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Abstract. We study the existence of lattices in almost abelian Lie groups that admit left
invariant locally conformal Kähler or locally conformal symplectic structures in order to
obtain compact solvmanifolds equipped with these geometric structures. In the former case,
we show that such lattices exist only in dimension 4, while in the latter case we provide
examples of such Lie groups admitting lattices in any even dimension.

1. Introduction

The aim of this article is to study the existence of lattices in a family of solvable Lie
groups equipped with certain left invariant geometric structures, namely, locally
conformal Kähler structures and locally conformal symplectic structures.

We recall that a 2n-dimensional Hermitian manifold (M, J, g) is called locally
conformal Kähler (LCK for short) if g can be rescaled locally, in a neighborhood
of any point in M , so as to be Kähler. If ω denotes the fundamental 2-form of (J, g)

defined by ω(X, Y ) = g(J X, Y ) for any X, Y vector fields on M , it is well known
that the LCK condition is equivalent to the existence of a closed 1-form θ on M
such that dω = θ ∧ ω. This 1-form θ is called the Lee form. These manifolds are
a natural generalization of Kähler manifolds, and they have been much studied by
many authors since the work of I. Vaisman in the ’70s (see for instance [11,12,33–
35,42]).

A generalization of this class of manifolds is given by the so-called locally con-
formal symplectic (LCS)manifolds, i.e., thosemanifolds carrying a non-degenerate
2-formω satisfying dω = θ ∧ω for some closed 1-form θ . Locally conformal sym-
plectic manifolds were considered by Lee in [27] and they have been firstly studied
by Vaisman in [43]. Some recent results can be found in [5,16,17,26], among
others.

Any left invariant LCK or LCS structure on a simply connected Lie group
G gives rise naturally to an LCK or LCS structure on a quotient �\G of G by a
discrete subgroup. In this articlewewill consider solvable Lie groupsG and discrete
subgroups� such that�\G is compact, i.e.,� is a lattice in G; the compact quotient
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is called a solvmanifold. In general, it is difficult to determine whether a given Lie
group admits lattices. However, there are two classes of Lie groups for which a
criterion exists: for nilpotent Lie groups, there is the well knownMalcev’s theorem
[29], while for almost abelian Lie groups there is a characterization by Bock ([7],
see Proposition 2.3 below). We recall that a Lie group is called almost abelian
when its Lie algebra has an abelian ideal of codimension one. Left invariant LCK
or LCS structures on nilpotent Lie groups have been thoroughly studied in [6,39],
therefore we will focus on the class of almost abelian Lie groups. This class has
appeared recently in several different contexts (see for instance [4,7,9,24,25]).

LCK and LCS structures on Lie groups and Lie algebras (and also in their com-
pact quotients by discrete subgroups, if they exist) have been considered by several
authors lately. For instance, it was shown in [39] that an LCK nilpotent Lie algebra
is isomorphic to h2n+1×R, where h2n+1 denotes the (2n +1)-dimensional Heisen-
berg Lie algebra. In [22] it is proved that some solvmanifolds with left invariant
complex structures do not admit Vaisman metrics, i.e. LCK metrics with parallel
Lee form. Moreover, it is shown that some Oeljeklaus-Toma manifolds (used to
disprove a conjecture by I. Vaisman) are in fact solvmanifolds with invariant LCK
structures. In [1] it is proved that any reductive Lie group admitting left invariant
LCK metrics is locally isomorphic to U (2) and GL(2, R). In [3] the authors prove
that if a solvmanifold with an abelian complex structure (i.e. [J x, J y] = [x, y] for
any x, y in the corresponding Lie algebra) admits an invariant LCKmetric then the
Lie algebra is isomorphic to h2n+1 × R. In [6] a structure theorem for Lie algebras
admitting LCS structures of the first kind is given, and 6-dimensional LCS nilpotent
Lie algebras are classified.

The outline of this article is as follows. In Sect. 2 we review some known results
about LCK and LCS structures and almost abelian Lie groups.

In Sect. 3 we characterize the Lie algebras of the almost abelian Lie groups
that admit a left invariant LCK structure (Theorem 3.3) in any even dimension
≥ 4. Moreover, we determine whether these Lie groups admit lattices, proving
that this happens only in dimension 4 (Theorem 3.7), using the criterion for the
existence of lattices in almost abelian Lie groups given in [7]. In particular, there
is a one-parameter family of unimodular almost abelian 4-dimensional Lie groups
with left invariant LCK structures, with countably many of them admitting lattices
(Theorem 3.9). The 4-dimensional solvmanifolds thus obtained are Inoue surfaces
of type S0 (see [18]).

In Sect. 4 we study LCS structures on almost abelian Lie algebras and we
get a characterization of these Lie algebras in any even dimension (see Theorem
4.1 for dimension 6 or higher and Theorem 4.5 for dimension 4). Furthermore,
we establish which of these LCS structures are of the first kind or of the second
kind. We also determine whether the 4-dimensional Lie groups associated to these
Lie algebras admit lattices (Theorem 4.8) and finally, we build in each dimension
greater than or equal to 6 a family of almost abelian solvmanifolds admitting anLCS
structure of the second kind which carry no invariant complex structure. Moreover,
we determine the Betti numbers associated to the de Rham cohomology and the
adapted (or Lichnerowicz) cohomology of these solvmanifolds in low dimensions.
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2. Preliminaries

2.1. Locally conformal structures on manifolds

Let (M, J, g) be a 2n-dimensional Hermitian manifold, where J is a complex
structure and g is a Hermitian metric. (M, J, g) is a locally conformal Kähler
manifold (LCK for short) if there exists an open covering {Ui }i∈I of M and a
family { fi }i∈I of C∞ functions, fi : Ui → R, such that each local metric

gi = exp(− fi ) g|Ui (1)

is Kähler. Also (M, J, g) is globally conformal Kähler (GCK) if there exists a C∞
function, f : M → R, such that the metric exp(− f )g is Kähler.

An equivalent characterization of an LCK manifold can be given in terms of
the fundamental form ω, which is defined by ω(X, Y ) = g(J X, Y ), for all X, Y ∈
X(M). Indeed, a Hermitian manifold (M, J, g) is LCK if and only if there exists a
closed 1-form θ globally defined on M such that

dω = θ ∧ ω. (2)

This closed 1-form θ is called the Lee form (see [27]). The Lee form is completely
determined by ω, and there is an explicit formula given by

θ = − 1

n − 1
(δω) ◦ J, (3)

where δ is the codifferential and 2n is the dimension of M .
It can be seen that (M, J, g) is LCK if and only if

(∇X J )Y = 1

2

{
θ(JY )X − θ(Y )J X + g(X, Y )Jθ# + ω(X, Y )θ#

}
,

for all X, Y ∈ X(M), where θ# is the dual vector field of the 1-form θ and ∇ is
the Levi-Civita connection associated to g. This shows that LCK manifolds belong
to the classW4 of the Gray-Hervella classification of almost Hermitian manifolds
[14].

A generalization of an LCK structure is given by a locally conformal symplectic
structure (LCS for short), that is, a non degenerate 2-form ω on the manifold M
such that there exists an open cover {Ui } and smooth functions fi on Ui such that

ωi = exp(− fi )ω

is a symplectic form on Ui . This condition is equivalent to requiring that

dω = θ ∧ ω

for some closed 1-form θ , called again the Lee form.Moreover, M is called globally
conformal symplectic (GCS) if there exist a C∞ function, f : M → R, such that
exp(− f )g is a symplectic form. Equivalently, M is a GCS manifold if there exists
a exact 1-form θ globally defined on M such that dω = θ ∧ ω.

We note that in the LCS case the Lee form is also uniquely determined by the
non degenerate 2-form ω, but there is not an explicit formula for θ such as (3) in
the LCK case. The pair (ω, θ) will be called an LCS structure on M .
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It is well known that

• If (ω, θ) is an LCS structure on M , then ω is symplectic if and only if θ = 0.
Indeed, θ ∧ ω = 0 and ω non degenerate imply θ = 0. Accordingly, an LCK
structure (J, g) is Kähler if and only if θ = 0.

• If ω is a non degenerate 2-form on M , with dim M ≥ 6, such that (2) holds for
some 1-form θ then θ is automatically closed and therefore M is LCS.

We recall next a definition due to Vaisman ([43]). If (ω, θ) is an LCS structure
on M , a vector field X is called an infinitesimal automorphism of (ω, θ) if LXω =
0, where L denotes the Lie derivative. This implies LXθ = 0 as well and, as a
consequence, θ(X) is a constant function on M . If there exists an infinitesimal
automorphism X such that θ(X) 	= 0, the LCS structure (ω, θ) is said to be of the
first kind, and it is of the second kind otherwise.

Since θ is closed,we can deform the deRhamdifferential d to obtain the adapted
differential operator

dθα = dα − θ ∧ α.

This operator satisfies d2
θ = 0, thus it defines the adapted cohomology H∗

θ (M) of
M relative to the closed 1-form θ , also called the Lichnerowicz cohomology. It is
known that if M is a compact oriented n-dimensional manifold, then H0

θ (M) =
Hn

θ (M) = 0 for any non exact closed 1-form θ (see for instance [15,16]). For
any LCS structure (ω, θ) on M , the 2-form ω defines a cohomology class [ω]θ ∈
H2

θ (M), since dθω = dω − θ ∧ ω = 0. It was proved in [43] that if the LCS
structure is of the first kind then ω is dθ -exact, i.e. [ω]θ = 0.

2.2. Left invariant LCK and LCS structures on Lie groups and its compact
quotients

Let G be a Lie group with a left invariant Hermitian structure (J, g). If (J, g)

satisfies the LCK condition (2), then (J, g) is called a left invariant LCK structure
on the Lie group G. Clearly, the fundamental 2-form is left invariant and, using (3),
it is easy to see that the corresponding Lee form θ on G is also left invariant.

This fact allows us to define LCK structures on Lie algebras. We recall that a
complex structure J on a Lie algebra g is an endomorphism J : g → g satisfying
J 2 = − Id and

NJ = 0, where NJ (x, y) = [J x, J y] − [x, y] − J ([J x, y] + [x, J y]),
for any x, y ∈ g.

Let g be a Lie algebra, J a complex structure and 〈· , · 〉 a Hermitian inner
product on g, with ω ∈ ∧2

g∗ the fundamental 2-form. We say that (g, J, 〈· , · 〉) is
locally conformal Kähler (LCK) if there exists θ ∈ g∗, with dθ = 0, such that

dω = θ ∧ ω. (4)

In the same fashion, an LCS structure (ω, θ) on a Lie group G is called left
invariant if ω is left invariant, and this easily implies that θ is also left invariant.
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Accordingly, we say that a Lie algebra g admits a locally conformal symplectic

(LCS) structure if there exist ω ∈ ∧2
g∗ and θ ∈ g∗, with ω non degenerate and θ

closed, such that (4) is satisfied.
As in the case of manifolds we have that an LCS structure (ω, θ) on a Lie

algebra g can be of the first kind or of the second kind. Indeed, let us denote by gω

the set of infinitesimal automorphisms of the LCS structure, that is,

gω ={x ∈ g : Lxω = 0}={x ∈ g : ω([x, y], z)+ω(y, [x, z])=0 for all y, z ∈ g}.
(5)

Note that gω ⊂ g is a Lie subalgebra, thus the restriction of θ to gω is a Lie algebra
morphism called Lee morphism. The LCS structure (ω, θ) is said to be of the first
kind if the Lee morphism is surjective, and of the second kind if it is identically
zero (see [6]).

For a Lie algebra g and a closed 1-form θ ∈ g∗ we also have the adapted
cohomology H∗

θ (g) defined by the differential operator

dθα = dα − θ ∧ α,

on
∧∗

g∗. According to [31], this adapted cohomology coincides with the Lie alge-
bra cohomology of g with coefficients in a 1-dimensional g-module Vθ , where the
action of g on Vθ is given by

Xv = −θ(X)v, X ∈ g, v ∈ Vθ . (6)

The fact that θ is closed guarantees that this is a Lie algebra representation.
If theLie group is simply connected then any left invariant LCKorLCS structure

turns out to be globally conformal to a Kähler or symplectic structure. Therefore
we will study compact quotients of such a Lie group by discrete subgroups, which
will be non simply connected and will inherit an LCK or LCS structure. Recall
that a discrete subgroup � of a simply connected Lie group G is called a lattice
if the quotient �\G is compact. The quotient �\G is known as a solvmanifold if
G is solvable and as a nilmanifold if G is nilpotent, and in these cases we have
that π1(�\G) ∼= �. We note that an LCS structure of the first kind on a Lie
algebra induces an LCS structure of the first kind on any compact quotient of the
corresponding simply connected Lie group by a discrete subgroup.

In the case when G is completely solvable, i.e. it is a solvable Lie group such
that the endomorphisms adX of its Lie algebra g have only real eigenvalues for all
X ∈ g, the de Rham and adapted cohomology of �\G can be computed in terms of
the cohomology of g. Indeed, Hattori proved in [19] that if V is a finite dimensional
triangular1 g-module, then V := C∞(�\G)⊗ V is a X(�\G)-module and there is
an isomorphism

H∗(g, V ) ∼= H∗(X(�\G), V ). (7)

Therefore:

1 A g-module V is called triangular if the endomorphisms of V defined by v �→ Xv have
only real eigenvalues for any X ∈ g.
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• If V = R is the trivial g-module, then the right-hand side in (7) gives the usual
de Rham cohomology of �\G, so that

H∗(g) ∼= H∗
d R(�\G). (8)

• If V = Vθ with the action given by (6), then we can identify V with C∞(�\G)

and the action of X(�\G) on C∞(�\G) is given by

X · f = X f − θ(X) f, X ∈ g, f ∈ C∞(�\G).

Here we are using that there is a natural inclusion g ↪→ X(�\G) and a bijection
C∞(�\G) ⊗ g → X(�\G) given by f ⊗ X �→ f X . As a consequence, in this
case (7) becomes (cf. [31, Corollary 4.1])

H∗
θ (g) ∼= H∗

θ (�\G). (9)

In particular, H∗
d R(�\G) and H∗

θ (�\G) do not depend on the lattice �.

2.3. Almost abelian Lie groups

In this article we will focus on a family of solvable Lie groups, namely, the almost
abelian ones. We recall that a Lie group G is said to be almost abelian if its Lie
algebra g has a codimension one abelian ideal. Such a Lie algebra will be called
almost abelian, and it can be written as g = R f1�ad f1

u, where u is an abelian ideal
of g, andR is generated by f1. Accordingly, the Lie group G is a semidirect product
G = R �φ R

d for some d ∈ N, where the action is given by φ(t) = et ad f1 . We
point out that an almost abelian Lie algebra is nilpotent if and only if the operator
ad f1 |u is nilpotent.

Regarding the isomorphism classes of almost abelian Lie algebras, it can be
proved that

Lemma 2.1. Two almost abelian Lie algebras g1 = R f1 �ad f1
u1 and g2 =

R f2 �ad f2
u2 are isomorphic if and only if there exists c 	= 0 such that ad f1

and c ad f2 are conjugate.

See [2] for a proof in the case dim g = 4.

Remark 2.2. Note that a codimension one abelian ideal of an almost abelian Lie
algebra is almost always unique. Indeed, if u and v are codimension one abelian
ideals of g, with u 	= v, then u ∩ v is a codimension two abelian ideal, and we can
decompose g = Ru0⊕Rv0⊕u∩v for some u0 ∈ u−v, v0 ∈ v−u. If [u0, v0] = 0,
then g is abelian, and if [u0, v0] 	= 0, then [u0, v0] generates the commutator ideal
of g, and therefore g is isomorphic to h3 × R

s for some s ≥ 0, where h3 denotes
the 3-dimensional Heisenberg Lie algebra.

As a consequence, in any other case the codimension one abelian ideal is unique.
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An important feature concerning almost abelian Lie groups is that there exists
a criterion to determine when such a Lie group admits lattices. In general, it is not
easy to determine if a given Lie group G admits a lattice. A well known restriction
is that if this is the case then G must be unimodular ([32]), i.e. the Haar measure
on G is left and right invariant, or equivalently, when G is connected, tr(adx ) = 0
for any x in the Lie algebra g of G. In the case of an almost abelian Lie group we
have the following fact, which will prove very useful in forthcoming sections:

Proposition 2.3. [7] Let G = R�φ R
2n+1 be an almost abelian Lie group. Then G

admits a lattice if and only if there exists a t0 	= 0 such that φ(t0) can be conjugated
to an integer matrix.

In this situation, a lattice is given by � = t0Z � P−1
Z
2n+1, where Pφ(t0)P−1

is an integer matrix.

3. Lattices in almost abelian Lie groups with LCK structures

In this section we characterize firstly all almost abelian Lie algebras which admit
LCK structures. Secondly, we determine which of the associated simply connected
almost abelianLie groups admit lattices, proving that this only happens in dimension
4.

3.1. LCK almost abelian Lie algebras

Let g be an almost abelian Lie algebra of dimension 2n + 2, so that there exists an
abelian ideal u of dimension 2n + 1. Assume that g is equipped with a Hermitian
structure (J, 〈· , · 〉), where J is a complex structure. Consider u∩ Ju, the maximal
J -invariant subspace of u. Clearly, dim(u ∩ Ju) = 2n, and there exists f2 ∈ u,
f2 ∈ (u∩ Ju)⊥, and | f2| = 1. Define f1 = −J f2 ∈ u⊥. Thenwe get the orthogonal
decomposition g = span{ f1, f2} ⊕ (u ∩ Ju), where u = R f2 ⊕ (u ∩ Ju).

We can write also g = R f1 � u, where the adjoint action of f1 on u is given by

[ f1, f2] = μ f2 + v0, (10)

for some v0 ∈ u ∩ Ju and μ ∈ R, and for x ∈ u ∩ Ju we have

[ f1, x] = η(x) f2 + Ax, η ∈ (u ∩ Ju)∗, A ∈ End(u ∩ Ju).

Since J is integrable, we have that NJ ( f1, x) = 0 for all x ∈ u ∩ Ju, that is,

J [ f1, x] = [J f1, x] + [ f1, J x] + J [J f1, J x],
which implies

−η(x) f1 + J Ax = η(J x) f2 + AJ x,

hence we obtain η = 0 and J A = AJ . Therefore, u ∩ Ju is a J -invariant abelian
ideal of codimension 2 in g. Denoting a := u ∩ Ju, we obtain the following result
(cf. [24]).
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Lemma 3.1. Let g be an almost abelian Lie algebra and (J, 〈· , · 〉) a Hermitian
structure on g. Then there exist a J -invariant abelian ideal a of codimension 2, an
orthonormal basis { f1, f2} of a⊥, v0 ∈ a and μ ∈ R such that [ f1, f2] = μ f2+v0,
ad f1 |a commutes with J |a and ad f2 |a = 0.

We will assume from now on that (J, 〈· , · 〉) is LCK. Therefore there exists a
closed 1-form θ 	= 0 such that dω = θ ∧ ω. We will consider two cases, according
to the dimension of g.

3.1.1. Dimension of g ≥ 6 In this case, that is, n ≥ 2, we have that dim(u∩ Ju) ≥
4.

Let us prove that θ is a multiple of the closed 1-form f 1, where f 1 is the metric
dual of f1. Indeed, for each x ∈ u ∩ Ju we can find 0 	= y ∈ u ∩ Ju such that
〈x, y〉 = 0 = 〈x, J y〉. Since u is abelian, we have that dω(x, y, J y) = 0, while on
the other hand we compute θ ∧ ω(x, y, J y) = θ(x)ω(y, J y) = θ(x)|y|2, and as a
consequence we obtain θ(x) = 0 for any x ∈ u ∩ Ju.

Now, from dω( f2, x, J x) = θ ∧ω( f2, x, J x) for x ∈ u∩ Ju, x 	= 0, we obtain
that θ( f2) = 0. Consequently, θ = a f 1 for some a 	= 0.

From dω( f1, f2, x) = θ ∧ ω( f1, f2, x) and (10) we obtain that θ(x) =
−〈Jv0, x〉 for any x ∈ u ∩ Ju. This implies that Jv0 = 0 and therefore

v0 = 0, so that [ f1, f2] = μ f2.

This implies that g = a⊥
� a, where we are using the notation of Lemma 3.1.

Let us compute dω( f1, x, J y) = θ ∧ω( f1, x, J y) for x, y ∈ u∩ Ju. We obtain
that

〈Ax, y〉 + 〈x, Ay〉 = −a〈x, y〉.
Decomposing A as A = U + B, where U is self-adjoint and B is skew-adjoint, it
follows from the equation above that U = − a

2 Id, and therefore, setting λ = − a
2 ,

we have that

A = λ Id+B, B∗ = −B, B J = J B.

Choosing an orthonormal basis {u1, . . . , un, v1, . . . , vn} of u ∩ Ju such that
Jui = vi , i = 1, . . . , n, we can identify u ∩ Ju with R

2n , u with R
2n+1, g with

R � R
2n+1, and we have the following matrix representations:

J |R2n =
(
0 −I
I 0

)
, ad f1 |R2n+1 =

⎛
⎜⎜⎝

μ

λI + B

⎞
⎟⎟⎠ , B ∈ u(n). (11)

Moreover, the fundamental 2-form ω and the Lee form θ are given by:

ω = f 1 ∧ f 2 +
n∑

i=1

ui ∧ vi , θ = −2λ f 1,
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where { f 1, f 2, u1, . . . , un, v1, . . . , vn} is the dual basis. Note that the operator
ad f1 |R2n+1 is nilpotent if and only if it is zero, and that if g is unimodular then
λ = − 1

2n μ.

Remarks 3.2. (i) When λ = 0, it follows that θ = 0 and therefore the Hermitian
structure (J, 〈· , · 〉) isKähler. Sincewe are interested in non-Kähler LCKstructures,
we will assume λ 	= 0, and in this case, it is easy to see that the operator λ Id+B
with B ∈ u(n) is non-singular.
(ii) Almost Kähler structures on almost abelian Lie algebras were studied in [25].

3.1.2. Dimension of g = 4 In this case we have g = span{ f1, f2} ⊕ span{u, v},
where J f1 = f2, Ju = v and { f1, f2, u, v} is an orthonormal basis of g. The
brackets on g are given by

[ f1, f2] = μ f2 + mu + nv, for some μ, m, n ∈ R,

[ f1, z] = Az, where z ∈ span{u, v} and A =
(

x −y
y x

)
, with x, y ∈ R.

Then we get that

ad f1 |R3 =
⎛
⎝

μ

m x −y
n y x

⎞
⎠ .

From dω( f1, f2, u) = θ ∧ ω( f1, f2, u), we obtain that θ(u) = n; in the same
way, θ(v) = −m. On the other hand, from dω( f2, z, J z) = θ ∧ ω( f2, z, J z) for
z ∈ span{u, v}, we get that θ( f2) = 0. Therefore we can write θ as

θ = a f 1 + nu∗ − mv∗, (12)

for some a ∈ R,where { f 1, f 2, u∗, v∗} is the dual basis of { f1, f2, u, v}. Recalling
that ω = f 1 ∧ f 2 + u∗ ∧ v∗, it follows from dω = θ ∧ ω that a = −2x .

Next, since dθ = 0, we obtain

0 = dθ = −2x d f 1 + n du∗ − m dv∗ = (−nx + my) f 1 ∧ u∗ + (ny + mx) f 1 ∧ v∗,

and we consider two cases according whether to m2 + n2 	= 0 or m2 + n2 = 0.
In the first case we have x = y = 0, thus the only non-vanishing bracket is

[ f1, f2] = μ f2+mu+nv. Ifμ = 0, this Lie algebra is isomorphic to h3×R, where
h3 is the 3-dimensional Heisenberg Lie algebra. It is well known that h3×R admits
LCK structures ([10], see also [3,39]). If μ 	= 0, this Lie algebra is isomorphic to
aff(R) × R

2, where aff(R) denotes the non-abelian 2-dimensional Lie algebra of
the group of affine motions of the real line. We point out that this decomposition is
neither orthogonal nor J -invariant. Note that these Lie algebras have 1-dimensional
commutator ideal, h3 × R is nilpotent and aff(R) × R

2 is not unimodular.
The other case is m = n = 0, so that

ad f1 |R3 =
⎛
⎝

μ

x −y
y x

⎞
⎠ , (13)
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and we obtain from (12) that θ = −2x f 1. Note that ad f1 |R2 = x I + B, for some
x ∈ R and B ∈ u(1).

Conversely, it is easy to verify that if g is an almost abelian Lie algebra where
the adjoint action of R on the codimension one abelian ideal is given by either (11)
or (13), then g admits an LCK structure.

To close this section, we state the following result which summarizes the results
obtained so far:

Theorem 3.3. Let g be a (2n + 2)-dimensional almost abelian Lie algebra and
(J, 〈· , · 〉) a Hermitian structure on g, and let g′ denote the commutator ideal [g, g]
of g.

(i) If dim g′ = 1, then (J, 〈· , · 〉) is LCK if and only if g is isomorphic to h3 × R

or aff(R) × R
2 as above.

(ii) If dim g′ ≥ 2, then (J, 〈· , · 〉) is LCK if and only if g can be decomposed as
g = a⊥

� a, a J -invariant orthogonal sum with a codimension 2 abelian ideal
a, and there exists an orthonormal basis { f1, f2} of a⊥ such that

[ f1, f2] = μ f2, f2 = J f1, ad f2 |a = 0 and ad f1 |a = λI + B,

for some μ, λ ∈ R, λ 	= 0, and B ∈ u(n). The corresponding Lee form is given
by θ = −2λ f 1. Furthermore, the Lie algebra g is unimodular if and only if
λ = − μ

2n .

Remarks 3.4. (i) If we allow λ = 0 in Theorem 3.3(ii), the Hermitian structures
thus obtained are Kähler.
(ii) A Hermitian manifold is called Vaisman if it is LCK with parallel Lee form
θ . The left invariant LCK structures obtained on the Lie groups corresponding to
the Lie algebras in Theorem 3.3(ii) or aff(R) × R

2 from Theorem 3.3(i) are never
Vaisman. This can be seen either by a direct computation or by the fact that the
endomorphisms ad f1 are not skew-symmetric (see [3]). On the other hand, any
LCK structure on h3 × R from Theorem 3.3(i) is Vaisman (see [3,39]).
(iii) With the notation used in [2], the 4-dimensional Lie algebras admitting LCK
structures obtained from Theorem 3.3(ii) correspond to r3,1 × R, r′3,λ × R, r4,μ,μ

and r′4,μ,λ for some μ 	= 0 and λ 	= 0. The Lie algebra aff(R) × R
2 from Theorem

3.3(i) is denoted by r3,0 × R in [2].

3.2. Lattices in the associated LCK Lie groups

In this section, we will consider solvmanifolds associated to the almost abelian Lie
algebras obtained in the previous section. Therefore we will study the existence of
lattices in the simply connected Lie groups associated to these Lie algebras.

Recall that for an almost abelian solvable Lie group G = R �φ R
2n+1 (n ≥ 1),

its Lie algebra is g = R �ad f1
R
2n+1 where R is generated by f1, and the action is

given by φ(t) = et ad f1 .
Let g be a unimodular almost abelian Lie algebra equipped with an LCK struc-

ture. If g is nilpotent, then it follows fromTheorem3.3 that g is isomorphic toh3×R.
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The lattices in the associated simply connected nilpotent Lie group H3×R are well
known (see [13] for their classification). The corresponding compact nilmanifolds
are primary Kodaira surfaces [18].

From now on, we will consider non-nilpotent unimodular almost abelian Lie
algebras with LCK structures. According to Theorem 3.3, such a Lie algebra g can
be decomposed asg = R f1�R

2n+1, an orthogonal sum,whereR
2n+1 = R f2⊕R

2n

and

ad f1 |R2n+1 =

⎛
⎜⎜⎝

μ

− μ
2n I + B

⎞
⎟⎟⎠ ,

for some 0 	= μ ∈ R and B ∈ u(n). Note that since B is skew-symmetric, if c ∈ C

is an eigenvalue of A = − μ
2n I + B, then c = − μ

2n ± iη for some η ∈ R.
If G denotes the simply connected almost abelian Lie group with Lie algebra

g, then G = R �φ R
2n+1 with

φ(t) = et ad f1 |
R2n+1 =

⎛
⎜⎜⎝

etμ

e− tμ
2n et B

⎞
⎟⎟⎠ . (14)

This matrix has a real eigenvalue etμ and the others are e− tμ
2n ±iη for some η ∈ R.

The existence of lattices on G will depend on the dimension of G, since we
will show that such a lattice exists only if dim G = 4.

3.2.1. Lattices in dimension ≥ 6 We will show that these Lie groups cannot
admit lattices for n ≥ 2. We state first a result about the roots of a certain class of
polynomials with integer coefficients.

Lemma 3.5. Let p be a polynomial of the form

p(x) = x2n+1 − m2n x2n + m2n−1x2n−1 + · · · + m1x − 1

with m j ∈ Z and n ≥ 2, and let x0, . . . , x2n ∈ C denote the roots of p. If x0 ∈ R

is a simple root and |x1| = · · · = |x2n|, then x0 = 1 and |x j | = 1, j = 1, . . . , 2n.

Proof. Let ρ ∈ R, ρ > 0, such that |x j | = ρ−1 for j = 1, . . . , 2n. It follows from∏2n
j=0 x j = 1 that |x0| = ρ2n .
Note that we may assume ρ ≥ 1, since otherwise we consider the reciprocal

polynomial p∗(x) := −x2n+1 p(x−1).
Let us suppose that ρ > 1.
We will prove first that p is irreducible over Z[x]. Indeed, if p = qr with

q, r ∈ Z[x], then x0 will be a (simple) real root of one of these polynomials, say
q, and therefore all the roots of r have modulus ρ−1 < 1. The coefficient r(0) will
be the product of these roots, hence |r(0)| < 1, and this is a contradiction since
r(0) ∈ Z − {0}.
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Now, let us write p(x) = ∏2n
j=0(x − x j ). Expanding this product we obtain:

m2n = x0 +
2n∑
j=1

x j , m1 = 1

x0
+

2n∑
j=1

1

x j
.

Since
∑2n

j=1
1
x j

= ρ2 ∑2n
j=1 x j , we obtain that

m2n − x0 = 1

ρ2

(
m1 − 1

x0

)
,

which implies, recalling that |x0| = ρ2n ,

ρ4n+2 − m2n x0ρ
2 + m1x0 − 1 = 0. (15)

We consider two different cases, according to: (i) x0 = ρ2n , or (ii) x0 = −ρ2n .
(i) If x0 = ρ2n then (15) becomes

ρ4n+2 − m2nρ
2n+2 + m1ρ

2n − 1 = 0.

Thus, y0 := ρ2 is a root of q(x) = x2n+1 − m2n xn+1 + m1xn − 1. Let y1, . . . , y2n

denote the other roots ofq and let us consider the polynomial q̃(x) = ∏2n
j=0(x−yn

j ).

Since q(x) = ∏2n
j=0(x − y j ) ∈ Z[x], it can be seen that q̃ ∈ Z[x] as well.

Note that q̃(ρ2n) = 0. Since p, q̃ ∈ Z[x] are monic polynomials of the same
degree, both vanish in x0 = ρ2n and p is irreducible, then p = q̃ .

Therefore the set {yn
1 , . . . , yn

2n} is a permutation of {x1, . . . , x2n}, so that the
polynomial q has a simple real root y0 = ρ2 > 0 and the other roots satisfy

|y1| = · · · = |y2n| = ρ− 1
n . We can perform the same computations as above

with the polynomial q, taking into account that in this case
∑2n

j=0 y j = 0 and∑2n
j=0

1
y j

= 0, since the coefficients of x2n and x1 in q are 0 (here we are using
that n ≥ 2).

It follows that ρ satisfies the equation

(ρ
1
n )4n+2 − 1 = 0,

so that ρ = 1, which contradicts the assumption ρ > 1.
(ii) If x0 = −ρ2n , then (15) becomes

ρ4n+2 + m2nρ
2n+2 − m1ρ

2n − 1 = 0.

Thus, y0 := ρ2 is a root of q(x) = x2n+1 + m2n xn+1 − m1xn − 1. Let y1, . . . , y2n

denote the other roots ofq and let us consider the polynomial q̃(x) = ∏2n
j=0(x−yn

j ).

Since q(x) = ∏2n
j=0(x − y j ) ∈ Z[x], then q̃ ∈ Z[x] as well. Let us consider now

the polynomial q1 ∈ Z[x] defined by q1(x) = −q̃(−x). Note that q1 is a monic
polynomial which vanishes in x0 = −ρ2n . It follows from the irreducibility of p
that p = q1, but p(0) = −1 whereas q1(0) = 1, a contradiction.
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We conclude that the assumption ρ > 1 leads to a contradiction, and as a
consequence, we have ρ = 1. Thus, |x j | = 1 for all j = 0, . . . , 2n and x0 = 1 or
x0 = −1.

If x0 = −1, then there exists l ∈ {0, 1, . . . , 2n} such that x1 = · · · = x2l = 1
and the remaining roots are non-real complex numbers α1, . . . , αn−l and their
complex conjugates, with |α j | = 1 for all j . However,

1 =
2n∏
j=0

x j = (−1)

⎛
⎝

2l∏
j=1

x j

⎞
⎠

⎛
⎝

n−l∏
j=1

|α j |2
⎞
⎠ = −1,

a contradiction.
Therefore x0 = 1 and |x j | = 1 for all j , and the theorem is proved. ��

Remark 3.6. It follows from Kronecker’s theorem [23] that all the roots of the
polynomial p in Lemma 3.5 are roots of unity.

Theorem 3.7. If G is as above with μ 	= 0 and dim G ≥ 6, i.e. n ≥ 2, then G
admits no lattice.

Proof. Suppose that G admits lattices, from Proposition 2.3 there exists t 	= 0 such
that et ad f1 is conjugate to an integer matrix. Hence its characteristic polynomial p
has integer coefficients and it can be written as

p(x) = x2n+1 − m2n x2n + m2n−1x2n−1 + · · · + m1x − 1

with m j ∈ Z. It follows from (14) that p has a simple real root x0 = etμ, and

the other roots are complex with modulus e− tμ
2n . It follows from Lemma 3.5 that

etμ = 1. Since μ 	= 0, then t = 0, which is a contradiction. ��

3.2.2. Lattices in dimension 4 From Theorem 3.3 we have that g = R � R
3 and

ad f1 |R3 =
⎛
⎝

μ

−μ
2 −y

y −μ
2

⎞
⎠ . (16)

We denote g(μ,y) = (g, J, 〈· , · 〉) where ad f1 is given by (16). In the non-Kähler
case, i.e. μ 	= 0, we get that g(μ,y) is isomorphic to g(1, y

μ
). We denote this Lie

algebra by gb, where b = y
μ
.

Remark 3.8. Note that gb and g−b are isomorphic. Moreover, for b 	= 0, gb is
isomorphic to r′4,1/b,−1/2b and g0 is isomorphic to r4,− 1

2 ,− 1
2
from [2], and it follows

that they are not pairwise isomorphic for b ≥ 0.

Let us assume that the simply connected Lie group Gb associated to gb admits
lattices. Then according to Proposition 2.3 there exists t0 ∈ R, t0 	= 0, such that
et0 ad f1 is conjugated to a matrix with integer coefficients. Therefore the character-
istic polynomial of et0 ad f1 is

f (x) = x3 − mx2 + nx − 1,
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with m, n ∈ Z. Note that f has a simple real root et0 	= 1 and two complex

conjugate roots et0(− 1
2±ib) ∈ C − R. Indeed, if et0(− 1

2±ib) ∈ R, then e− t0
2 (or its

opposite) is a double real root, and it is easy to see that this implies e− t0
2 = 1 and

therefore t0 = 0, a contradiction. In particular, G0 does not admit lattices.
Conversely, we consider f (x) = x3 − mx2 + nx − 1 with m, n ∈ Z such that

f has a simple real root c 	= 1 and two complex conjugate roots α, α ∈ C − R.
Then |α|2c = 1, so that c > 0. If α = |α|eiφ with φ ∈ (0, π) we consider the Lie
algebra g = R � R

3 where the action is given by

ad f1 |R3 =
⎛
⎝

−2 log |α|
log |α| −φ

φ log |α|

⎞
⎠ .

Then

ead f1 |
R3 =

⎛
⎝

|α|−2

|α| cosφ −|α| sin φ

|α| sin φ |α| cosφ

⎞
⎠ .

Since this matrix has eigenvalues c, α and α and they are all different, we have
that it is conjugated to the companion matrix

⎛
⎝
0 0 1
1 0 −n
0 1 m

⎞
⎠ ∈ SL(3, Z).

According to Proposition 2.3 the simply connected Lie group associated to g admits
lattices.

Note that as c 	= 1, this Lie algebra coincides with g(−2 log |α|,φ) as above and
therefore is isomorphic to gb with b = φ

log c .

Let  = {(m, n) ∈ Z × Z : fm,n(x) = x3 − mx2 + nx − 1 has roots c ∈
R, α, α ∈ C − R}. This region  is the set of the pairs (m, n) ∈ Z × Z such that
the discriminant �m,n of fm,n is negative, that is, �m,n = −27 − 4m3 + 18mn +
m2n2 − 4n3 < 0 (see Fig. 1).

Note that c = 1 if and only ifm = n, and in this case the other roots are complex
conjugate if and only if m = 0, 1, 2.

Let ′ =  − {(0, 0), (1, 1), (2, 2)} and for any k ∈ Z consider the function
hk : ′ → R that assigns to (m, n) the real number φk

log c where φk = φ + 2kπ ,
φ ∈ (0, π). With this notation, we may state the following result.

Theorem 3.9. The simply connected almost abelian Lie group Gb with Lie algebra
gb admits lattices if and only if b ∈ ⋃

k∈Z Im(hk), a countable subset of R.

Remarks 3.10. (i) The solvmanifolds associated to gb are Inoue surfaces of type S0

[21,41] (see [40] for an explicit construction of a lattice in the Lie groups Gb).
(ii) Note that if (m, n) ∈  then (n, m) ∈  as well, since fn,m(x) = −x3 fm,n

( 1
x

)
.

Thus  is symmetric with respect to the diagonal y = x .
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Fig. 1. Discriminant of fm,n < 0

(iii) The region  contains all pairs (m, n) such that m2 < 3n or n2 < 3m (see
Fig. 1).
(iv) It is easy to see that for (m, n) ∈ , the real root c of fm,n satisfies c > 1 when
n < m, therefore c is a Pisot number. Recall that a Pisot number is a real algebraic
number greater than 1 such that all others roots of its minimal polynomial have
absolute value less than 1. Similarly, if n > m, then c−1 is a Pisot number. More
precisely, these Pisot numbers belong to the class P considered in [8].

Example 3.11. For m = 0, n = 3, it can be seen that the possible values of b are

b =
∣∣∣∣∣∣
arctan

(√
3(r2+1)
r2−1

)
+ 2kπ

log(r − r−1)

∣∣∣∣∣∣
, r =

(
1 + √

5

2

) 1
3

, k ∈ Z.

4. Lattices in almost abelian Lie groups with LCS structures

In this section we begin by characterizing locally conformal symplectic structures
on almost abelian Lie algebras. Then we study the existence of lattices in the asso-
ciated simply connected almost abelian Lie groups: in dimension 4 we determine
all these Lie groups, and in each higher dimension we exhibit an almost abelian
Lie group with a countable family of non isomorphic lattices.
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4.1. LCS almost abelian Lie algebras

Let (ω, θ) denote an LCS structure on an almost abelian Lie algebra g of dimension
2n + 2. If u ⊂ g is an abelian ideal of g of codimension 1, then ω|u×u has rank 2n.
Therefore there exist f2 ∈ u and a vector subspace v ⊂ u such that u = R f2 ⊕ v,
ω( f2, v) = 0 and ω|v×v is non degenerate. Since ω is non degenerate on g, there
exists f1 ∈ g such that ω( f1, f2) = 1 and

g = R f1 ⊕ u. (17)

The adjoint action of f1 on u is given by

[ f1, f2] = μ f2 + v0, (18)

for some v0 ∈ v and μ ∈ R, and for x ∈ v we have

[ f1, x] = η(x) f2 + Ax, with η ∈ v∗, A ∈ End(v).

Since ω is non degenerate on v, there exists a basis {u1, . . . , un, v1, . . . , vn} of
v such that

ω = f 1 ∧ f 2 +
n∑

i=1

ui ∧ vi ,

where { f 1, f 2, u1, . . . , un, v1, . . . , vn} is the dual basis of g∗. We can identify v
with R

2n , uwith R
2n+1, gwith R�R

2n+1, and if we denote M = ad f1 |R2n+1 , then
we can express M as

M =

⎛
⎜⎜⎝

μ wt

v0 A

⎞
⎟⎟⎠ , (19)

where wt = (η(u1), . . . , η(un), η(v1), . . . , η(vn)).
We will consider two different cases, depending on whether the dimension of g

is 4 or greater than 4. Unlike the locally conformal Kähler case, the description of
the Lie algebras admitting LCS forms in dimension 4 will be different from those
Lie algebras in higher dimensions.

4.1.1. Dimension of g ≥ 6 In this case, we have that dim v ≥ 4. We will see next
that the corresponding Lee form θ is given by θ = a f 1 for some a ∈ R, a 	= 0,
and the vector v0 in (18) is v0 = 0.

Since ω is non degenerate on v, for any nonzero x ∈ v, there exist x ′, y, y′ ∈ v
such that ω(x, y) = ω(x, y′) = 0 and ω(x, x ′) = ω(y, y′) = 1. Then:

� dω(x, y, y′) = θ ∧ ω(x, y, y′) implies that θ(x) = 0, so that θ |v = 0;
� dω( f2, x, x ′) = θ∧ω( f2, x, x ′) and the fact that θ |v = 0 imply that θ( f2) = 0.
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Thus θ = a f 1 for some a ∈ R, a 	= 0.
We compute next dω( f1, f2, x) = θ ∧ ω( f1, f2, x). We have that

dω( f1, f2, x) = −ω([ f1, f2], x) − ω([x, f1], f2)

= −ω(μ f2 + v0, x) + ω(η(x) f2 + Ax, f2)

= −ω(v0, x)

since ω( f2, v) = 0 and u is abelian. On the other hand, θ ∧ ω( f1, f2, x) =
θ( f1)ω( f2, x) = 0 since θ = a f 1. As a consequence, ω(v0, x) = 0 for all x ∈ v.
Since ω is non degenerate on v, it follows that v0 = 0.

Next we take into account dω( f1, x, y) = θ ∧ ω( f1, x, y) for x, y ∈ v. Since
θ = a f 1, the right-hand side is ω( f1, x, y) = a ω(x, y). On the other hand,

dω( f1, x, y) = −ω([ f1, x], y) − ω([y, f1], x)

= −ω(η(x) f2 + Ax, y) − ω(x, η(y) f2 + Ay)

= −ω(Ax, y) − ω(x, Ay),

since f2 is ω-orthogonal to v. Let us decompose A = U + B, with U∗ω = U and
B∗ω = −B. Recall that given a linear transformation T on the symplectic vector
space (v, ω|v×v), its ω-adjoint T ∗ω is defined by ω(T u, v) = ω(u, T ∗ωv) for any
u, v ∈ v. Note that B∗ω = −B means that B ∈ sp(v, ω|v×v) � sp(n, R).

With this decomposition the equation above becomes dω( f1, x, y) = −2ω
(U x, y), hence

−2ω(U x, y) = a ω(x, y) for all x, y ∈ v.

It follows that U = − a
2 Id and

A = −a

2
Id+B, with B ∈ sp(n, R).

Therefore M has the following matrix representation with respect to the basis
above:

M =

⎛
⎜⎜⎝

μ wt

0 − a
2 I + B

⎞
⎟⎟⎠ ,

with B ∈ sp(n, R). Summarizing, we have the following result:

Theorem 4.1. Let g be an (2n + 2)-dimensional almost abelian Lie algebra with
dim g ≥ 6. Then g admits an LCS structure if and only if g is isomorphic to
R �M R

2n+1, where the adjoint action of R on R
2n+1 is given by

M =

⎛
⎜⎜⎝

μ wt

0 λI + B

⎞
⎟⎟⎠ , (20)
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for some μ, λ ∈ R, λ 	= 0, w ∈ R
2n and B ∈ sp(n, R). The LCS form is ω =

f 1∧ f 2 +
n∑

i=1

ui∧vi , and the Lee form is θ = −2λ f 1. Moreover, g is unimodular

if and only if λ = − μ
2n .

Remarks 4.2. (i) In the same way, it can be seen that any symplectic almost abelian
Lie algebra is isomorphic to R �M R

2n+1 with M as in (20) with λ = 0 (cf. [25]).
(ii) When w = 0 and B ∈ u(n) ⊂ sp(n, R), the LCS form is in fact LCK.
Indeed, in the notation of the theorem, the almost complex structure J defined by
J f1 = f2, Jui = vi , i = 1, . . . , n, is integrable and the metric 〈· , · 〉 = ω(·, J ·)
is compatible with J .

In the following result we show that the LCS structures constructed in Theorem
4.1 are all of the second kind. Therefore this theorem provides a way of producing
many examples of Lie algebras with this type of structures.

Corollary 4.3. Let g be an almost abelian Lie algebra with dim g ≥ 6. If g admits
an LCS structure, then it is of the second kind.

Proof. Let (ω, θ) be the LCS structure on g. From Theorem 4.1 we have that
θ = −2λ f 1. Recall that the LCS structure is of the second kind if θ |gω ≡ 0, where
gω is given by (5).

Let x ∈ gω, x = c f1+v with c ∈ R and v ∈ R
2n+1.We compute dω(x, y, z) =

θ ∧ ω(x, y, z) for y, z ∈ R
2n+1. Since x ∈ gω we have cλ ω(y, z) = 0 for all

y, z ∈ R
2n+1. Since ω is non degenerate and λ 	= 0 we obtain c = 0. Therefore

θ |gω is identically zero, hence the LCS structure is of the second kind. ��

4.1.2. Dimension of g = 4 In this section we will proceed in a different way to
determine the 4-dimensional almost abelian Lie algebras admitting an LCS struc-
ture.

Let g be a 4-dimensional almost abelian Lie algebra equipped with an LCS
structure, g = R �M R

3, where M denotes the adjoint action of R on R
3, and let

μ be a real eigenvalue of M . Then we have

M =

⎛
⎜⎜⎝

μ wt

0 A

⎞
⎟⎟⎠ ,

where A ∈ gl(2, R) for some basis { f1, f2, f3, f4}.

Lemma 4.4. With notation as above, if tr(A) 	= 0 then g admits an LCS structure.

Proof. It is easy to see that ω = f 1∧ f 2 + f 3∧ f 4 and θ = − tr(A) f 1 satisfy
dω = θ∧ω and dθ = 0, where { f 1, f 2, f 3, f 4} is the dual basis of g∗. ��

Author's personal copy



Lattices in almost abelian Lie groups

Given g = R �M R
3, according to Lemma 2.1, we may assume that M is

in its canonical Jordan form, up to scaling. In this case, there are four different
possibilities for M :

M1 =
⎛
⎝

λ1
λ2

λ3

⎞
⎠ , Mμ,λ

2 =
⎛
⎝

μ

λ 1
λ

⎞
⎠ , Mμ

3 =
⎛
⎝

μ 1
μ 1

μ

⎞
⎠ ,

Mμ,λ
4 =

⎛
⎝

μ

λ −1
1 λ

⎞
⎠ ,

for λ,μ, λi ∈ R, λ21 + λ22 + λ23 	= 0.
The only cases that are not covered by Lemma 4.4 are the following:

M0,0
2 =

⎛
⎝
0

0 1
0

⎞
⎠ , M0

3 =
⎛
⎝
0 1

0 1
0

⎞
⎠ , Mμ,0

4 =
⎛
⎝

μ

0 −1
1 0

⎞
⎠ .

By a direct computation it can be seen that g = R�M R
3 admits LCS structures

for M = M0,0
2 , M0

3 , M0,0
4 , whereas for M = Mμ,0

4 with μ 	= 0 it does not admit
any.We can summarize these results in the next theorem, where we use the notation
from [2].

Theorem 4.5. Let g be a 4-dimensional almost abelian Lie algebra with an LCS
structure. Then g is isomorphic to one of the following Lie algebras:

h3 × R : [e1, e2] = e3
n4 : [e1, e2] = e3, [e1, e3] = e4

r3,λ × R : [e1, e2] = e2, [e1, e3] = λe3
r4,μ,λ : [e1, e2] = e2, [e1, e3] = μe3, [e1, e4] = λe4, μλ 	= 0

r3 × R : [e1, e2] = e2, [e1, e3] = e2 + e3
r4,λ : [e1, e2] = e2, [e1, e3] = λe3, [e1, e4] = e3 + λe4
r4 : [e1, e2] = e2, [e1, e3] = e2 + e3, [e1, e4] = e3 + e4

r′3,λ × R : [e1, e2] = λe2 − e3, [e1, e3] = e2 + λe3

r′4,μ,λ : [e1, e2] = μe2, [e1, e3] = λe3 − e4, [e1, e4] = e3 + λe4, μ 	= 0, λ 	= 0

Proof. We prove first that, as mentioned above, g = R f1 �M R
3 does not admit

LCS structures for M = Mμ,0
4 with μ 	= 0. Let { f 1, f 2, f 3, f 4} be the dual basis

of g∗, and let us assume that (ω, θ) is an LCS structure on g, where

ω = a1 f 1∧ f 2 + a2 f 1∧ f 3 + a3 f 1∧ f 4 + a4 f 2∧ f 3 + a5 f 2∧ f 4 + a6 f 3∧ f 4,

θ = b1 f 1 + b2 f 2 + b3 f 3 + b4 f 4,

for some ai , b j ∈ R. Since θ is closed, we have that b2 = b3 = b4 = 0. Computing
dω = θ∧ω and using that θ 	= 0 we have a6 = 0, b1a4 = −μa4 + a5 and
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b1a5 = −a4 − μa5. Therefore a4 = a5 = 0, which is a contradiction with the fact
that ω is non degenerate.

To finish the proof we refer to Table 1, where LCS structures for all the Lie
algebras in the statement are exhibited. ��
Remarks 4.6. (i) The Lie algebra g = R �M0,0

4
R
3 corresponds to the Lie algebra

r′3,0 × R, while g = R �
Mμ,0

4
R
3, μ 	= 0, corresponds to r′4,μ,0.

(ii) Among the Lie algebras in Theorem 4.5, the unimodular ones are: h3 × R, n4,
r3,−1 × R, r4,λ,−(1+λ), r4,− 1

2
, r′3,0 × R and r′4,λ,−λ/2.

(iii) According to [36], the Lie algebras r3,λ × R (λ 	= 0,−1), r4,μ,λ (μ 	= −λ or
μ 	= −1), r3 × R, r4,λ (λ 	= 0,−1), r4, r′3,λ × R (λ 	= 0) and r′4,μ,λ do not admit
any symplectic structures.
(iv) Note that r3,−1 is the Lie algebra e(1, 1) (it is also denoted by sol3) of the group
of rigid motions of Minkowski 2-space, and r′3,0 is the Lie algebra e(2) of the group
of rigid motions of Euclidean 2-space.

Next, we will study whether the LCS structures on these 4-dimensional almost
abelian Lie algebras are of first or second kind. We prove first a result which holds
in any dimension.

Lemma 4.7. Let g = R f1 �M u be an almost abelian Lie algebra as in (17)
endowed with an LCS structure (ω, θ). If M is invertible then such LCS structure
is of the second kind.

Proof. Indeed, if M is invertible then [g, g] = u. Since θ([g, g]) = 0, it follows
that θ = c f 1 for some c ∈ R, c 	= 0. Let z = a f1 + v ∈ gω with a ∈ R, v ∈ u.
Computing dω(z, x, y) = θ∧ω(z, x, y) for all x, y ∈ u, we obtain that a = 0 and
therefore gω ⊂ u. ��

Let g = R�M R
3 be a 4-dimensional almost abelian Lie algebra equipped with

an LCS structure. The cases included in the lemma above correspond to: r4,μ,λ, r4,λ
(λ 	= 0), r4 and r′4,μ,λ, λ 	= 0. Therefore any LCS structure on these Lie algebras
is of the second kind.

Let us suppose now that M is not invertible. It was proved in [6] that any LCS
structure on a nilpotent Lie algebra is of the first kind, so that we may assume that
M is not nilpotent. The Jordan form of such a matrix can be one of the following:

M1 =
⎛
⎝

λ1
λ2

λ3

⎞
⎠with λ1λ2λ3 = 0, M0,λ

2 =
⎛
⎝
0

λ 1
λ

⎞
⎠with λ 	= 0,

Mμ,0
2 =

⎛
⎝

μ

0 1
0

⎞
⎠with μ 	= 0, M0,λ

4 =
⎛
⎝
0

λ −1
1 λ

⎞
⎠ .

By direct computations we can verify that all these Lie algebras admit both
LCS structures of the first kind and of the second kind, except for the case M0,0

4 ,
which admits only LCS structures of the first kind. This Lie algebra corresponds to
r′3,0 × R in Theorem 4.5.
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Table 1. LCS structures of the first or second kind on 4-dimensional Lie algebras

Lie algebra LCS first kind LCS second kind
h3 × R ω = e1 ∧ e2 + e3 ∧ e4

θ = −e4

n4 ω = e1 ∧ e3 + e2 ∧ e4

θ = e2

r3,λ × R ω = 2e1 ∧ e2 + (1+ λ)e1 ∧ e3 −
e2 ∧ e4 − e3 ∧ e4

ω = e1 ∧ e4 − e2 ∧ e3

(λ 	= −1) θ = e1 + e4 θ = −(1 + λ)e1

r3,−1 × R ω = 2e1 ∧ e2 − e2 ∧ e4 − e3 ∧ e4 ω = e1 ∧ e2 − e3 ∧ e4

θ = e1 + e4 θ = e1

r4,μ,λ ω = e1 ∧ e3 + e2 ∧ e4

(λ 	= −1) θ = −(λ + 1)e1

r4,μ,−1 ω = e1 ∧ e2 + e3 ∧ e4

(μ 	= 1) θ = (1 − μ)e1,
r4,1,−1 ω = e1 ∧ e4 + e2 ∧ e3

θ = −2e1

r3 × R ω = e1 ∧ e2 + 2e1 ∧ e3 − e2 ∧
e4 − e3 ∧ e4

ω = e1 ∧ e4 − e2 ∧ e3

θ = e4 θ = −2e1

r4,λ ω = e1 ∧ e2 − e3 ∧ e4

(λ 	= 0) θ = −2λe1

r4,0 ω = −e1 ∧ e2 + e2 ∧ e4 + e3∧e4 e1 ∧ e3 + e2 ∧ e4

θ = e4 θ = −e1

r4 ω = e1 ∧ e2 + e3 ∧ e4

θ = −2e1

r′3,λ × R ω = −e1∧e2+2λe1∧e3−e3∧e4 ω = e1 ∧ e4 − e2 ∧ e3

(λ 	= 0) θ = λe1 + e4 θ = −2λe1

r′3,0 × R ω = e1 ∧ e2 + e3 ∧ e4

θ = e4

r′4,μ,λ ω = e1 ∧ e2 + e3 ∧ e4

(λ 	= 0) θ = −2λe1

Let us show the last statement, i.e. the almost abelian Lie algebra r′3,0 × R

admits LCS structures only of the first kind. Indeed, let us suppose that ω =
a1 f 12+a2 f 13+a3 f 14+a4 f 23+a5 f 24+a6 f 34, θ = b1 f 1+b2 f 2+b3 f 3+b4 f 4 is
an LCS structure on this Lie algebra with ai , b j ∈ R. From dω = θ∧ω we obtain
that b2 	= 0. On the other hand, f2 ∈ z(g), then L f2ω = 0. Thus f2 ∈ gω and
θ( f2) = b2 	= 0. Therefore (θ, ω) is of the first kind.

We can summarize these results in Table 1, where we exhibit LCS structures
of the first or second kind for each Lie algebra. The empty spaces mean that
the corresponding Lie algebra does not admit any LCS structure of that specific
kind.

Author's personal copy



A. Andrada, M. Origlia

4.2. Lattices in the associated LCS Lie groups

4.2.1. Lattices in dimension 4 In this section we will determine up to Lie alge-
bra isomorphism the almost abelian Lie algebras in Theorem 4.5 whose associated
simply connected Lie groups admit lattices. In order to do this we use the classifi-
cation of unimodular completely solvable Lie groups of type R � R

3 in [28] and
Proposition 2.3.

Theorem 4.8. Let G be a simply connected 4-dimensional unimodular almost
abelian Lie group with a left invariant LCS structure, and let g denote its Lie
algebra. If G admits lattices then g is isomorphic to one of the following Lie alge-
bras: h3 × R, n4, r3,−1 × R, r′3,0 × R, r4,λ,−(1+λ) for countably many values of
λ > 1, or r′4,λ,−λ/2 for countably many values of λ > 0.

Remark 4.9. It is easy to verify that if λ′ ∈ {λ,−(1 + λ), 1
λ
,− 1

1+λ
,− λ

1+λ
,−λ+1

λ
}

then r4,λ′,−(1+λ′) is isomorphic to r4,λ,−(1+λ); therefore we may consider λ ≥ 1 for
this family. In the same way, it is readily checked that r′4,λ′,−λ′/2 is isomorphic to
r′4,λ,−λ/2 if λ′ = ±λ, so that in this case we may assume λ > 0.

Proof. Let us consider the unimodular Lie algebras in Theorem 4.5, see Remark
4.6(ii).

In the nilpotent case, the simply connected nilpotent Lie groups corresponding
to the Lie algebras h3 × R and n4 admit lattices due to Malcev’s criterion, since
these Lie algebras have rational structure constants for some basis.

Next,we consider the case of the completely solvable non-nilpotent Lie algebras
r3,−1×R, r4,λ,−(1+λ) (λ ≥ 1) and r4,−1/2. It iswell known that the simply connected
Lie group Sol3 corresponding to r3,−1 � sol3 admits lattices (see for instance [30]),
and therefore Sol3×R admits lattices aswell. Nowwe use the classification given in
[28], noting that r4,λ,−(1+λ) � sol4λ (λ > 1), r4,1,−2 � sol40 and r4,−1/2 � sol′40 . The
simply connected Lie group associated to sol4λ admits lattices for countably many
λ′s (see [28, Proposition 2.1]), whereas the Lie groups Sol40 and Sol ′40 associated to
sol40 and sol

′4
0 do not admit any lattices [28, Proposition 2.2]. Note that Sol40 = G0

from 3.2.2.
Finally, we take into account the non-completely solvable Lie algebras r′3,0 ×R

and r′4,λ,−λ/2 (λ > 0). It is well known that the simply connected Lie group E(2)
corresponding to r′3,0 � e(2) admits lattices (this fact is also an easy application
of Proposition 2.3), and therefore E(2) × R admits lattices, too. The Lie algebra
r′4,λ,−λ/2 (λ > 0) is isomorphic to gb from 3.2.2, for b = 1

λ
, and it has already

been proved in Theorem 3.9 that the corresponding simply connected Lie groups
Gb admit lattices for countably many values of the parameter b > 0. ��
Remark 4.10. The Lie algebras n4, r3,−1×R, r4,λ,−(1+λ) for countablymany values
of λ > 1 and r′3,0 × R provide examples of solvmanifolds with an LCS structure
which carry no LCK structure (coming from a left invariant LCK structure on the
Lie group). We point out that in [6] it was shown that a nilmanifold associated to
n4 admits an LCS structure of the first kind but does not admit any LCK metric.
Moreover, this nilmanifold is not the product of a 3-dimensional compact manifold
and a circle.
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4.2.2. Lattices in dimension ≥ 6 In this subsection we will provide examples of
almost abelian solvmanifoldswith anLCS structure. For n ≥ 2, let g be the (2n+2)-
dimensional unimodular almost abelian Lie algebra given by g = R f1 �M R

2n+1

with

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0

1
n

. . .
n−1

n − 1
n − 2

n
. . .

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (21)

in a basis { f2, u1, . . . , un, v1, . . . , vn} of R
2n+1. Note that M is given by (21) with

μ = 1, λ = − 1

2n
, w = 0,

B = diag

(
1

2n
,
3

2n
, . . . ,

2n − 1

2n
,− 1

2n
,− 3

2n
, . . . ,−2n − 1

2n

)
∈ sp(n, R).

According to Theorem 4.1 the Lie algebra g admits an LCS form ω = f 1∧ f 2 +∑n
i=1 ui∧vi with Lee form θ = 1

n f 1. From Corollary 4.3 we have that this LCS
structure is of the second kind.

The simply connected Lie group associated to g is G = R �φ R
2n+1 where φ

is given by

φ(t) = et M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

et

1
e

t
n

. . .

e
(n−1)t

n

e− t
n

e− 2t
n

. . .

e−t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The characteristic polynomial of φ(t) is

p(x) = (x − 1)(x − ρ2)(x − ρ−2)(x − ρ4)(x − ρ−4) . . . (x − ρ2n)(x − ρ−2n),

where ρ = e
t
2n . Fixed m ∈ N, m > 2, we define

tm = n arccosh
(m

2

)
, tm > 0.
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Then ρm = e
tm
2n satisfies ρ2

m + ρ−2
m = m.

Wedefine the following real sequence a0 = 2, a1 = m, ak = ρ2k
m +ρ−2k

m for k =
3, . . . , n. It is easy to see that ak satisfies ak+1 = mak − ak−1 and therefore ak ∈ Z

for all k. As a consequencewe have that (x−ρ2k
m )(x−ρ−2k

m ) = x2−ak x+1 ∈ Z[x],
thus we can write

p(x) = x2n+1 − m2n x2n + m2n−1x2n−1 + · · · + m1x − 1

for some m1, m2, . . . , m2n ∈ Z. Since all the roots of p are different, we have that
φ(tm) is conjugated to the companion matrix B of p, that is,

Bm =

⎛
⎜⎜⎜⎜⎜⎝

0 1
1 0 −m1

. . .
. . .

...

1 0 −m2n−1
1 m2n

⎞
⎟⎟⎟⎟⎟⎠

. (22)

According to Proposition 2.3, the group G admits lattices. One such lattice is given
by

�m := tmZ �φ P−1
m Z

2n+1,

for each m > 2, where Pm satisfies Pmφ(tm)P−1
m = Bm . Therefore for all m > 2,

Mm := �m\G is a solvmanifold with an LCS structure.

Proposition 4.11. With notation as above, the solvmanifolds Mm with m ∈ N, m >

2, are pairwise non homeomorphic.

Proof. Let us assume that Mr and Ms , with r, s > 2 are homeomorphic. Then
π1(Mr ) is isomorphic to π1(Ms). Since G is simply connected, we have that the
fundamental groups of these solvmanifolds are isomorphic to the lattices �r and
�s , so that these lattices are isomorphic. Since G is completely solvable, the Saito’s
rigidity theorem [37] implies that this isomorphism extends to a Lie group auto-
morphism of G. Since the lattices differ by an automorphism of G, it follows from
[20, Theorem 2.5] that the integer matrix Br [as in (22)] is conjugated either to Bs

or to its inverse in GL(n, Z). It can be seen that this happens if and only if r = s.
��

Remark 4.12. It is easy to see that the LCS solvmanifolds Mm do not admit invariant
complex structures. However, they do admit invariant symplectic structures, for
instance, η = f 1 ∧ u1 + f 2 ∧ vn + ∑n−1

i=1 ui+1 ∧ vi .

4.2.3. De Rham and adapted cohomology of the LCS solvmanifolds �m\G We
beginwith the study of the deRhamcohomology of the solvmanifold Mm = �m\G.
Since G is completely solvable, it follows from (8) that Hk

d R(Mm) is isomorphic
to the Lie algebra cohomology group Hk(g). Therefore, we need to study the
Chevalley-Eilenberg complex of the almost abelian Lie algebra g = R f1�M R

2n+1

with M as in (21). After a change of basis in the ideal u = R
2n+1, we can assume

that M is given by
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M = diag

(
0,

1

n
,
2

n
, . . . , 1,−1

n
,−2

n
, . . . ,−1

)
.

According to [38], the kth Betti number of g,βn
k = dim Hk(g), can be computed

as follows, where Z j (g) = {α ∈ ∧ j
g∗ : dα = 0}:

βn
k = dim Hk(g) = dim Zk(g) + dim Zk−1(g) −

(
2n + 2

k − 1

)
. (23)

In order to compute dim Zk(g), note that we can decompose the ideal u as
u = R f2 ⊕ g′, where f2 is a generator of the center of g. Let us denote for
simplicity v := g′.

Recalling that βn
1 = dim(g/[g, g]), it follows that βn

1 = 2. Indeed, a basis of
Z1(g) is given by { f 1, f 2}. Due to Poincaré duality, we get that βn

2n+1 = βn
1 = 2.

Clearly, βn
0 = βn

2n+2 = 1.
Let us consider now 2 ≤ k ≤ 2n. Given a closed k-form α ∈ Zk(g), it

can be decomposed uniquely as α = f 1∧β + f 2∧γ + δ, with β ∈ ∧k−1
u∗,

γ ∈ ∧k−1
v∗, δ ∈ ∧k

v∗, with dγ = 0 and dδ = 0. Therefore, we have a one to
one correspondence

Zk(g) ←→ (
∧k−1

u∗) × (
∧k−1

v∗ ∩ Zk−1(g)) × (
∧k

v∗ ∩ Zk(g)).

In order to compute dim(
∧k

v∗ ∩ Zk(g)), we consider, for 1 ≤ p, q ≤ n, the
set
{

(i1, . . . , i p, j1, . . . , jq ) : 1 ≤ i1 < · · · < i p ≤ n, 1 ≤ j1 < · · · < jq ≤ n,

p∑
r=1

ir =
q∑

s=1

js

}
,

and let us denote by dn
p,q its cardinal. Setting Dn

k :=
∑

p+q=k

dn
p,q for k ≥ 2, it can be

shown that dim (
∧k

v∗∩Zk(g)) = Dn
k . Let us also define dn

0,0 = 1, dn
1,0 = dn

0,1 = 0,
so that Dn

0 = 1, Dn
1 = 0. Using this together with (23), we readily obtain that

βn
k = Dn

k−2 + 2Dn
k−1 + Dn

k , k ≥ 2. (24)

Even though we do not obtain an explicit formula for the Betti numbers of Mm ,
using (24) we are able to obtain some properties concerning the parity of these
numbers.

It is easy to see that dn
p,q = dn

q,p and dn
p,q = dn

n−p,n−q . We can summarize
some properties about dn

p,q and Dn
k in the following lemma.

Lemma 4.13. (i) dn
1,1 = dn

n−1,n−1 = n and dn
k,k ≡ (n

k

)
(mod 2).

(ii) If n is even then dn
1,2 = n(n−2)

4 and if n is odd then dn
1,2 = ( n−1

2

)2
.

(iii) Dn
k = Dn

2n−k for any k = 0, . . . , n, with Dn
0 = 1, Dn

1 = 0, Dn
2 = n.

(iv) If k is odd, then Dn
k is even.

(v) Dn
2k ≡ (n

k

)
(mod 2).

Taking this lemma into account, the proof of the next result is straightforward.
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Table 2. Betti numbers

n dim g Betti numbers
2 6 (1, 2, 3, 4, 3, 2, 1)
3 8 (1, 2, 4, 8, 10, 8, 4, 2, 1)
4 10 (1, 2, 5, 12, 20, 24, 20, 12, 5, 2, 1)
5 12 (1, 2, 6, 18, 37, 56, 64, 56, 37, 18, 6, 2, 1)
6 14 (1, 2, 7, 24, 61, 116,167,188,167,116,61, 24, 7, 2, 1)

Proposition 4.14. (i) βn
0 = 1, βn

1 = 2 and βn
2 = n + 1.

(ii) If n is even, then βn
3 = n(n+1)

2 and if n is odd then βn
3 = (n+1)2

2 .
(iii) If k is odd, then βn

k is even.

(iv) βn
2k ≡ (n+1

k

)
(mod 2).

Remark 4.15. According to Lucas’ Theorem, the parity of the binomial coefficient(r
s

)
can be determined from the binary representation of r and s. Indeed, if r =∑m

i=1 ai2i and s = ∑m
i=1 bi2i with ai , bi ∈ {0, 1}, am 	= 0, then

(
r

s

)
≡

m∏
i=1

(
ai

bi

)
(mod 2),

where
(ai

bi

) = 0 if ai < bi . In particular,
(r

s

)
is even if and only there exists i such

that ai = 0 and bi = 1. For instance, if r = 2l −1 then
(r

s

)
is odd for any 0 ≤ s ≤ r ,

and if r = 2l then
(r

s

)
is even for any 1 ≤ s ≤ r − 1.

We exhibit in Table 2 the Betti numbers in low dimensions. For instance, in the
6-dimensional case we obtain β0 = β6 = 1, β1 = β5 = 2, β2 = β4 = 3, β3 = 4.

Next, wewill study the adapted cohomology of the solvmanifold Mm = �m\G.
Since G is completely solvable, it follows from (9) that Hk

θ (Mm) is isomorphic to
the Lie algebra adapted cohomology group Hk

θ (g). We will work in the same way
as in the de Rham cohomology case.

Let β̃n
k = dim Hk

θ (g) be the kth adapted Betti number of g. These numbers

satisfy an equation as (23). Indeed, setting Z j
θ (g) = {α ∈ ∧ j

g∗ : dθα = 0} we
have

β̃n
k = dim Hk

θ (g) = dim Zk
θ (g) + dim Zk−1

θ (g) −
(
2n + 2

k − 1

)
. (25)

Note that dim Z1
θ (g) = 2. Let us denote by f̃ 1 and f̃ 2 the generators of Z1

θ (g)

where f̃ 1 coincides with f 1 from above. Then we can decompose the ideal u as
u = R f̃2 ⊕ v for some 2n-dimensional abelian subalgebra v. It is easy to see that

β̃n
1 = 1, β̃n

2 = n + 1.

Let us consider now 2 ≤ k ≤ 2n. Given a dθ -closed k-form α ∈ Zk
θ (g), it

can be decomposed uniquely as α = f̃ 1∧β + f̃ 2∧γ + δ, with β ∈ ∧k−1
u∗,

Author's personal copy



Lattices in almost abelian Lie groups

Table 3. Adapted Betti numbers

n dim g adapted Betti numbers
2 6 (0, 1, 3, 4, 3, 1, 0)
3 8 (0, 1, 4, 7, 8, 7, 4, 1, 0)
4 10 (0, 1, 5, 12, 19, 22, 19, 12, 5, 1, 0)
5 12 (0, 1, 6, 17, 35, 55, 63, 55, 35, 17, 6, 1, 0)
6 14 (0, 1, 7, 24, 59, 112,165,188,165,112,59, 24, 7, 1, 0)

γ ∈ ∧k−1
v∗, δ ∈ ∧k

v∗, with dθ γ = 0 and dθ δ = 0. Therefore, we have a one to
one correspondence

Zk
θ (g) ←→ (

∧k−1
u∗) × (

∧k−1
v∗ ∩ Zk−1

θ (g)) × (
∧k

v∗ ∩ Zk
θ (g)).

In order to compute dim(
∧k

v∗ ∩ Zk
θ (g)), we consider, for 1 ≤ p, q ≤ n, the

set
{

(i1, . . . , i p, j1, . . . , jq ) : 1 ≤ i1 < · · · < i p ≤ n, 1 ≤ j1 < · · · < jq ≤ n,

p∑
r=1

ir + 1 =
q∑

s=1

js

}
,

and let us denote by d̃n
p,q its cardinal. Setting D̃n

k :=
∑

p+q=k
d̃n

p,q for k ≥ 2, it

can be shown that dim (
∧k

v∗ ∩ Zk
θ (g)) = D̃n

k . Let us also define d̃n
0,0 = d̃n

1,0 = 0,

d̃n
0,1 = 1, so that D̃n

0 = 0, D̃n
1 = 1.

From (25), we readily obtain that

β̃n
k = D̃n

k−2 + 2D̃n
k−1 + D̃n

k , k ≥ 2. (26)

It is easy to see that d̃n
p,q = d̃n

n−q,n−p. Then we have that D̃n
k = D̃n

2n−k and
therefore

β̃n
k = β̃n

2n−k,

2n+2∑
k=0

(−1)k β̃n
k = 0.

Using (26) and these facts we can compute the adapted Betti numbers in some
low-dimensional cases, which are shown in Table 3.
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