Nn = P(λ) be a graded standard filtration of
P(λ) whose subquotients are Ni/Ni−1 ' M(λi)[`i] for all i = 1, ...n.

Hence, P(λ) ' M(λ1)[`1]⊕ · · · ⊕M(λn)[`n] as Z-graded D≤0-modules.
Via this isomorphism, V · (1⊗λi)[`i] ⊆ (1⊗λi−1)[`i + 1]. Moreover, if we

know this action, we can infer inductively the action of V on M(λi)[`i] using the
commutation rules between V and V , cf. [28, p. 438].

By Lemma 8, M(λ1)[`1] = M(λV · λ)[lλ + ntop] and M(λn)[`n] = M(λ).

4.1. Simple and projective Verma modules

The next corollary is a direct consequence of the BGG Reciprocity. However, we
give another nice proof without using the former theorem.

Lemma 16. Let f : N→ M(λ) be a projection. If S ⊂ N is a highest-weight such
that f(S) = 1⊗λ, then f splits.

Proof. We define a morphism φ : M(λ)→ N by φ(1⊗λ) = S and hence f ◦φ = idM.
�

Corollary 17. Let M(λ) be a Verma module. The following are equivalent:

(i) M(λ) is simple.
(ii) M(λ) is projective.

(iii) M(λ) is injective.
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Proof. Since D is a finite-dimensional Hopf algebra, a D-module is projective if
and only if it is injective. Then (ii) and (iii) are equivalent.

Assume that M = M(λ) is simple. We shall prove that every projection f :
N → M splits. By Lemma 16, it is enough to find a highest-weight S ⊂ N such
that f(S) = 1⊗λ. Let S′ be a weight of N such that f(S′) = Bntop(V )⊗λ. Then
S = ytopS

′ is a highest-weight of N and f(ytopS
′) = 1⊗λ by [28, Cor. 15]. Hence

(i) implies (ii).

Assume now that M = M(λ) is projective. Let f : Ind(λ)→ M be the projection
such that f(λ) = 1⊗λ and φ : M → Ind(λ) a section of f . Hence φ(1⊗λ) ⊂
ytop⊗B(V )⊗λ since V S = 0. That is, for each s ∈ S there exists xs ∈ B(V ) such
that φ(s) = ytop⊗xs⊗s and then s = fφ(s) = ytopxss. As the Verma module is
graded, xs ∈ Bntop(V ) and is non-zero if s 6= 0. Therefore M is simple by [28,
Cor. 15]. Then (ii) implies (i). �

We obtain a useful result if we combine the above corollary and the characteriza-
tion of the simple modules L(λ) and S(λ).

Corollary 18. Let N be a module and M(λ) a simple Verma module. Assume that
either λ is a highest-weight of N or λV · λ is a lowest-weight of N. Then M(λ) is
a direct summand of N.

Proof. If λ is a highest-weight of N, then we have a non-trivial morphism f :
M(λ) → N. As M(λ) is simple, f is a monomorphism. But also M(λ) is injective,
then f splits.

Assume that λV · λ is a lowest-weight. Let U be a simple quotient of the
submodule generated by λV · λ. As there is a unique simple lowest-weight module
of weight λV · λ, U = S(λ) = M(λ). Then M(λ) is a direct summand of U and
hence it is of N because M(λ) is injective. �

4.2. Co-standard filtration

We say that a (graded) module has a (graded) co-standard filtration if it is filtered
by (graded) modules whose subquotients are isomorphic to co-Verma modules
W(λ), recall (13). The multiplicities [N : W(λ)] and [N : W(λ)[`]] are defined as for
standard filtrations. We next formulate analogous results to those about standard
filtrations. The proofs are similar.

Lemma 19. Let λ be a weight and N a (graded ) module.

(i) Then M(λ)⊗N has a (graded ) standard filtration.

(ii) If N has a (graded ) standard filtration and N = N′⊕N′′ as (graded ) modules,
then N′ and N′′ have (graded ) standard filtrations. �

Let P be a graded projective module. Then, it is also graded projective as a
D≥0-module. For each λ ∈ Λ and i ∈ Z, we define

aP,W(λ),i = dim HomD≥0(λV · λ,P)i+ntop
and (36)

pP,W(λ) =
∑
i

aP,W(λ),i t
i ∈ Z[t, t−1]; (37)
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we assume that the highest-weight λV · λ is concentrated in degree 0. Therefore

P '
⊕

λ∈Λ pP,W(λ) ·W(λ). (38)

as D≥0-modules.
The second item below is the BGG Reciprocity for co-Verma modules. Item

(iii) says that the multiplicities of the co-Verma modules can be deduced from the
composition factors of the Verma modules.

Theorem 20. Every projective module P has a graded co-standard filtration and
the following identities hold for all λ, µ ∈ Λ:

(i) [P : W(λ)[i]] = aP,W(λ),i.
(ii) pP(µ),W(λ) = pW(λ),L(µ) and [P(µ) : W(λ)] = [W(λ) : L(µ)].

(iii) pP(µ),W(λ) = t−ntoppM(λV ·λ),L(µ) and [P(µ) : W(λ)] = [M(λV · λ) : L(µ)]. �

4.3. Tensor product of projective modules

Theorem 21. Let P and Q be projective modules. Then

P⊗Q '
⊕

λ,µ∈Λ pP,W(λ) pQ,M(µ) Ind(λ · µ).

Proof. Let 0 = Q0 ⊂ Q1 ⊂ · · · ⊂ Qn = Q be a graded standard filtration of Q.
Since P⊗− is exact and P⊗N is projective for any module, we have that

P⊗Q '
⊕n

i=1 P⊗(Qi/Qi−1) '
⊕

µ∈Λ pQ,M(µ) P⊗M(µ).

Let 0 = P0 ⊂ P1 ⊂ · · · ⊂ Pn = P be a graded co-standard filtration of P. By
Lemma 4, W(λ)⊗M(µ) ' Ind(λ · µ) is projective. Then

P⊗M(µ) '
⊕n

i=1 (Pi/Pi−1)⊗M(µ) '
⊕

λ∈Λ pP,W(λ) Ind(λ · µ)

and the theorem follows. �

5. Examples

5.1. Taft algebras

Let G = Cn = 〈g〉 be the cyclic group of order n and q a n-th primitive root
of unity. The quantum line k〈x | xn = 0〉 is isomorphic to the Nichols algebra
of V = kx ∈ kG

kGYD with action g · x = qx and coaction ρ(x) = g⊗x. The Taft
algebra Tq is the bosonization B(V )#kG. The Frobenius–Lusztig kernel uq(sl(2))
is isomorphic to a quotient of the Drinfeld double D(Tq) by a central group-like
element. The simple modules of D(Tq) and uq(sl(2)) were studied for instance in
[12] and [1], [11], [15], [32], respectively.

In the case of D(Tq), Λ ' Cn × Cn = 〈χ1〉 × 〈χ2〉 and all the Verma modules
M(r, s) = M(χr1, χ

s
2) have dimension n. The simple module L(r, 1 − (r + l)) has

dimension l for 1 ≤ l, r ≤ n [12, Thm. 2.5]. Therefore the Verma modules M(r, 1−
(r + n)) are simple and projective by Corollary 17.

It is easy to see that the composition factors of M(r, 1− (r+ l)) are L(r, 1− (r+
l)) and L(r + l, 1 − ((r + l) + (n− l))). Therefore the indecomposable projective
P(r, 1− (r+ l)) has a submodule N ' M(r+ l− n, 1− ((r + l − n) + (n− l))) and
P(r, 1 − (r + l))/N ' M(r, 1 − (r + l)) by the BGG Reciprocity. Notice that the
module in [12, Remark 2.8] is M(r, 1− (r + n− 1)).

The previous facts do not appear in [12]. Of course, we can also come to the
same conclusion using the knowledge about modules over uq(sl(2)).
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5.2. The Shapovalov determinant

Assume B(V ) is a Nichols algebra of diagonal type. In [18] the authors give a
formula analogous to the Shapovalov determinant for complex semisimple Lie
algebras. Thus, they characterize the simple Verma modules of the Drinfeld doubles
attached to B(V ). We now know that this also gives a characterization of the
projective Verma modules by Corollary 17.

5.3. The Nichols algebra of unidentified diagonal type ufo(7)

This is the smallest Nichols algebra B(V ) of unidentified type, dimB(V ) = 144,
see [7]. Let G be an abelian group such that B(V ) ∈ kG

kGYD and D the Drinfeld
double of B(V )#kG. The simple modules of D are classified in [2]. The authors
divide the set of weights in 47 subsets and study the corresponding Verma modules
case by case. They obtain three families of weights (C0, C1, C2) which are related
with the Shapovalov determinant.

They use the Shapovalov determinant to show that the Verma modules in C0
are simple [2, Lem. 1.6]. Hence these are projective by Corollary 17.

The class C1 is formed by 9 different types of weights. The composition factors
of the Verma module M(λ), λ ∈ C1, are given explicitly in [2, Sect. 2]. These are
L(λ) and L(λ′) for certain λ′ ∈ C1. Then, using the BGG Reciprocity, we deduce
that the projective cover P(λ) of L(λ) has a submodule isomorphic to M(µ) for
certain µ ∈ C1 satisfying µ′ = λ and P(λ)/M(µ) ' M(λ).

The Verma module in C2 might have more than two composition factors, see [2,
Rem. 3.2]. It is possible to obtain the composition factors of M(λ), for all λ ∈ C2,
by reasoning as in [2, Rem. 3.2]; the graded characters can also help.

5.4. The Fomin–Kirillov algebra FK3

This is a Nichols algebra in kS3
kS3YD, it is the smallest one over a non-abelian group.

In [28] we investigate the Verma and simple modules over the Drinfeld double of
FK3#kS3. In this case, the set of weights is

Λ = {(e,+), (e,−), (e, ρ), (σ,+), (σ,−), (τ, 0), (τ, 1), (τ, 2)} .

We have shown that M(e,−), M(τ, 1), M(τ, 2) and M(σ,+) are simple. Therefore
they are projective by Corollary 17. The composition factors of the remaining
Verma modules are given in [28, Thms. 7, 8, 9 and 10]. We have that

• chM(σ,−) = 2 · ch L(σ,−) + 2 · ch L(e,+) + ch L(τ, 0) + ch L(e, ρ).
• chM(e,+) = 2 · ch L(e,+) + ch L(σ,−).
• chM(e, ρ) = chM(τ, 0) = ch L(τ, 0) + ch L(e, ρ) + ch L(σ,−).

By the BGG Reciprocity, we conclude that

• chP(σ,−) = 2 · chM(σ,−) + chM(e,+) + chM(τ, 0) + chM(e, ρ).
• chP(e,+) = 2 · chM(e,+) + 2 · chM(σ,−).
• chP(e, ρ) = chM(τ, 0) = chM(τ, 0) + chM(e, ρ) + chM(σ,−).

Together with Barbara Pogorelsky, we study these projective modules in more
detail [29]. We also discuss the tensor product between the simple and projective
modules.



CRISTIAN VAY

References

[1] H. H. Andersen, J. C. Jantzen, W. Soergel, Representations of quantum groups at
a pth root of unity and of semisimple groups in characteristic p: independence of p,
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