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THE NASH-MOSER THEOREM OF HAMILTON

AND RIGIDITY OF FINITE DIMENSIONAL

NILPOTENT LIE ALGEBRAS

ALFREDO BREGA, LEANDRO CAGLIERO, AND AUGUSTO CHAVES OCHOA

Abstract. We apply the Nash-Moser theorem for exact sequences of
R. Hamilton to the context of deformations of Lie algebras and we dis-
cuss some aspects of the scope of this theorem in connection with the
polynomial ideal associated to the variety of nilpotent Lie algebras. This
allows us to introduce the space H2

k−nil(g, g), and certain subspaces of it,
that provide fine information about the deformations of g in the variety
of k-step nilpotent Lie algebras.

Then we focus on degenerations and rigidity in the variety of k-step
nilpotent Lie algebras of dimension n with n ≤ 7 and, in particular,
we obtain rigid Lie algebras and rigid curves in the variety of 3-step
nilpotent Lie algebras of dimension 7. We also recover some known
results and point out a possible error in a published article related to
this subject.

1. Introduction

In this paper we will assume that all Lie algebras and representations are
finite dimensional, and mostly over R. Here we apply a finite dimensional
version of the Nash-Moser theorem for exact sequences of R. Hamilton to
the context of deformations in the variety of nilpotent Lie algebras. Our
main results are described below.

1.1. The Nash-Moser theorem of R. Hamilton. A very well known
general principle of deformation theory says that given an (algebraic) struc-
ture µ, then

(1.1) H2(µ, µ) = 0 ⇒ µ is rigid, but the converse is not true in general.

By definition, an algebraic structure µ on a K-vector space V is rigid if the
GL(V )-orbit of µ, O(µ), is a Zariski open set in the algebraic variety of all
such algebraic structures.

Roughly speaking, when K = R or C, an algebraic structure µ is rigid
if every small perturbation of µ is isomorphic to µ. More precisely, it is
known that O(µ) is open in the metric topology if and only if it is open in
the Zariski topology (see [NR, Proposition 17.1], see also [GK, Proposition
2]). As a consequence of this, the principle (1.1) follows from a particular
instance of the Nash-Moser theorem for exact sequences of R. Hamilton as
we recall below. This theorem is stated in [H] in terms of tame Fréchet
spaces and it is related to the inverse function theorem of Nash and Moser
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[Na, Mo]. Here, we state a finite dimensional version of the Nash-Moser
theorem of R. Hamilton.

Theorem 1.1. Let U ⊂ R
m and V ⊂ R

n be open sets and let

(1.2) U
F
−→ V

G
−→ R

k

be a sequence of C∞ functions such that G◦F is constant, say G(F (x)) = 0
for all x ∈ U . Fix a ∈ U and let b = F (a) ∈ V . If the linear sequence

(1.3) R
m

dF |a
// R

n
dG|b

// R
k

is exact (in the usual algebraic sense), there is an open neighborhood W ⊂
V ⊂ R

n of b and a C∞ map H : W → U ⊂ R
m such that F (H(y)) = y, for

all y ∈ W satisfying G(y) = 0. That is

U
F // V

G // R
k F ◦H = Id in {y ∈ W : G(y) = 0}.

W

H

__❄❄❄❄❄❄❄❄
?�

OO

In some sense, this theorem says that the exactness of (1.3) implies a
“local splitting” of (1.2).

We could not find this statement in the literature. Also, and remarkably
to us, we do not see this theorem frequently cited in articles dealing with
algebraic structures in the context of (1.1).

Recently, I. Struchiner pointed out to us that a close result appears in
Serre’s book (see in [S, pp. 89-90] the result attributed to Weil). The
statement of this result is a bit weaker than Theorem 1.1, however, as the
referee indicated, Serre’s proof of his statement in fact proves the statement
of Theorem 1.1.

On the other hand, Hamilton’s proof of his version of Theorem 1.1, in
the context of tame Fréchet spaces and tame smooth functions, is consider-
ably involved. We came across Hamilton’s paper because it is cited in the
survey [CSS] of M. Crainic, F. Schätz and I. Struchiner where the authors
address, in a unified way, several well known problems about rigidity and
stability of Lie algebras and morphisms based on the principle (1.1). To
address these problems, the authors state and prove some stability results
(see Propositions 4.3, 4.4 and 4.5 in [CSS]) that are phrased in terms of
Kuranishi models and non-degenerate zeros of equivariant sections of vector
bundles with group actions. Although the statement of Proposition 4.3 in
[CSS] is more involved than that of Theorem 1.1, as in Serre’s case, the proof
of Proposition 4.3 of [CSS] provides a proof of Theorem 1.1.

We think that both, the Nash-Moser theorem of Hamilton for tame Fréchet
spaces and the results about Kuranishi models and equivariant sections of
[CSS], are much deeper than what is needed to address some problems about
rigidity and stability in a finite dimensional context.

We hope that the applications of Theorem 1.1 presented in this paper will
make this classic and important result accessible to more people working on
deformations of algebraic structures.
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1.2. Degenerations and rigidity of nilpotent Lie algebras. Theorem
1.1 can be applied to the study of the deformations of any algebraic structure
µ on a finite dimensional R-vector space V and, in particular, when µ defines
a Lie algebra structure on V .

Let Ln (resp. Nn) be the algebraic variety of all Lie algebra (resp.
nilpotent Lie algebra) structures µ on an n-dimensional vector space g.

Let {gi}i≥0 and {g(i)}i≥0 denote, respectively, the descending central se-

ries and the derived series of g (i.e. g0 = g(0) = g, gi = [gi−1, g] and

g(i) = [g(i−1), g(i−1)]) and let Nn,k = {g ∈ Ln : gk = 0} and Sn,k = {g ∈ Ln :

g(k) = 0} be, respectively, the subvariety of all (at most) k-step nilpotent
and solvable Lie algebras.

Theorem 1.1 applies to the study of the deformations in a given variety.
For instance, if we want to study the deformations of µ in Ln we consider
the following sequence of C∞ functions,

(1.4) GL(g)
F
−→ Λ2g∗ ⊗ g

G=J
−−−→ Λ3g∗ ⊗ g

where F is the action of GL(g) on µ and J is the Jacobi operator, that is

F (g)(x, y) = g(µ(g−1x, g−1y)), g ∈ GL(g);

J(σ)(x, y, z) =
∑

cyclic

σ(σ(x, y), z), σ ∈ Λ2g∗ ⊗ g and x, y, z ∈ g.

It turns out that the following portion of the Chevalley-Eilenberg complex
for the adjoint cohomology g,

g∗ ⊗ g
d1µ
−→ Λ2g∗ ⊗ g

d2µ
−→ Λ3g∗ ⊗ g

is the sequence

(1.5) TI(GL(g))
dF |I
−−−→ Tµ(Λ

2g∗ ⊗ g)
dJ |µ
−−−→ T0(Λ

3g∗ ⊗ g),

(see (1.3)) corresponding to (1.4). Therefore, ifH2(µ, µ) = 0, we obtain from
Theorem 1.1, that there exist an open neighborhood W of µ in Λ2g∗⊗g and
a C∞ map H : W → GL(g) such that

(1.6) H(λ) · µ = F (H(λ)) = λ,

for every λ ∈ W ∩ {J = 0} = W ∩ Ln. Hence (g, µ) is rigid in Ln (see also
Theorem 5.3 of [CSS]).

On the other hand, if we are interested in the deformations of µ in Nn,k

we can apply Theorem 1.1 considering the following C∞ functions,

(1.7) GL(g)
F

−−→ Λ2g∗ ⊗ g
G=J⊕Nk−−−−−−−−−→ Λ3g∗⊗g ⊕ (g∗)⊗(k+1)⊗g,

where F is as above and Nk : Λ2g∗ ⊗ g → (g∗)⊗(k+1) ⊗ g is given by,

(1.8) Nk(σ)(x1, . . . , xk+1) = σ(. . . σ(σ(x1, x2), x3), . . . , xk+1) for k ≥ 1.

This sequence allows us to introduce the cohomology space H2
k−nil(µ, µ) (see

(2.3)) obtaining that (g, µ) is rigid in Nn,k whenever H2
k−nil(µ, µ) = 0.

Theorem 1.1 could be applied in a more subtle way. Note that J and
Nk give rise, when written in coordinates, to polynomials of degree 2 and k
respectively. Let In,k be the ideal generated by these polynomials. It turns
out that, depending on n and k, there might be polynomials of degree less
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than k in the radical
√

In,k that are not in In,k. In this case, if P is such
a polynomial, it can be used as (part of) the function G in Theorem 1.1 to
describe more precisely Nn,k which, in turn, might help to recognize rigid
µ’s as points with “zero cohomology”. For example, this happens for the
ideal of I7,6 (which defines N7 = N7,6). Indeed, the polynomial identity
[g1, g3] = 0, of degree 5, holds for every nilpotent Lie algebra g of dimension
7. This is discussed in §3 and, in §4.3, we use the identity [g1, g3] = 0
and Theorem 1.1 to recover the result that states that the only three (two
over C) curves in N7 are rigid curves. As a byproduct we obtain a curve,
consisting of solvable Lie algebras, that is rigid in the variety of Lie algebras
satisfying [g1, g3] = 0.

The paper also includes an analysis of all rigid Lie algebras in Nn,k for
n = 5, 6. Some of these results provide examples showing that the converse
part of the principle (1.1) is false in N5,3, N6,3, and N6,4 (in analogy with
the famous example of Richardson [R] in L18).

Finally, in §4.4, we discuss degenerations and rigidity in N7,3. As far
as we know, the results of this subsection are new. We obtain three rigid
Lie algebras and two (one over C) rigid curves in N7,3. We also present
degenerations for all Lie algebras g ∈ N7,3 with dimH2

3−nil(g, g) = 1. In
particular, we provide a non-trivial deformation of a Lie algebra in N7,3

which is claimed to be rigid in [GR].

2. Rigidity in the variety k-step nilpotent Lie algebras

Recall from the introduction that

Nn,k = {g ∈ Ln : gk = 0}

is the subvariety of Ln of all (at most) k-step nilpotent Lie algebras. Now,
we will use Theorem 1.1 to discuss rigidity in Nn,k.

Let g be a vector space over R of dimension n. For k ≥ 1 consider the
maps

(2.1) Nk ∈ Hom(Λ2g∗ ⊗ g, (g∗)⊗(k+1) ⊗ g),

defined inductively as follows,

N1(µ)(x1, x2) = µ(x1, x2),

Nk(µ)(x1, . . . , xk, xk+1) = µ
(

Nk−1(µ)(x1, . . . , xk), xk+1

)

,

where µ ∈ Λ2g∗ ⊗ g. It is clear that

(2.2) Nn,k = {µ ∈ Λ2g∗ ⊗ g : J(µ) = 0 and Nk(µ) = 0}.

It is not difficult to see that dNk|µ : Λ2g∗ ⊗ g → (g∗)⊗(k+1) ⊗ g is given by,

dN1|µ(σ)(x1, x2) = σ(x1, x2),

dN2|µ(σ)(x1, x2, x3) = µ(σ(x1, x2), x3) + σ(µ(x1, x2), x3),

dN3|µ(σ)(x1, x2, x3, x4) = µ(µ(σ(x1, x2), x3), x4) + µ(σ(µ(x1, x2), x3), x4)

+ σ(µ(µ(x1, x2), x3), x4),

and so on for k ≥ 4.
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Since Im(d1µ) ⊂ Ker(d2µ) ∩ Ker(dNk|µ), in analogy with the definition of

the second cohomology space H2(g, g) we define

(2.3) H2
k−nil(g, g) =

Ker(d2µ) ∩Ker(dNk|µ)

Im(d1µ)

for any k-step nilpotent Lie algebra (g, µ). In the following theorem we
apply Theorem 1.1 to obtain a rigidity result in line with the principle (1.1).

Theorem 2.1. Let (g, µ) be a k-step nilpotent Lie algebra over R. If
H2

k−nil(g, g) = 0, then there is a neighborhood W of µ in Λ2g∗ ⊗ g and a
smooth map H : W → GL(g) such that H(λ) ·µ = λ for every λ ∈ W ∩Nn,k.
Hence, (g, µ) is rigid in Nn,k.

Proof. Let (g, µ) be a k-step nilpotent Lie algebra over R and let F and J
be as in (1.4). Consider the following 3-term C∞-chain complex

(2.4) GL(g)
F

−−→ Λ2g∗ ⊗ g
G=J⊕Nk−−−−−−−−−→

(

Λ3g∗ ⊗ g
)

⊕
(

(g∗)⊗(k+1) ⊗ g
)

.

Since µ is a k-step nilpotent Lie algebra we have G(F (g)) = 0 for g ∈ GL(g).
Take a = I ∈ GL(g) and b = F (I) = µ ∈ Λ2g∗ ⊗ g in Theorem 1.1. Since

dF |I = d1µ and dG|µ = d2µ ⊕ dNk|µ,

it follows that the sequence

(2.5) g∗ ⊗ g
dF |I
−−−→ Tµ(Λ

2g∗ ⊗ g)
dG|µ
−−−→ T0

(

Λ3g∗ ⊗ g
)

⊕ T0

(

(g∗)⊗(k+1) ⊗ g
)

,

is exact if and only if H2
k−nil(g, g) = 0. Hence, from Theorem 1.1, it follows

that if H2
k−nil(g, g) = 0 there exist a neighborhood W of µ in Λ2g∗ ⊗ g and

a C∞ function H : W → GL(g) such that

(2.6) H(λ) · µ = F (H(λ)) = λ,

for every λ ∈ W ∩ {J ⊕ Nk = 0} = W ∩ Nn,k (see (2.2)). Hence (g, µ) is
rigid in Nn,k, as we wanted to proof. �

It is natural to ask how to extend (2.5) to an unbounded chain complex.
Among other things, this would facilitate the computation of H2

k−nil(g, g)
by using homological algebra tools. We have been able to do this for 2-step
nilpotent Lie algebras and this work is still in progress. We point out that
M. Vergne [V] introduced, as derived functors, cohomology spaces Np

k (µ, µ)
(for k-step nilpotent Lie algebras) that can be viewed as certain subspaces
of the regular cohomology spaces Hp(µ, µ). For p = 2, this subspace, in
principle, is not quite the same as H2

k−nil(µ, µ) as it consists of classes that
contain a representative satisfying certain property (which depends on the
representative). It would be interesting to understand better the connection
between N2

k (µ, µ) and H2
k−nil(µ, µ).

3. The radical of the polynomial ideal defining Nn,k

Let g be a fixed n-dimensional vector space over R. For µ ∈ Λ2g∗ ⊗ g we
know that the coordinates of J(µ) and Nk(µ), when expressed in terms of a
basis of g, are, respectively, polynomials of degree 2 and k in the structure
constants of µ, (the number of these polynomials and the number of variables



6 ALFREDO BREGA, LEANDRO CAGLIERO, AND AUGUSTO CHAVES OCHOA

depend on n). Let In,k denote the ideal generated by these polynomials. In
this subsection we will discuss briefly some algebraic properties of In,k that
depend on n. Some of these results are needed in §4.3.

For k ≥ 3 consider the polynomial in µ ∈ Λ2g∗ ⊗ g given by,

(3.1) SNk(µ)(x1, . . . , xk+1) = µ
(

µ(x1, x2), Nk−2(µ)(x3, . . . , xk+1)
)

,

and define

SNn,k = {µ ∈ Λ2g∗ ⊗ g : J(µ) = 0 and SNk(µ) = 0} ⊂ Ln.

It is clear that if µ ∈ SN n,k then µ defines a solvable Lie algebra. More
precisely we have,

(3.2) Nn,k ⊂ SN n,k ⊂ Sn,⌈log2(k−1)⌉+1 ⊂ Sn,k−1 ⊂ Ln.

This follows since g(i) ⊂ g2
i−1 for i ∈ N, and because Nk(µ) = J(µ) = 0

imply SNk(µ) = 0.

The main goal of this subsection is to point out that

in general Nn,k+1 6⊂ SN n,k, for k < n− 1,(3.3)

but Nn,k+1 ⊂ SN n,k, for certain k < n− 1,(3.4)

(observe that Nn,k = Nn,n−1 ⊂ SN n,n−1 for k ≥ n). The inclusion (3.4)
is remarkable to us since it provides “unexpected” polynomials of degree k
(those coming from SNk) that vanish on Nn,k+1. Moreover, it reveals some
instances where the polynomial ideal In,k+1 is not radical.

More precisely, we will show next that

N5,4 ⊂ SN 5,3 N6,4 ⊂ SN 6,3 N7,4 ⊂ SN 7,3 N8,4 6⊂ SN 8,3

N6,5 6⊂ SN 6,4 N7,5 6⊂ SN 7,4 N8,5 6⊂ SN 8,4

N7,6 ⊂ SN 7,5 we don’t know

and, in general,

(3.5) N2(k+1),k+1 6⊂ SN 2(k+1),k, for all k ≥ 2.

We notice that, once Nn0,k+1 6⊂ SN n0,k for some n0 then Nn,k+1 6⊂ SN n,k

for all n ≥ n0. Therefore (3.5) implies that, given k, Nn,k+1 ⊂ SN n,k occurs
only for a finite number of n’s.

3.1. Proof of Nn,5 6⊂ SN n,4 for n ≥ 6. Let g be the Lie algebra denoted
by 12346E in [Se1] and by g6,14 in [CdGS]. The structure table of g is the
following,

g : [a, b] = c, [a, c] = d, [a, d] = e, [b, c] = e, [b, e] = f, [c, d] = −f.

It is clear that g ∈ N6,5 (in fact g is rigid in N6,5, see §4.2) but g 6∈ SN 6,4,
since

[

[a, b], [[a, b], a]
]

= f 6= 0. Therefore, N6,5 6⊂ SN 6,4 and this implies
that Nn,5 6⊂ SNn,4 for all n ≥ 6.
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3.2. Proof of N2(m+1),m+1 6⊂ SN 2(m+1),m for all m ≥ 2. Let hm be the
Heisenberg Lie algebra [xi, yi] = z (i = 1, . . . ,m) and let D ∈ Der(hm) be
the derivation defined by

D(xi) = xi+1, i = 1, . . . ,m− 1;

D(yi) = −yi−1, i = 2, . . . ,m.

Then n = RD ⋉ hm is an (m + 1)-step nilpotent Lie algebra of dimension
2m+ 2, hence n ∈ N2m+2,m+1. However, it is straightforward to verify that
n 6∈ SN 2m+2,m. In particular, this shows that

Nn,4 6⊂ SN n,3 for n = 8 and

Nn,6 6⊂ SN n,5 for n = 12.

3.3. Proof of Nn,4 ⊂ SN n,3 for n = 5, 6, 7 and N7,6 ⊂ SN 7,5. Now we
will show that

(3.6) Nn,4 ⊂ SNn,3, n = 5, 6, 7; and N7,6 ⊂ SN 7,5.

One way to prove (3.6) is to use the classification of all nilpotent Lie
algebras of dimension ≤ 7 and verify (3.6) case by case. We do not know
whether there is an elegant argument proving (3.6).

Another way to prove (3.6), which is more interesting to us in the context
of this paper, is to show that the radical of the ideals In,4 and In,6 (defining
Nn,4 and Nn,6) contain, respectively, the ideals defining SN n,3 and SN n,5,
for the given values of n. We discuss this approach next.

If g is a nilpotent Lie algebra of dimension n with bracket given by µ,
then we know (by Lie’s Theorem) that g admits a basis {ei} such that

µ(ei, ej) =

n
∑

k=j+1

ti,j,k ek, for i < j.

It is straightforward to see that the coordinates of J(µ)(ei1 , ei2 , ei3) and
either Nk(µ)(ei1 , . . . , eik+1

) or SNk(µ)(ei1 , . . . , eik+1
), are polynomials of de-

gree 2 and k, respectively, in the variables ti,j,k. Now we consider separately
the values of n given in (3.6).

Case n = 5. Here I5,4 is generated by

P1 = t1,2,3t3,4,5 and P2 = t1,2,4t3,4,5 + t2,3,4t1,4,5 − t1,3,4t2,4,5,

(notice that the condition N4 = 0 is trivial for n = 5). The condition
SN3 = 0 is given by Q1 = Q2 = 0 where

Q1 = t1,2,3t1,3,4t3,4,5 and Q2 = t1,2,3t2,3,4t3,4,5.

Then, since P1 divides Q1 and Q2 we conclude that N5,4 ⊂ SN 5,3.

Case n = 6. The ideal I6,4 is generated by the polynomials below. Those
having degree 2 correspond to J and the one’s of degree 4 correspond to N4.
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Degree 2:

t1,2,3t3,4,5,

t1,3,4t4,5,6,

t2,3,4t4,5,6,

t1,2,3t3,5,6 + t1,2,4t4,5,6,

t1,2,4t3,4,5 + t2,3,4t1,4,5 − t1,3,4t2,4,5,

t1,3,5t4,5,6 + t3,4,5t1,5,6 − t1,4,5t3,5,6,

t2,3,5t4,5,6 + t3,4,5t2,5,6 − t2,4,5t3,5,6,

t1,2,3t3,4,6 − t1,2,5t4,5,6 − t2,4,5t1,5,6 + t1,4,5t2,5,6,

t1,2,4t3,4,6 + t2,3,4t1,4,6 − t1,3,4t2,4,6 + t1,2,5t3,5,6 + t2,3,5t1,5,6 − t1,3,5t2,5,6

Degree 4:

t1,2,3t1,3,4t1,4,5t1,5,6, t1,2,3t2,3,4t1,4,5t1,5,6,

t1,2,3t1,3,4t1,4,5t2,5,6, t1,2,3t2,3,4t1,4,5t2,5,6,

t1,2,3t1,3,4t1,4,5t3,5,6, t1,2,3t2,3,4t1,4,5t3,5,6,

t1,2,3t1,3,4t1,4,5t4,5,6, t1,2,3t2,3,4t1,4,5t4,5,6,

t1,2,3t1,3,4t2,4,5t1,5,6, t1,2,3t2,3,4t2,4,5t1,5,6,

t1,2,3t1,3,4t2,4,5t2,5,6, t1,2,3t2,3,4t2,4,5t2,5,6,

t1,2,3t1,3,4t2,4,5t3,5,6, t1,2,3t2,3,4t2,4,5t3,5,6,

t1,2,3t1,3,4t2,4,5t4,5,6, t1,2,3t2,3,4t2,4,5t4,5,6,

t1,2,3t1,3,4t3,4,5t1,5,6, t1,2,3t2,3,4t3,4,5t1,5,6,

t1,2,3t1,3,4t3,4,5t2,5,6, t1,2,3t2,3,4t3,4,5t2,5,6,

t1,2,3t1,3,4t3,4,5t3,5,6, t1,2,3t2,3,4t3,4,5t3,5,6,

t1,2,3t1,3,4t3,4,5t4,5,6, t1,2,3t2,3,4t3,4,5t4,5,6.

On the other hand, the condition SN3 = 0 is {Qi = 0 : i = 1, . . . , 14} where
the Qi’s are the following polynomials of degree 3:

Q1 = t1,2,3t1,3,4t3,4,5, Q2 = t1,2,3t2,3,4t3,4,5,

Q3 = t1,3,4t1,4,5t4,5,6, Q4 = t1,3,4t2,4,5t4,5,6,

Q5 = t1,3,4t3,4,5t4,5,6, Q6 = t1,4,5t2,3,4t4,5,6,

Q7 = t2,3,4t2,4,5t4,5,6, Q8 = t2,3,4t3,4,5t4,5,6,

Q9 = (t1,3,4t2,3,5 − t1,3,5t2,3,4)t4,5,6,

Q10 = t1,2,3t1,4,5t3,5,6 + t1,2,4t1,4,5t4,5,6,

Q11 = t1,2,3t2,4,5t3,5,6 + t1,2,4t2,4,5t4,5,6,

Q12 = t1,2,3t3,4,5t3,5,6 + t1,2,4t3,4,5t4,5,6,

Q13 = t1,2,3t1,3,4t3,4,6 + t1,2,3t1,3,5t3,5,6 + t1,2,4t1,3,5t4,5,6 − t1,2,5t1,3,4t4,5,6,

Q14 = t1,2,3t2,3,4t3,4,6 + t1,2,3t2,3,5t3,5,6 + t1,2,4t2,3,5t4,5,6 − t1,2,5t2,3,4t4,5,6

It turns out that Qi ∈ I6,4 for i = 1, . . . , 12, that Q13, Q14 6∈ I6,4 but
Q2

13, Q
2
14 ∈ I6,4. This shows that N6,4 ⊂ SN 6,3.
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What it is surprising to us is that Q13, Q14 6∈ I6,4. This shows that I6,4 is
not a radical ideal. To prove this we assume in all the polynomials that,

t1,2,4 = t1,3,4 = t1,4,5 = t1,4,6 = t2,3,5 = t2,5,6 = t3,4,5 = t3,5,6 = t4,5,6 = 0.

Under this assumption, I6,4 is generated by the polynomials,

(3.7) t1,2,3t2,3,4t2,4,5t1,5,6 and t1,2,3t3,4,6 − t2,4,5t1,5,6,

while Q14 becomes

t1,2,3t2,3,4t3,4,6.

A straightforward computation shows that Q14 does not belong to the ideal
generated by the polynomials in (3.7). If instead of assuming t1,3,4 = 0 we
assume that t2,3,4 = 0 we obtain that Q13 6∈ I6,4.

Case n = 7. In analogy to the previous cases, we have verified with the
software Singular that:

- the square of the ideal defining SN 7,3 is contained in I7,4,
- the square of the ideal defining SN 7,5 is contained in I7,6,
- there are polynomials defining SN 7,3 not belonging to I7,4, as well as
polynomials defining SN 7,5 not belonging to I7,6.

Again, I7,4 and I7,6 are not radical ideals for n = 7.

This shows that, for n ≤ 7, SN3(µ) produces polynomials of degree 3 in
the radical of the ideal generated by J(µ) and N4(µ); and SN5(µ) produces
polynomials of degree 5 in the radical of the ideal generated by J(µ) and
N6(µ). This give rise to the following question:

Questions. Given n > k:

- Is the ideal In,k radical?

- Are there polynomials of degree less than k in
√

In,k which are not in In,k?
- Does SNk−1 vanishes on Nn,k? Or more generally, is there any other
polynomial identity of degree less that k (different from Jacobi) vanishing
on Nn,k?

For example, in this section we have shown that

- SN3 vanishes in Nn,4 for n = 5, 6, 7 but does not for n = 8;
- SN5 vanishes in N7,6 but does not vanishes in N12,6.

Above questions are motivated by the idea of obtaining a polynomial
P (µ), simpler than J(µ) ⊕ Nk, to be used as (part of) the function G in
Theorem 1.1 (or more precisely, in the display (2.4) of Theorem 2.1) to
study rigidity in Nn,k. This could help to recognize more easily rigid Lie
algebras in Nn,k. This tool is used in §4.3 to find rigid curves in N7,k, for
k = 3, 6.

4. Deformations and rigidity in Nn,k, for n = 5, 6, 7

In this section we will consider several structure tables of Lie algebras. In
order to shorten the description of these tables we will denote by ab the Lie
bracket [a, b].
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4.1. A rigid Lie algebra with H2
k−nil(g, g) 6= 0. It is well known that a

Lie algebra g may be rigid but fail to satisfy H2(g, g) = 0; the examples are
in general involved, see for instance [R]. In this subsection we present a Lie
algebra g that is rigid in the variety N5,3 but H2

3−nil(g, g) 6= 0.

There are only eight non-abelian Lie algebras of dimension 5 over the real
numbers [dG]. If fn denotes the standard filiform Lie algebra of dimension
n, these Lie algebras are

k k-step Lie algebra g dimH2
k−nil(g, g)

2 f3 ⊕ R
2 11 = 20− 9

g5,1 : ab = e, cd = e. 0 = 10− 10
g5,2 : ab = d, ac = e. 0 = 12− 12

3 f4 ⊕ R 4 = 18− 14
g5,3 : ab = d, ad = e, bc = e. 2 = 17− 15
g5,4 : ab = c, ac = d, bc = e. 0 = 15− 15

4 f5 1 = 17− 16
g5,6 : ab = c, ac = d, ad = e, bc = e. 0 = 17− 17

The list of 5-dimensional non-abelian nilpotent Lie algebras

and the Hasse diagram is (see [GO]),

f5

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

g5,6 //

''P
PP

PP
PP

PP
PP

PP
P

>>⑦⑦⑦⑦⑦⑦⑦⑦⑦
g5,4 // f4 ⊕R // g5,2 // f3 ⊕ R

2

g5,3 //

;;✇✇✇✇✇✇✇✇✇
g5,1

;;✈✈✈✈✈✈✈✈✈✈

This shows that g5,3 is rigid in the variety of 3-step nilpotent Lie algebras
but it tuns out that H2

3−nil(g5,3, g5,3) = span{ν1, ν2} with

ν1(b, c) = c,

ν2(a, b) = b, ν2(a, c) = −c, ν2(a, d) = −d.

In fact, if µ is the bracket of g5,3, then µ + tν1 and µ + tν2 are solvable
deformations of g5,3.

4.2. Rigid nilpotent Lie algebras in N6,k. The Hasse diagram of the
6-dimensional nilpotent Lie algebras is given in [Se1]. There are 34 real
6-dimensional nilpotent Lie algebras [CdGS] and being this a finite number
it follows, as in dimension 5, that a Lie algebra is rigid in its class if and
only if it is not a degeneration of any other in its class. It follows from the
Hasse diagram in [Se1] that there are: one rigid Lie algebra in N6,5, three
(two over C) rigid Lie algebras in N6,4, four (two over C) in N6,3 and three
(two over C) in N6,2. The following table summarizes this information.
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k-step Lie algebra k-step Lie algebra
k g as denoted in [Se1] g as denoted in [CdGS] dimH2

k−nil(g, g)

2 36 g6,26 0 = 18− 18
13 + 13 g6,22, t = −1, 1 0 = 20− 20

3 246E g6,24, t = −1, 1 2 = 26− 24
136A g6,19, t = −1, 1 0 = 25− 25

4 1246 g6,13, 1 = 27− 26
1346C g6,21, t = −1, 1 0 = 26− 26

5 12346E g6,14 0 = 28− 28

The list of rigid 6-dimensional nilpotent Lie algebras in N6,k

In this case there are three rigid nilpotent Lie algebras with non-zero
cohomology H2

k−nil(g, g), these are g6,13 and g6,24, t = −1, 1; and the non-
zero cohomology classes correspond to infinitesimal solvable deformations.

4.3. The two rigid curves in N7. It is known that there are no rigid Lie
algebras in N7 (see [Ca]) and that there are only three (two over C) rigid
curves of non-isomorphic Lie algebras in N7 (see [GA]).

One of these curves consists of 6-step nilpotent Lie algebras and it is
denoted as gI(α) by Burde [Bu], as g7,1.1(iiλ) by Magnin [Ma] and as 123457I
by Seeley [Se2]. If g6(r, t) is the surface of (solvable) Lie algebras given by
the following structure table

g6(r, t) : ab = c, ac = d, ad = e, ae = f, af = g, ag = rg,

bc = e, bd = f, be = rtf + (1− t)g, bf = rg, bg = r2g,

cd = −rtf + tg,

then g6(0, α) is exactly gI(α).
The other two curves consist of 5-step nilpotent Lie algebras and they

coincide over C. Over the complex numbers, this curve is denoted as g1(λ)
by Burde [Bu], as g7,0.4(λ) by Magnin [Ma] and as 12457N by Seeley [Se2].
The structure table of g1(λ) is obtained by setting (r, t) = (0, λ) in the
following surface of solvable Lie algebras,

g5(r, t) : ab = (1 + tr)c, ac = d, ad = f + tg, ae = g, af = −rf + g,

bc = e, bd = g, be = rd+ f, ce = g.

It is easy to check that both surfaces, {g5(r, t)}(r,t)∈R2 and {g6(r, t)}(r,t)∈R2 ,
are contained in SN 7,5 (see §3 for the definition). In addition, a Lie algebra
in either of these curves is nilpotent if and only if r = 0.

Therefore if µ(r, t) is the Lie algebra structure of either g5(r, t) or g6(r, t)
we consider the following 3-term C∞-chain complex

R
2 ×GL(g)

F
−−→ Λ2g∗ ⊗ g

G=J⊕SN5−−−−−−−−→
(

Λ3g∗ ⊗ g
)

⊕
(

(g∗)⊗6 ⊗ g
)

,

where SN5 is as in (3.1) and F (r, t, g) = g · µ(r, t).
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The corresponding linear chain complex of the tangent spaces at the points
(r0, t0, I) ∈ R

2 ×GL(g) and µ(r0, t0) ∈ Λ2g∗ ⊗ g is

(4.1) R
2× g∗⊗ g

dF |(r0,t0,I)−−−−−−−→ Λ2g∗⊗ g
dG|µ(r0,t0)−−−−−−−→

(

Λ3g∗⊗ g
)

⊕
(

(g∗)⊗6⊗ g
)

where

dF |(r0,t0,I) = [∂r|(r0,t0)µ, ∂t|(r0,t0)µ, d
1
µ(r0,t0)

],

dG|µ(r0,t0) =

[

d2
µ(r0,t0)

d(SN5)|µ(r0,t0)

]

.

A computer calculation shows that the chain complex (4.1) is exact for all
(r0, t0) with r0t0 6= −1, if µ(r0, t0) is the structure of g5(r0, t0); and for all
(r0, t0) with t0 6= 0, if µ(r0, t0) is the structure of g6(r0, t0).

The sizes of dF |(r0,t0,I) and dG|µ(r0 ,t0) are, respectively, 147 × 51 and

77×147. Writing down a computer code to obtain these matrices and confirm
the above claims is not such a difficult task. Doing this by hand would be a
huge effort, yet not impossible. For this, it could be convenient to use explicit
ordinary cohomology classes in H2(µ(r0, t0), µ(r0, t0)) which can be found in
[Ma] (if µ(r0, t0) is generic in either curve, then dimH2(µ(r0, t0), µ(r0, t0)) =
9). Then one should show that d(SN5)|µ(r0,t0) has no non-trivial kernel
within the space generated by these clases and the two tangent vectors
corresponding to R

2.

Next we use the exactness of (4.1) to obtain the following proposition.

Proposition 4.1. The curves {g1(λ) : λ ∈ R} and {gI(α) : α ∈ R, α 6= 0}
are rigid curves in N7. Moreover, for any r0 6= 0, the curves {g5(r0, t) : t ∈
R, t 6= −1/r0} and {g6(r0, t) : t ∈ R, t 6= 0} are rigid curves in SN 7,5.

Proof. Recall that g6(0, t) ≃ gI(t) and g5(0, t) ≃ g1(t). Fix t0 ∈ R (and
t0 6= 0 if µ(0, t0) is the structure of g6(0, t0)). It follows from Theorem 1.1
and the exactness of (4.1) that there is a neighborhood U ⊂ SN 7,5 of µ(0, t0)
such that for any Lie algebra structure ν ∈ U there exists (r, t) ∈ R

2 such
that ν ≃ µ(r, t). If in addition ν is nilpotent (that is ν ∈ U ∩ N7), then
r must be 0 as µ(r, t) is nilpotent if and only if r = 0. This proves that
{gI(α) : α ∈ R, α 6= 0} and {g1(λ) : λ ∈ R} are rigid curves in N7.

Now fix r0 6= 0, and t0 6= −1/r0 if µ(r0, t0) is the structure of g5(r0, t0); or
t0 6= 0 if µ(r0, t0) is the structure of g6(r0, t0). It tuns out that a computer
calculation shows that (4.1) is still exact if we consider the function F (and
its differential) with the variable r fixed at r = r0. Now Theorem 1.1 implies
that there is a neighborhood U ⊂ SN 7,5 of µ(r0, t0) such that for any Lie
algebra structure ν ∈ U there exists t ∈ R such that ν ≃ µ(r0, t). This
proves that {g5(r0, t) : t ∈ R, t 6= −1/r0} and {g6(r0, t) : t ∈ R, t 6= 0} are
rigid curves in SN 7,5. �

Remark 4.2. We point out that even when r1 6= r2, the orbit of the curve
{µ(r1, t) : t ∈ R} might have non-empty intersection with the orbit of
{µ(r2, t) : t ∈ R}. Therefore, even though the exactness of (4.1) implies
that the set {µ(r, t) : r, t ∈ R} is rigid in SN 7,5, this set does not constitute
a rigid surface of pairwise non-isomorphic Lie algebras in SN 7,5.
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4.4. Deformations and rigidity in N7,3. The goal of this subsection is
to obtain all rigid points and curves in N7,3. According to the classification,
there are more than fifty isomorphism classes and two 1-parameter curves.
Specifically, in this subsection we do the following:

(a) With the assistance of a computer, we obtain all Lie algebras g ∈ N7,3

such that H2
3−nil(g, g) = 0 (there are four such Lie algebras). According

to Theorem 2.1 these Lie algebras are rigid in N7,3.

(b) Similarly, we obtain that dimH2
3−nil(g, g) = 1 for g a generic point in

either one of the 1-parameter curves. The same argument given in the
proof of Proposition 4.1 shows that these curves are rigid in N7,3.

(c) We also determine all the Lie algebras g ∈ N7,3 that are not in the 1-
parameter curves and have dimH2

3−nil(g, g) = 1. For these Lie algebras
we explicitly show a non-trivial deformation in N7,3 (showing that they
are not rigid).

(d) As a byproduct, we point out a possible error in in Proposition 3.7 of
[GR] (see item (3) below).

As a consequence of this, it is very likely that the four Lie algebras obtained
in (a) are exactly the rigid points in N7,3. In order to complete the proof of
this, one should consider the rigidity of all Lie algebras g ∈ N7,3 such that
dimH2

3−nil(g, g) ≥ 2 (approximately 40). We think that all of them have
non-trivial deformations in N7,3.

We will follow the classification of the 7-dimensional nilpotent Lie algebras
over R given by Gong in [Go] and the one given by Seeley in [Se2]. The
classification of Gong corrects some errors in the list given by Seeley. A
more recent classification is given by Magnin in [Ma] (see also [Ca]) but we
will follow the classification of [Go] and [Se2] since these authors list the Lie
algebras by their upper central series (in [Ma] the Lie algebras are listed
by rank). The list of 3-step nilpotent Lie algebras of dimension 7 in [Go]
has 52 isolated real Lie algebras and two 1-parameter families of pairwise
non-isomorphic nilpotent Lie algebras.

Rigid points and curves in N7,3. There are four 3-step nilpotent Lie algebras
g with H2

3−nil(g, g) = 0 and thus they are rigid in N7,3. They are

g137B , g137B1 , g247H , g247H1

(g137B ≃ g137B1 and g247H ≃ g247H1 over C [Go]) and the dimension of their
orbits are, respectively, 36, 36, 38, 38.

The two 1-parameter families in N7,3 are

g147E(t) and g147E1(t), with t > 1

(over C, if t = cosh(θ) > 1 then g147E1(t) is isomorphic to g147E(t
′) with

t′ = − (1−i sinh(θ))2

cosh2(θ)
∈ C). It turns out that, if

g(t) is either







g147E1(t) with t > 1, or

g147E(t) with t > 1, t 6= 2,

then dimH2
3−nil

(

g(t), g(t)
)

= 1 (and dimH2
3−nil

(

g147E(2), g147E(2)
)

= 3),
and the non-zero cohomology class corresponds to the tangent vector of
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g(t). Therefore, the same argument given in the proof of Proposition 4.1,
proves that

{g147E(t) : 1 < t < 2} {g147E(t) : 2 < t} {g147E1(t) : 1 < t}

are rigid curves in N7,3.

Non-trivial deformations of all g ∈ N7,3 with dimH2
3−nil

(

g, g
)

= 1. There
are six other 3-step nilpotent Lie algebras g of dimension 7 in [Go] (not
members of the previous curves) such that dimH2

3−nil

(

g, g
)

= 1. They are,

g247G, g247K , g147D, g137A, g137D, g137A1 .

None of them is rigid, in fact we claim that

g247H → g247K (see item 4)
ց g247G (see item 3)

g137B → g137A (see item 1)
ց g137D (see item 1)

g137B1 → g137A1 (see item 1)

g147E1(t) → g147D, as t → 1. (see item 2)

Next we prove these statements and point out an error that occur in [GR].

(1) It is not difficult to see that g137B → g137A and g137B1 → g137A1 since

g137A : ab = e, ae = g, cd = f, cf = g;

g137B : ab = e, ae = g, cd = f, cf = g, bd = g;

g137A1 : ac = e, ad = f, ae = g, bc = −f, bd = e, bf = g;

g137B1 : ac = e, ad = f, ae = g, bc = −f, bd = e, bf = g, cd = g.

In addition, let

g(t) : ab = e, ad = f, af = g, bc = f, bd = g, cd = −t2e, ce = −g.

If we rewrite the structure table of g(t) in the basis

{ta+ c, 2t(tb− d), −ta+ c, −2t(tb+ d), 4t2(te− f), 4t2(te+ f), −8t3g}

we obtain the structure table of g137B . Since g(0) ≃ g137D (same struc-
ture table), it follows that g137B → g137D.

(2) The structure table of g147E1(t) is

g147E1(t) : ab = d, ac = −f, af = −tg,

bc = e, be = tg, bf = 2g, cd = −2g.

If we set t = 1 and rewrite this table in the basis

{−a, a+ b, c, −d, e− f, −f, −g}

we obtain the structure table of g147D

g147D : ab = d, ac = −f, ae = g, af = g, bc = e, bf = g, cd = −2g.
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(3) The structure table of g247G is that of g(0) where,

g(t) : ab = d, ac = e, ad = (1 + t3

2 )f + t3

2 g, ae = (1− t3

2 )f − t3

2 g,

bd = f, be = g, cd = g, ce = f.

On the other hand, if we rewrite the structure table of

g247H : ab = d, ac = e, ad = f, bd = f, be = g, cd = g, ce = f

in the basis

{2t2a+ (12 − t2)b+ 1
2c,

1
2(1 + t)b+ 1

2 (1− t)c, 1
2(1− t)b+ 1

2(1 + t)c,

t2(1 + t)d+ t2(1− t)e, t2(1− t)d+ t2(1 + t)e,

t2(1 + t2)f + t2(1− t2)g, t2(1− t2)f + t2(1 + t2)g},

it coincides with the table of g(t). This shows that g(t) ≃ g247H for
t 6= 0.

(4) In [GR] it is claimed that g247K is rigid in N7,3. Next, we will show that
this is not the case. The Lie algebra claimed to be rigid in [GR] is the
following,

g : ab = c, ac = d, ae = f, af = g, bc = d, be = f, ce = g, ef = d.

Now, via the change of basis given by {b,−a+ b, e, c, f, d,−g} the struc-
ture table of g becomes the same as that of g247K ,

g247K : ab = d, ac = e, ad = f, be = g, cd = g, ce = f.

Moreover, g247K is g(0) for the curve of Lie algebras,

g(t) : ab = d, ac = e, ad = f, bc = t2e, be = g, cd = g, ce = f.

On the other hand, the structure table of g247H (which is rigid) is

g247H : ab = d, ac = e, ad = f, be = g, bd = f, cd = g, ce = f

and with respect to the basis given by

{−ia,−it2(a− b), tc, t2d, −ite, −it2f, t3g},

yields the structure table of g(t), showing that g(t) ≃ g247H over C for
all t 6= 0. Since g247H 6≃ g247K we obtain that the Lie algebra g247K is
not rigid. This also shows that g247H → g247K as we wanted to prove.
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