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NONLOCAL HEAT EQUATIONS IN THE HEISENBERG GROUP

RAUL E. VIDAL

ABSTRACT. We study the following nonlocal diffusion equation in the Heisen-
berg group Hy,,
u(z,s,t) = J xu(z,s,t) —u(z,s,t),

where * denote convolution product and J satisfies appropriated hypothesis.
For the Cauchy problem we obtain that the asymptotic behavior of the solu-
tions is the same form that the one for the heat equation in the Heisenberg
group. To obtain this result we use the spherical transform related to the
pair (U(n),Hy). Finally we prove that solutions of properly rescaled nonlo-
cal Dirichlet problem converge uniformly to the solution of the corresponding
Dirichlet problem for the classical heat equation in the Heisenberg group.

1. INTRODUCTION AND PRELIMINARIES

During the last years, many authors have studied the asymptotic behavior for
several nonlocal diffusion models in the whole R™. In some cases, this behavior is
related with the asymptotic behavior of the local diffusion model.

In [8] the authors study the nonlocal diffusion equation in R™ given by
(1.1) ug(z,t) = J xu(x,t) — ulx, t),

where * denote convolution product. For the Cauchy problem, they prove that the
long time behavior of the solutions is determined by the behavior of the Fourier
transform .J of J near the origin. If J(€) = 1 — AJ€]* + o(€]*), (0 < a < 2), the
asymptotic behavior is the same as the one for solutions of the evolution given by
the a/2 fractional power of the Laplacian. Concerning the Dirichlet problem for the
nonlocal model they prove that the asymptotic behavior is given by an exponential
decay to zero at a rate given by the first eigenvalue of an associated eigenvalue
problem with profile an eigenfunction of the first eigenvalue. Finally, they analyse
the Neumann problem and find an exponential convergence to the mean value of
the initial condition.

In the work [9] the authors prove that solutions of properly rescaled nonlocal
Dirichlet problems of the equation (ILI]) approximate uniformly the solution of the
corresponding Dirichlet problem for the classical heat equation in R™.

These type of problems have been studied for the case of different elliptical
operators and p-Laplacian operators, see [2], [3], [6], [14], [16], [19] and [21].
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In [20] the author considers the classic heat equation for Carnot groups and
settles the asymptotic behavior of the solution. The Heisenberg group is the main
example of the Carnot groups.

At the present work we study a similar problems to the ones in [§] and [9], in
the Heisenberg group. In order to do this we have to consider the results obtained
in [20], the fact that H,, is a homogeneous group and the harmonic analysis related
to the action of the unitary group U(n) by automorphism on H,.

Let H,, = C" x R the 2n + 1 dimensional Heisenberg group, with law group
(2,5).(%,5) = (2 + Z,s + 5 + $Im(z,Z)), where (z,%) denote the Hermitian inner
product of C". The Haar measure of the group is de Lebesgue measure. If we write
z = x + 1y, with x,y in R™ we have a global coordinate system (x,y,s) and the
vector fields X; = aij - %%, Y, = % + %%, and S = % form a basis for the
Lie algebra b,, of H,,.

n
The Heisenberg Laplacian is L := Y X JQ + Yf. In coordinates is given by
j=1

(12) L=>

1

02 9? 102 N,y o O ) )
2 (a?fa?;)*i@;(%*%)*aj_l (%‘ya—>

The Laplacian L is a second order degenerate elliptic operator of Hérmander type
and hence it is hypoelliptic see [15].

We recall that a Lie group is called a homogeneous group if it is a connected,
simply connected, nilpotent Lie group G, whose Lie algebra g is endowed with a
family of dilatation {8, }ren. Let exp: g — G be the exponential map, which in
this case is a diffeomorphism. The maps exp 6, exp ™! are group automorphisms of
G also denoted by 9§, and called dilations of G. A standard example is given by
5:(z,8) = (rzz,rs), r >0 and (2, s) € H,,.

Let U(n) the unitary group, which acts by automorphism on H,, by g - (z,s) =
(92,5), g € U(n) and (z,s) € H,. We will denote by S(H,,)Y™ the space of
functions in the Schwartz space that are invariant by the action of U(n) and we
will denote by L'(H,,)Y(™ the space of L' (H,) the functions that are invariant by
the action of U(n). Since (L'(H,)Y(™, x) is a commutative algebra, its spectrum
¥ is given by the family of the spherical functions {¢x x}rer\{0},ken U {7 }rerzo
associated with the Gelfand pair (H,,, U(n)), see [13], [I7] and [22].

As usual, U(bh,,) will denote its universal enveloping algebra, which can be identi-
fied with the algebra of left invariant differential operators on H,,. It is well known
that the commutative subalgebra U(h,, )V (™ of the elements which commute with
the action of U(n) is generated by S and the Heisenberg Laplacian L. The spherical
functions are eigenfunction of the operators L and .S, they satisfying

Loy k= — M2k + n)oxk, AeR\{0},keN
(1.3)
ISPk = Ao k-
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and
Ln, = —r?n,, reR,r>0
1Sn, = 0.

Explicitly

S0)\716(2, S) _ GMSLZ_I (%PJF) 67%|z|2,

e,
777“(255) - (T‘|Z|)n_1 Jnfl( | |)7

where Lz_l denotes, as usual, a Laguerre polynomial of order n — 1 and degree k
normalized by L} *(0) = 1 and J,,_ is a Bessel function of order n — 1 of the first
kind. The ¢,  functions satisfy the following properties:

(1.4) If ¢ € R then ez k(2,5) = 6eprk(2,8) = par(Vez, cs),
Ikl Loe ) = 1.

The spectrum ¥ is identify with the set of eigenvalues, ¥ = {(\, |A|(2k + n)) :
A€ R\ {0},k e N}U{r € R,7 > 0}, with the following measure, if g € L*(X) we
have

lgllzrs) = Z/ lg(\, )| |IN"dA < oo.

keN
For f € S(H,,) we define the spherical transform, f: ¥ — R, by

(1.5) f()\,k):/H f(z,8)pan(—2,—s)dzds

FO,7) = [ f(z8)n(~2 —s)dzds.
Hp,

If f € LY(H,)Y™ and f € LY(2), (for example f € S(H,, )V ™), we use the next
Plancherel inversion formula to decompose f, see [22],

(1.6) (z,9) Z/ fxoxnk)(z,8)|A|"dA

k>0_"
= Z / T E)oxk(z, s) A" dA.
k20"

Now let us consider the classical heat equation for the Heisenberg group, defined

by

’Ut(Z, S, t) = LU(Z, S, t)a
(1.7)

v(z,5,0) = up(z, s).
In [I2] the author proved there is a unique heat kernel P : H,, x (0,00) — R,
P(z,s,t) = Pi(z,s) with Py = dp, P» > 0 and fH P, = 1. The solution of the
equation (L) is given by v(z,s,t) = P; x ug(z, s), where the convolution product
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is in the Heisenberg group. He also proves that P, is C°, (see also [I], [T0], [IT],
[18], and [7]).

In [20] the author proves that if ug € L'(H,,) then

—(2n+2)

(18) ”v(vvt)HOO < Ct 2 ’

where the constant C' depends on the norm |[Juol|£1 () -

In this work we consider the nonlocal equation given by
(1.9) us(z,8,t) = J xu(z,s,t) —u(z,s,t),

where the convolution product is in the Heisenberg group and J satisfies the fol-
lowing hypothesis:

(H) J : H, — R is a real function invariant by the action of U(n) with

J(z,8)dzds = 1.
Hy

We will assume (H) throughout the paper.
Let us now state our results concerning the asymptotic behavior.

The first problem to be addressed is the Cauchy diffusion problem in H,,. We
consider the equation

up(z,8,t) = J xu(z,s,t) — u(z, s, t),
(1.10)
u(z,$,0) = ug(z, s).

For this problem we study the asymptotic behavior in the infinity and use the
spherical transform to prove the following result

Theorem 1.1. Let u the solution of the problem (IIQ) with ug in L'(H,)Y™ and

uo in LY(X). Assume that J satisfies (H) and that J(\, k) < 1 for X # 0, k € N.

Also we assume

- ‘ . o(|A[(2k +n))

J(\ k) =1—|X(2k A (2k th —_— =
k) = 1=M@ktn) o (2k+n),  with | lim =S

Then the asymptotic behavior of u(z, s,t) is given by
(1.11) lim ¢+t r(na))<|u(z,s,t) —v(z,s,t)] =0,

t—> 00

where v is the solution of heat equation for the Heisenberg group (1.7).
The asymptotic profile is given by:

: n+1 _ —
tlinoo I(Izléi;))( [t" T 0pu(z, 8, t) — Guy (2, 8)] =0,
where Gy, (2, s) satisfies éu\o()\, k) = e NEHAITE0, k) and 6,(z,s) = (t2z, ts).
We also have,
||’U,(7 '7t)||L°°(Hn) < Ct_(n+1)7

and by interpolation for 2 < p < oo,

||’U,(, ) t)”LP(]HIn) S Ot_(n-i_l)(pT?),
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Remark 1.2. By (H) / J(z,8)dzds = 1 then if J(z,s) > 0 for all (z,s) € H,
Hy

~

we have that J(A\ k) < 1.

Remark 1.3. In the literature estimates of the decay in infinite norm have been
obtained only for nonlocal equation that approximate the laplacian operator and
not for a more general elliptic operator. The Heisenberg laplacian operator for a
function u invariant by the action of U(n), is given in polar coordinates by
I Pu  2n—20u  r?d%u
u_8r2+ r 6r+4852'
where r* =" | x*+y?. For this reason, Theorem [l gives an example of another
elliptic operator that can be approximated by a nonlocal equation in infinite norm.

2

Let us see the existence of a function J that satisfies the hypotheses of the
Theorem [[LT1]

Lemma 1.4. There exist a real function J invariant by the action of U(n) with

~

J(z,8)dzds = 1 and J(A\, k) < 1 for A # 0, k € N. Moreover, the spherical

tmr;zsform of J is of the form

. B ‘ . o([A[(2k +n))
J(\ k) = 1= |\(2k+n) +o(|A|(2k+n)), with I N S TCy TP

Proof. Let
—[\[(2k J
g\ k) = e7 AR = X" M =1 — |A\[(2k + n) + o(|A|(2k + n)).
>0 7
We have
”gHLl(E) = Z/ e—\>\|(2k+n) |)\|nd)\
keN“R
1
— —l&lg1ma
2 G Joe o <

We can apply the inverse spherical transform to the function g € L*(X) in order to

obtain a kernel J invariant by the action of U(n) with / J(z,s)dzds = 1, such
that J(\, k) = g(\, k) = e~ M1 Now we observe
JN k) = / J(z,8)pan(—2,—s)dzds

n

_ / J(z, 8)onn(—7,—3) dz ds

n

:/ J(z,8)p_ri(—2,—s)dzds
Hy

—

=g(=\k) =g\ k)= JN\Ek).

Then J is a real function and satisfies the Lemma. O
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Next we consider a bounded smooth domain 2 C H, and impose boundary
conditions to our model. From now on we assume that J is continuous. We consider
the next Dirichlet problem

ug(z,8,t) = J xu(z,s,t) —u(z, s, t), for (z,s) € Q and ¢ > 0,
(1.12) u(z,8,t) = g(z,s,t), for (z,s) ¢ Q and t > 0,
u(z,s,0) = up(z, s), for (z,s) € Q.

If J satisfies the following hypothesis

(EI ) J is continuous, no negative with J(0,0) > 0; J have compact support
and is symmetric in the variable s. We assume there exists a constant C7 with

/ J(z, s):z:? dzds = Ch, / J(z, s)yj2 dzds = Ch, / J(z,5)s* dzds = Cy.
H,, Hy

Hr

We will consider the rescaled kernel

-1
J(z,8) = 2—(5572(](2,5) =24 J (z, %)
€

and the problem

1
u§(z, s,t) = = J *xu(z,s,t) —u(z,s,t), for (z,s) € Qandt >0,

2
(1.13) ut(z,s,t) = g(z, s,t), for (z,s) ¢ Qand t > 0,
u(z,s,0) = ug(z,s), for (z,s) € Q.

We prove that the solution of (II3]) approximate uniformly to the solution of
the corresponding Dirichlet problem for the classical heat equation, given by

ve(z,8,t) = Lo(z, s, 1), for (z,5) € Q and t > 0,
(1.14) vi(z,8,t) = g(z, s, t), for (z,s) € 9Q and t > 0,

v(z,5,0) = up(z, s), for (z,s) € Q.

Our result are as follows.

Theorem 1.5. Let Q be a bounded C*T* domain for some 0 < a < 1. Let
v € C*Helta/2(Q % [0,T)) be the solution to (L.Z) and let u® be the solution to
(LI3) with J¢ as above and J satisfying (H) and (H). Then, there exists C = C(T)
such that

sup [[u(-, 1) —v(,+ 1)|[Le (o) < Ce”, as  €—0.
te[0,7)

Remark 1.6. Observe that since the initial data uo(z, s) is not necessarily invariant
by the action of U(n), L is given by the formula (L2)) and the solution of problem
([TI3) approaches to the solution of a more irregular equation, given in (LI4).
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Finally we observe, that if J is symmetric in the variable s and as J is invariant
by the action of U(n), we have

(1.15) J (z —Zs—5— %Im<z,2>) —J <z —z,5—5— (—%Im<z,z>))
—J <2—z,§—s— %1m<5,z>) .

Then, if we write K ((z, s), (2,5)) = J (z — Z,s — § — $Im(z, %)), K is a non-negative
and symmetric Kernel. Therefore Theorem 2 of [§] is true for the nonlocal equation
defined by the kernel K. That is to say that g(z, s,t) = 0 in (IL7) and J is also sym-
metric in the variable s, we find an exponential decay given by the first eigenvalue
of an associated problem and the asymptotic behavior of solutions is described by
the unique (up to a constant) associated eigenfunction. Let A; = A1(€2) be given
by

(1.16)

)\1 = inf
u€L2(H™

%/n/nJ ((z —2,5—8— %Im(z, 2>)) (u(z, s) — u(Z, 2))* dzds dzd3
) /Q(u(z,s)2)dzd8 |

Theorem 1.7. Let ug € LY (Q)NL3(Q). Assume that J is continuous, satisfies (H)
and is symmetric in the variable s. Then the solutions of ([LI2)), with g(z,s,t) =0,
decay to zero as t — oo with an exponential rate

Hu(7 '7t)HL2(Q) < ||u0||L2(Q)€_>\1t.

If ug is continuous, positive and bounded then there exist positive constants C' and

C' such that
||U(, ) t)||L°°(Q) < OeiAlta
and

: A1t _~ —
}%I(I;i))d@ u(z,s,t) — Co1(z,t)| =0,

where ¢y is the eigenfunction associated to Ap.

We consider next the Neumann boundary conditions:

(1.17) u(z, s,t) = / J(z—2,5s—5— %Im(z, N[z, §,t) — u(z, s, t)|dzds,

u(z,,0) =up(z, s).

If we impose that J is symmetric in the variable s by equation (ILI5) the Theorem
3 of [8] is true. And, in this case, we find that the asymptotic behavior is given by
an exponential decay determined by an eigenvalue problem. Let (5, be given by:

(1.18)

1/ / J(z—2,5s—5— 1Im(z, N [u(z,3) — u(z, s))>dzdsdzds
B = inf 2 JoJa 2
P er2 (@), fu=0 Jo(u(z, 5))2dzds
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Theorem 1.8. Let J be a continuous kernel symmetric in the variable s that
satisfies (H). For every ug € L*(Q) there exists a unique solution u of ([ILI7) such
that u € C([0,00); LY(Q)). This solution preserves the total mass in §):

/u(z,s,t)dzds:/uo(z,s)dzds.
Q

Q

1
Moreover, let M = ﬁ/ uo(z, $) dzds. Then the asymptotic behavior of solutions
Q
of ([LID) is described as follows: if ug € L*(Q2),
Ju(, 1) — Ml r2@) < e P lug — M|l 120,
and if ug is continuous and bounded there exists a positive constant C' such that

||’U,(7 ',t) — MHLoo(Q) S Ce_ﬂlt.

The rest of the paper is organized as follows: in Section [2 we prove existence
and uniqueness of the Cauchy problem given by (ILI0) and we also prove Theorem
[C1l In Section [3 we prove existence, uniqueness and a comparison principle of the
Dirichlet problem given by ([I2), and we also prove the convergence result for
Dirichlet problem, Theorem [L.5

2. THE CAUCHY PROBLEM

In this section, we will use that the function ug is invariant by the action of
U(n), this allows us to use the spherical transform of H,, in order to obtain explicit
solutions of Cauchy problem (LI0).

Theorem 2.1. Let ug in L'(H,)Y™ and ug in LY(X). Let J satisfy (H). Then
there exists a unique solution u € C°([0,00), L*(H,)) of problem ([LI0) and it is
given by:

G\ K, t) = eTOR=Digsy k).
Proof. First observe that since / J(2,5)dzds = 1, then J € Co(X) and J(0,0) =
1' n

We have
ug(z,8,t) = J xu(z,s,t) — u(z,s,t).

Applying the spherical transform to this equation, we obtain:

~

AN t) = (T ) — DA\, &, t).
Hence,
ANk, t) = TR =DEg (X k).

Since @ € L'(X) and e/~D! is continuous and bounded, the result follows by
taking the inverse of the spherical transform. O
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Lemma 2.2. Let J € S(H,)V™ satisfy (H) and ug = 6o (the Dirac delta in H, ).
Then the fundamental solution of (LIQ) can be decomposed as

w(z, s,t) = e '0g +v(z,s,t),

with v(z, s,t) smooth. Moreover, if u is a solution of (LI0) with initial condition
a function ug invariant by the action of U(n), it can be written as

u(z, s,t) = w*ug(z,s,t).

Proof. By the previous result, we have
Wi\ by t) = (T k) = DB, ks ).
Hence (% =1, in the sense of distributions, we have
DN k) = e(f(A,k)fl)t _ eft(ef()\,k)t —1)+ —

Now let us prove that, for each fixed ¢, PICNO e LY(¥). By the mean value

theorem
Z/ 7Rt _ 1| |A|"dA = Z/ | T B)te Y [ A dA

keN keN
< CZ/ |T(A, k)E| A" dA
keN
By [5] exist a function g € S(R2) such that J(A, k) = g(, |A|(2k +n)) then

> [T 1< e Y [ a0 Nk +n)o] APay

keN keN

"
_ 1t
Ctn+1 Z/‘ (2k+n 77)‘ (2k + nynt1 7

kEN
As g belongs in S(R?) exist constants C; and Co such that |g(z,y)| < C; and
l9(2,y)| < e then

Z/|e (B _ 1] [A[md

ken
1 1 Cy

<c / cmwm+/ dn
U ;N (2k + n)ntt [ Inl<1 ni>1 1112

Therefore the first part of the lemma follows applying the inverse spherical trans-
form.

Note that since J and ug are invariant by the action of U(n) it is enough to show
that there exist L(")(v) and S"(v), for all r € N, to prove that v € C°°(H,,)V (.
this is shown similarly to the previous account using (L3).

To finish the proof, we observe, that
@Fa Nk, t) = DOk, DT (M k) = eTAR=DIg 0 k).
By Theorem (21]) the solution of problem (LI0) satisfies
Ak, t) = TR =Dig (x k).
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Then the result is followed since the spherical transform is injective. O

Next we will prove the asymptotic behavior for the nonlocal diffusion equation

CI0).

Proof of Theorem[I1. We remark that from our hypotheses on .J,

N B . : o([A[(2k +n))
T\ E) =1 — N2k +n) +o(|\|(2k +n)), with . e o

We have that,

(2.1) JOWK) < 1— A2k + 1) + N2k + n)R(M (2K + n)),

where h is a bounded positive function and lim|y|(2k-n)—0 R(|A|(2k +n)) = 0. We
recall that |J(), k)| < 1, then there exist a number £ > 0 and constants D > 0 and
E > 0 such that

(2.2) J k) <1—D|NQk+mn), if [N@2k+n)<E,
(2.3) JO\ k) <1-E, if M2k +n) > ¢

As in the proof of the Theorem (1), we have
ANk, t) = TR =DEg (X k).

On the other hand, let v(z, s,t) be a solution of the heat Heisenberg equation, with
the same initial datum v(z, s,0) = ug(z, s). Taking the spherical transform and by

equations ([[3) and (7)) we get
TN, kyt) = e” MRG0 K).

Then, by (L6]) and ([T4]), we have

lu(z, s,t) —v(z,8,t)] = Z/Oo (W —0)(\, k, )oak(z,8)[A|"dA

k>0~

< Z/OO ’(e(J()\,k)—l)t _ e—\>\|(2k+n)t) o\, k:)‘ A["dA.

k>0~

We decompose the equation in two parts, when |A|(2k + n)vt > 1 and |\|(2k +

n)Vt < 1.
|u(z,s,t)—v(z,s,t)|§2/

1
]CZO p\IZ(Zk+n)\/?

i Z /|A< 1 (e(J(A,k)q)t - ef|)\\(2k+n)t) To(\, k:)’ IA[dA

k>0 (2k+n)Vt
=1+11.

‘ (e(f(x,k)—l)t N e—m(zkmt) o\, ]g)‘|)\|"d)\
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First we work with I,

I= Z/,\|>

k>0

(e(f(A,k)—l)t _ e—|A\<2k+n>t) o\, k)’ IA["dA

1
Gkt Ve

< Z/ ‘e(j(’\’k)*l)tao(k,)\)‘ A" dA
k>0 N> Gy
+ Z/ e Wm0, )| A ax
k>0 N> G e
=1 + Is.

For I, we make the change of variables A\(2k +n)t = 7, then |A|(2k +n)t = |n| and
d\(2k + n)t = dn, and

L = gt 3 1 ‘e—IAK?’”"ﬁa@(/\, k)} IA"dA
k20" > G

< [lfolloc / el
[n|>Vt

Note that the sum is finite and by the dominated convergence theorem,

1
D G

k>0

lim "', = 0.
t—o0

Now, we work with ;. By (Z2)) I; is bounded by

I = Z/ ‘eW(W*l)tﬁo(A, k)‘ A" dA
k>0 N> G

N Z /L>|,\>

k>0" 2k+n

AR =Dt g0\ k:)‘ IA["dA

1
(2k+n)Vt

+ Z/ e(j(’\’k)_l)tao()\,k)‘ IA[™dA
A1 g

S

k>0" 2k+n >[A> (2k+n)Vt

efD\>\|(2kJrn)t,&0(/\7 k)’ |/\|nd/\ + ”ﬁOHLl(Z)eiEt

We now make the change of variables A(2k 4+ n)t = 7, and then

1
"L < lao|oo 7/ e_D‘"‘|77|"dn+ [ dio| 11 sy t" e Bt
g) (2k 40" Jers o> ve =
1
<|to]|so / e—D\ﬁ\|n|ndn S N AR
[n|>vt kzzo (2k + n)n+1 ()

Therefore t"T1I; — 0 when t — cc.
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Finally we will estimate I7. Again we make the change of variables \(2k +n)t =
n, if v/ is a sufficiently large number, by (21J), we have

tn+III _ tn+1 Z/

(R W WA [N
k>0 N<@irmve

< " Jdig o Z/ ‘ I\ (2k+n) RN (2k4n))t 1‘ e~ M2kt n gy
k>0 (2k+ln)f
< Ct" M iglloo Y IN[(2k 4 n)R(|A| (2K + n))te ™M@+t X7 g
1

k>0 A< (2k+n)\/

Y\ -
<C - 7h i} Inl|p|nt1g
ol - [ gt () o

k>0

, 1 MY —lal),n
< Clltiollso ZW /Rh<|t—|)€ g d,

E>0
Observe that h(@) — 0 when t — co. Also h (@) eI n|" 1 < ||h|so|n|™ eI
and then by convergence dominated theorem t"*1II — 0 when t — oo.
Thus we have showed that
lim ¢! max lu(z, s,t) —v(z,s,t)] =0
t—o00 (z,

since

lim ¢t max|u(z s,t) —v(z,s,t)]

t—r o0
n+1 n _
< lim ¢ ;/ B\, t)|A\["dX = 0.

Now we will prove that the asymptotic profile is given by

. n+1 1 _ _
tl_l}rgor(rzlagdt u(t2z,t8,t) — Gy, (2, 8)| = 0,

where G, (2, s) is the function such that G, (k) = e~ M C+m75(0, k).
Indeed, we have

(2.4) DI k) = e MERHHITEG=IN ) — e MEHITE0, k).

Now, taking the spherical transform and by (4 and (L3]), we get

(25) "0, L )\ k) = / W(t22, 15, )1 x5 (—2, —s) dz ds
Hyp,

= t”+1/ v(t%z,ts,t)%fl)\’k(—t%z,—ts) dzds
H

n

= v(z, 8, t) -1\ (—2,—s)dzds
H,

=0t I\ K, ).
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By (1), @4) and Z3) we have

lim max [t" T 6u(z, 8, 1) — Guy (2, 8)] < lim max [t" T 5,u(z, s,t) — "1 5,0(z, s, 1)
=00 (2,9) =00 (2,9)

. n+1 _ _
—l—tli)rgo r(x;a;))dt Ov(z, 8,t) — Gy (2, 8)] = 0.
Finally, since [[v(-, -, t)||oo < Ct~ D (see (LF)), we have
(-, )| oo,y < Ct™0HD.

and by interpolation for 2 < p < oo,

2 p—2
||u(7 ) t)HLP(Hn) < ||u(7 ) t)”f,?(]}ﬂn) ||u(7 K t)”LZO(Hn)'

As ([CI0) preserves the L?(H,,) norm, because it is the solution given through the
spherical transform, we have

s+ Dll o,y < CE D),

3. THE DIRICHLET PROBLEM

3.1. Existence and properties of solutions.

We shall first derive the existence and uniqueness of solutions of ([([LI2)), which is
a consequence of Banach’s fixed point theorem. The main arguments are basically
the same of [§] or [9], but we write them here to make the paper self-contained.

Theorem 3.1. Let ug € LY(Q) and be J a kernel that verifies (H) and (H). Then
there exists a unique solution u of [[I2) such that u € C([0,0), L*(Q)).

Recall that a solution of the Dirichlet problem is defined as a u € C([0, 00), L' (£2))

satisfying (LI2).

Proof. We use the Banach’s fixed point theorem. Fix t; > 0 and consider the
Banach space

Xy, = {w € C([0,to); L' (), and w(z, s,t) = g(z,s,1) if (z,5) ¢ Q},
with the norm

ol += max - 6)lzso-

We will obtain the solution as a fixed point of the operator ¥ : X;, — X;, defined
by

t
wo(z, s) +/ Jxw(z,s,1)—w(z,s,r)dr if (z,5) € Q,
0

T(w)(z,s,t) :=
(w)( ) 9(z,8,1) if (z,5) ¢ Q,

where wo(z, s) = w(z,s,0).
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Let w, v € X;,. Then there exists a constant C' depending on .J and €2 such that
(3.1) [%(w) = Z)|I] < Ctol|lw = ol|] + lwo = voll L1(0)-
We will prove (B1)). Indeed,

[F(w) — F(v)] (2, 8, t)dzds < / |wo — vol(z, s)dzds
Q Q

.
Q

< Jlwo = vollr@y + te(ll Il o) + QDI (w = )¢, D)1 ()
Taking the maximum in ¢ (&I follows.

/0 J# (w—v)(z,8,1)— (w—2)(z,s,r)dr| dzds

Now, taking vy = v = 0 in (B) we get that T(w) € C([0,t0]; L'(2)) and this
says that € maps X, into Xy,.

Finally, we will consider Xy, ., = {u € X, : u(z,5,0) = up(z,s)}. T maps
Xioue into Xy 4, and taking tp such that (C' + 1)ty < 1, where C' is the constant
given in ([BJ]) we can apply the Banach’s fixed point theorem in the interval [0, to]
because T is a strict contraction in Xy, ,,. From this we get the existence and
uniqueness of the solution in [0,%p]. To extend the solution to [0,00) we may take
as initial data u(z,to) € L*(Q) and obtain a solution up to [0, 2to]. Iterating this
procedure we get a solution defined in [0, 00). O

In order to prove a comparison principle of problem given by ([LI2]) we need to
introduce the definition of sub and super solutions.

Definition 3.2. A function u € C([0,T]; L*(Q)) is a supersolution of (LI2) if

u(z, 8,t) > J xu(z,s,t) —u(z,s,t), for (z,8) € Q and t > 0,
(3.2) u(z,s,t) > g(z,t), for (z,s) ¢ Q and t > 0,
u(z,8,0) > ug(z,s), for (z,s) € Q.

As usual, subsolutions are defined analogously by reversing the inequalities.

Lemma 3.3. Let ug € C(Q), ug > 0, and u € C(Q x [0,T]) a supersolution of
([CI2) with g > 0. Then, u > 0.

Proof. Assume to the contrary that u(z, s, t) is negative in some point. Let v(z, s,t)
= u(z,s,t) + et with € > 0 small such that v is still negative somewhere. Then,
if (20, S0, to) is a point where v attains its negative minimum, there it holds that
to > 0 and

vt(ZO; 50, tO) = ’LLt(Z(), 505 to) +e>Jx ’LL(Z(), 50, tO) - U(Zo, 505 tO)
1
= / J(Z—2,5—s— §Im<2, 2))(v(Z, 8,to) — v(z0, S0, to))dZdS.
H,,
This contradicts that (zo, so,%0) is a minimum of v. Thus, u > 0. O

Corollary 3.4. Let J € L>®(H,). Let ug and vy in L'(Q) with ug > vo and
g,h € L>((0,T); L*(H,, \ Q)) with g > h. Let u be a solution of ([[I12) with
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u(z,s,0) = ug(z,s) and Dirichlet datum g, and let v be a solution of ([[LI2) with
v(z,8,0) = vo(z,8) and datum h. Then, u > v a.e. L.

Proof. Let w = u —v. Then, w is a supersolution with initial datum wg — vy > 0
and datum g — h > 0. Using the continuity of the solutions with respect to the
data and the fact that J € L>°(H,), we may assume that u,v € C(2 x [0,T]). By
Lemma (3:3) we obtain that w = u — v > 0. So the corollary is proved. O

Corollary 3.5. Let u € C(2x [0,T]) (resp., v) be a supersolution (resp., subsolu-
tion) of (LI2). Then, u > v.

Proof. 1t follows from the proof of the previous corollary. O

3.2. Convergence to the heat equation.

In order to prove a to prove Theorem [[5] let & be a C?t*1+/2 extension of v
to H,, x [0,T], where v is the solution of (I.I4]). Let us define the operator

L (w)(z,s,t) := E%Je xw(z,s,t) —w(z,s,t).
Then v verifies
01(2,8,t) = Le(v) (2, 5,t) + Fo(z, 5, 1), for (z,s) € Qand ¢ € [(0,T],
(3.3) 0(z,8,t) = g(z,8,t) + G(z, s, 1), for (z,5) ¢ Qand t €, (0,7
0(2,8,0) = up(z, s), for (z,s) € Q.
Since Lv(z, s,t) = Li(z, s,t) for (z,s) € Q, we have
F.(z,8,t) = Li(z,5,t) — L(v)(2, 5,1).
Moreover, as G is smooth and G(z,s,t) = 0 if (z,s) € 9Q we have
G(z,s,t) = o(e) for (z,s) such that dist((z, s),9Q) < ed.
We set w® =0 — u° and we note that
w (2, 5,t) = L(w)(z,5,t) + F.(2,5,t), for (z,5) € Qand t € (0,T],
(3.4) we(z,8,t) = G(z,8,1), for (z,s) ¢ Q and t €, (0,T],
we(z,s,0) =0, for (z,s) € Q.
Lemma 3.6. Let 0, L. and F. be as previously defined. Then we have that

(3.5) sup || Fel o) = o(e”).
te[0,7)

Proof. By © € C*t1+e/2(H,, x [0,T]), we have that
FE(Zv Svt> = L’LN)(Z, Svt) - EE(’U)(Z, S, t)
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In the global coordinate system (x,y, s), we obtain

. 2071 F—x j—y 5—s liy—7qz
Le s Y 7t - ! J ) ) Y
(’U)(I Y9 ) 62n+4 /]R%H»l < € 62 2 62

(o, §,5,t) — (@, y,s,1)) dEdjjds.

™

We now make the change of variables *=* = &, =¥ = ¢ and *5* = #, and so,

L 201 (e +a)y—(fty)
Lﬁ(v)(x7y787t) = 621 ‘/]R2 Jr1J ($7y75_ _( ) 2( )

[\

€
“(v(eZ +x, €4 + y, €8+ s, t) — v(x,y, s, t)) didjds

2Cf1 €LY — eyx
= J T [/ § _——
62 /Rzn+1 (:E7 Y9 262

c(v(ex + x, ey +y, €5+ s, t) — v(x,y, s, t)) didyds.

By a simple Taylor expansion we have
v(ed + x,e) +y,e8 + s,t) —v(z,y, s, 1)
0

6—%(xy,stexj+za v(z,y, s, t)ey;

[
NE

j=1
+ 2v(:z: y,s,1)e8 + = Z;v(x Y, 8, 1) 83
68 ydr 9 2 - &vj(?:vi AR ] ]

1 (92 2~ 82 245 0
+ 5 ; 8yjayiv($7y7s7t)6 YiYi + Z 8xj8yiv(x7y787t)€ TjYq

LS O s ) +§j T ey, 5,058
v(x,y,s,t)e’L;8 v(x,y,s,t)e’y;8
s ’ < Oy;0s ’

—v(x,y, s, 1)e' 5% + o(e2T).

By the fact that J verifies the hypothesis (fl ),

- o?
L ( ) x y,S,t Z 62@ U(xvy,S,t)

n

+ la—Qi(x + QZ 0 v(x t) + o(e%)
4 02 y] aS ayj yja(E] 'Yy S,

= Lv(z,y,s,t) + o(e*) = Lo(x,y,s,t) + o(e™).
O

Proof of Theorem[L3. In order to prove the theorem by a comparison argument
we first look for a supersolution. Let w be given by

(3.6) w(z,s,t) := K1t + Kae.
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For (z,s,t) € Qx [0,T] we have L(W)(z, s,t) = 0, and if K, is large by Lemma B8]
and equation (B.4)):
(3.7) Wi(2,8,t) — Le(W)(z,5,t) = K1 > F.(2,8,t) = w(z,5,t) — Le(we)(z, 5, ).

Since
G(z,s,t) = o(e) for (z,s) such that dist((z, s), 99) < ed,
choosing K5 large, we obtain

(3.8) w(z,5,t) = wi(z,s,1),
for (z,s) ¢ Q such that dist((z, s),9Q) < e and ¢ € [0,T]. Moreover, it is clear that
(3.9) wW(z,s,0) = Koe > 0 =wj(z,s,0).

By B7), B38) and (3) we can apply the comparison result, Corollary B4l and
conclude that

(3.10) w(z,8,t) <W(z,s,t) = K1e*t + Kae.
In a similar way we prove that w(z, ¢

(3.11) w(z,8,t) > w(z,s,t) = —K1e*t — Kae.
Therefore by I0), BII) and since 0 < a < 1, we get

sup |lv —ul|peoq) = sup ||w||peo(q) < C(T)e™.
te[0,T] tel0,T

) = —Kj¢e*t — Kye is a subsolution and hence,

This proves the theorem. (I
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