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We present results from two 15363 direct numerical simulations of rotating turbulence where both
energy and helicity are injected into the flow by an external forcing. The dual cascade of energy and
helicity toward smaller scales observed in isotropic and homogeneous turbulence is broken in the
presence of rotation, with the development of an inverse cascade of energy now coexisting with
direct cascades of energy and helicity. In the direct cascade range, the flux of helicity dominates over
that of energy at low Rossby number. These cascades have several consequences for the statistics of
the flow. The evolution of global quantities and of the energy and helicity spectra is studied, and
comparisons with simulations at different Reynolds and Rossby numbers at lower resolution are
done to identify scaling laws. © 2010 American Institute of Physics. �doi:10.1063/1.3358466�

I. INTRODUCTION

Helicity, the alignment of velocity and vorticity, is a
measure of the number of links in vorticity field lines, and an
indication of lack of mirror symmetry in a flow.1 Isotropic
and homogeneous turbulence with and without helicity has
been thoroughly studied in the literature.2–5 Detailed com-
parisons using direct numerical simulations were carried up
to large Reynolds numbers and spatial resolutions.6 We can
think about this problem following an analogy by Betchov;7

a bag full of nails has after being shaken its nails pointing in
every direction in space, and the resulting spatial distribution
is mirror symmetric. On the other hand, a well-shaken bag
full of right-handed screws has its screws pointing in any
direction, but the mirror symmetry is broken by the screws.
In isotropic and homogeneous turbulence, the presence of
helicity does not change properties of turbulence such as the
energy spectrum3,5,8 or the energy decay rate;9 both the en-
ergy and the helicity cascade toward smaller scales with the
same time scales.

However, the presence of rotation breaks this degen-
eracy, as the dynamical equations for the flow evolution are
now sensitive to mirror reflections. Rotation also breaks
down the isotropy of the flow, introducing a preferred direc-
tion. The development of anisotropies in a rotating flow has
been studied in great detail.10–13 However, the role played by
helicity in these flows has been given less attention with only
a few exceptions14,15 even though the study of helical rotat-
ing flows is relevant for many atmospheric phenomena.16–18

In a recent series of papers,19,20 we presented evidence of
differences in the scaling laws of rotating flows with and
without helicity. The presence of helicity in a rotating flow
changes the energy scaling, as shown in numerical simula-
tions and explained with a phenomenological theory.20

Changes in the directions of the energy and helicity cascades
and their associated scaling laws have implications for the

decay and predictability of a helical rotating flow: helical
rotating flows decay slower than nonhelical rotating flows.21

These differences imply that to model helical rotating flows
in nature, subgrid models that take into account contributions
to the turbulent transport coefficients from the helicity are
required. In agreement with this, a subgrid scale model based
on the eddy-damped quasinormal Markovian closure10,22,23

and that takes into account both the cascades of energy and
of helicity, proved to behave better at reproducing simula-
tions of rotating turbulence than models based solely on the
energy cascade.24

However, the grid resolution of these previous simula-
tions of rotating helical turbulence �up to 5123 grid points�
was insufficient to study together and at sufficiently high
Reynolds number the direct and inverse cascades; rather,
these cascades were studied separately.20 Also, the amount
by which anisotropies develop at small scales �or the pos-
sible recovery of isotropy at small scale� was insufficiently
quantified. In order to go further in our analysis of rotating
turbulence, we present in this paper a detailed study of the
results of two direct numerical simulations of rotating turbu-
lence at unprecedented resolutions. The spatial resolution at-
tained in the simulations allows us to confirm the scaling
laws for the energy and helicity spectra predicted in Ref. 20
in runs where the direct and inverse cascades now coexist,
each with well defined inertial ranges. We also analyze the
evolution of global quantities in the simulations, the devel-
opment of anisotropies in the flow, as well as scaling laws in
the directions parallel and perpendicular to the axis of rota-
tion. Section II describes the simulation and the numerical
methods used, Sec. III describes the time evolution of global
isotropic and anisotropic norms �energy, helicity, dissipation,
characteristic length scales�, and Sec. IV considers the en-
ergy and helicity spectra as well as their respective fluxes.
We also compare with previous runs at different Rossby and
Reynolds numbers in Sec. V to identify trends and depen-
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dencies with the controlling parameters, the Reynolds and
Rossby numbers. Finally, Sec. VI gives our conclusions.

In summary, the results presented in this paper provide a
detailed description of the numerical simulations and com-
pute global and spectral quantities often considered in
previous studies of rotating turbulence. In a following paper
�Paper II�, we consider in detail the intermittency �or lack
thereof� of the energy and helicity direct cascades, and study
structure functions as well as probability density functions of
velocity and helicity increments. Previous studies of rotating
turbulence from numerical simulations19,25 showed a sub-
stantial decrease in the intermittency of the flow when rota-
tion is strong �see also Refs. 26–29 for experimental results�.
The present simulations can be used to quantify the impact
of helicity in the flow intermittency, and the analysis pre-
sented in this first paper serves as a reference to allow com-
parisons between these large-resolution simulations and pre-
vious simulations of rotating turbulence in the literature.
Overall, these studies allow us to consider the recovery of
isotropy at small scales, as well as the development of struc-
tures at large and small scales in the flow, and give a thor-
ough description of rotating turbulence at scale separations
not considered before in direct numerical simulations.

II. NUMERICAL SIMULATIONS

We solve numerically the equations for an incompress-
ible rotating fluid,

�u

�t
+ � � u + 2� � u = − �P + ��2u + F �1�

and

� · u = 0, �2�

in a three dimensional box of size 2� with periodic boundary
conditions using a parallel pseudospectral code with a spatial
resolution of 15363 regularly spaced grid points �other reso-
lutions will be briefly considered in Sec. V�. Here u is the
velocity field, �=��u is the vorticity, and � is the kine-
matic viscosity. The total pressure P modified by the cen-
trifugal term is obtained by taking the divergence of Eq. �1�,
using the incompressibility condition �2�, and solving the
resulting Poisson equation. We choose the rotation axis to be
in the z direction: �=�ẑ, with � the rotation frequency.
Time derivatives are estimated using a second order Runge–
Kutta method, and the code uses the 2/3 rule for de-aliasing.
As a result, the maximum wave number is kmax=N /3 where
N is the linear resolution. The code is fully parallelized with
the message passing interface library.30,31

The external mechanical forcing F in Eq. �1� is given
by a superposition of Arnold–Beltrami–Childress �ABC�
flows,32

F = F0 �
kF=k1

k2

��B cos�kFy� + C sin�kFz��x̂ + �C cos�kFz�

+ A sin�kFx��ŷ + �A cos�kFx� + B sin�kFy��ẑ� , �3�

where F0 is the forcing amplitude, A=0.9, B=1, C=1.1.33 An
ABC flow, as e.g., in Eq. �3� for only one value of kF, is an

eigenfunction of the curl with eigenvalue kF; as a result,
when used as a forcing function, it injects both energy and
helicity in the flow. It should be noted that in homogeneous
turbulence the helicity spectrum cannot develop if it is ini-
tially zero �see, e.g., Refs. 10 and 11�, or if an external
mechanism does not inject helicity. In nature, helicity is cre-
ated, e.g., in the presence of rotation and stratification,34 or
near solid boundaries in rotating vessels.35 The use of the
ABC forcing, although artificial, allows us to study helical
rotating turbulence without the extra computational cost as-
sociated with the presence of boundaries or stratification. We
believe the results obtained are common to rotating flows
with net helicity, as often observed in geophysical and astro-
physical phenomena. Simulations at lower resolution using
random delta correlated in time helical forcing showed con-
sistent results, and differences in the decay of helical and
nonhelical flows in the presence of helicity have also been
reported before14,21 for different initial conditions. The case
of forced nonhelical rotating turbulence has been considered
in recent numerical simulations19,25 and, as will be discussed
in this paper and in Paper II, distinct behavior seems to arise
in the spectral scaling of the energy and in its intermittency
when helicity is present.

Two simulations will be considered in Secs. III and IV,
with the forcing acting from k1=7 to k2=8. This leaves some
room in spectral space for cascades to develop both at large
scale and at small scale. The viscosity is �=1.6�10−4 in
both runs, and the time step �t=2.5�10−4. For the first run
�run A�, �=0.06 and it is started from a flow initially at rest.
The run was continued for near ten turnover times, when a
turbulent steady state was reached �the turnover time is
based on the forcing scale and is defined as T=LF /U, where
LF=2� /min�kF� is the forcing scale and U= �u2	1/2 is the rms
velocity�. The value of F0 was such that in the steady state,
the rms velocity was of order unity. For the second run �run
B�, �=9, and it is started from the velocity field in run A at
t
10. Run B was continued for 30 turnover times.

The Reynolds, Rossby, and Ekman numbers of the runs
quoted in the following sections are defined as usual as

Re =
LFU

�
, �4�

Ro =
U

2�LF
, �5�

and

Ek =
Ro

Re
=

�

2�LF
2 . �6�

In the following, it will be useful to also introduce a
micro-Rossby number as the ratio of the rms vorticity to the
background vorticity �rotation�,

Ro� =
�

2�
. �7�

The value of the micro-Rossby number plays a central role in
the inhibition of the energy cascade in rotating turbulence.11

If the micro-Rossby number is too small, nonlinear interac-
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tions are completely damped. According to Ref. 36, anisotro-
pies develop in rotating flows when the Rossby number
Ro�1 and when the micro-Rossby number Ro��1 �it is
worth noting that the actual values for the transition depend
on the particular flow studied�.

Based on these definitions, the resulting Reynolds num-
ber for both runs was Re
5100. The Rossby number of run
A is Ro
8.5, while the Rossby number of run B is
Ro
0.06. This results in Ekman numbers Ek
1.6�10−3

for run A, and Ek
1.1�10−5 for run B. The micro-Rossby
number of run B is Ro�
1.2 �in all definitions, U and � are
measured in the steady state of run A, or when the inverse
cascade of energy in run B starts�. We therefore study flows
with large Reynolds numbers, but with moderate Rossby
numbers as often encountered in geophysical problems. Runs
A and B will also be compared in Sec. V with other runs with
helical forcing at lower resolution as already described in
Ref. 20.

III. TIME EVOLUTION

A. Isotropic quantities

Figure 1 shows the time evolution of the energy, helicity,
and enstrophy in run B. After a transient that lasts a few
turnover times, energy grows monotonically in time. By con-
trast, in the turbulent steady state of run A there is no mo-
notonous increase in the energy with time. This is because
isotropic and homogeneous turbulence only has direct cas-
cades of energy and helicity, while a rotating flow may de-
velop an inverse cascade of energy as will be illustrated later
by the energy spectra and fluxes of each run. Helicity and
enstrophy in run B reach a steady state with nearly constant
values, although smaller than their values at t=0 which cor-
respond to the steady state in run A.

The enstrophy, proportional to the mean square vorticity,
can be used as a proxy of the relevance of the rotation near
the Taylor scale, as the ratio of the rms vorticity to the back-
ground rotation is proportional to the micro-Rossby number.
However, turbulence is characterized by strong fluctuations
of quantities in space and time, and one may ask how rel-
evant is the background rotation in the structures that corre-
spond to these fluctuations. Another measure of the relevance
of rotation at the small scales can thus be obtained by look-

ing at regions in the flow with maximum vorticity. Figure 2
shows the time history of the maximum of vorticity in runs A
and B. In run A, which starts from a fluid at rest, max���
grows rapidly from zero and after reaching a maximum satu-
rates near �800 with strong fluctuations around the mean. In
run B, started from the last snapshot of run A, max��� starts
from the previous value and reaches a maximum as the flow
becomes anisotropic and the inverse cascade develops, and
later saturates with a time average value of max���
630
with strong peaks. As a result, in run B max��� /�
70.

As previously mentioned, the increase in energy with
time observed in Fig. 1 is associated with an inverse cascade
of energy that results in an increase in the characteristic size
of the energy-containing structures in the flow. This is illus-
trated in Fig. 3 by the time evolution of the isotropic integral
scales of the energy,

L =
2�

E
�
k=1

kmax E�k�
k

, �8�

and of the helicity,

LH =
2�

H
�
k=1

kmax H�k�
k

, �9�

where E and H are, respectively, the energy and the helicity,
and E�k� and H�k� are the isotropic energy and helicity spec-
tra. The wave number k corresponds to the mean radius of
the spherical shell containing all modes with wave vectors
with length between k−0.5 and k+0.5. Initially, both integral

FIG. 1. Energy �solid�, helicity normalized by the forcing wave number
�dashed�, and enstrophy rescaled by the dissipation wave number �500
�dotted� as a function of time in run B with Ro=0.06.

FIG. 2. Maximum vorticity in the flow as a function of time, for runs A
�solid� and B �dotted�.

FIG. 3. Integral scales associated with the energy �solid line� and the helic-
ity �dash line� as a function of time in run B.
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scales in run B are close to LF
0.9. However, as time
evolves the integral scale of the energy increases, while the
integral scale of the helicity remains approximately constant
after a short transient increase.

B. The development of anisotropy

The flow in run B becomes anisotropic after a few turn-
over times, in agreement with previous simulations, with
wave theory studies,23 and with rapid distortion theory
predictions.13 Several indicators can be defined to quantify
the development of anisotropy. A detailed description can be
drawn, e.g., using one-point tensors as the dimensionality
structure tensor13 which gives information on the spatial
structure of turbulent eddies. In this section, we will focus on
global quantities, and later we will consider anisotropy from
the point of view of Fourier spectra. Paper II will consider
two-point space correlations and the geometry of the struc-
tures in the flow.

Directional integral scales as in Eqs. �8� and �9� can be
defined integrating spectra over wave vectors parallel and
perpendicular to the rotation axis. We will consider the en-
ergy spectra E�k�� and E�k��, where E�k�� is obtained by
integrating the energy in all modes with wave vectors
with kz=k� between k� −0.5 and k� +0.5 �i.e., integrating
over planes in spectral space�, and E�k�� is obtained by in-
tegrating the energy in all modes with wave vectors with
�kx

2+ky
2�1/2 between k�−0.5 and k�+0.5 �i.e., integrating in

cylindrical shells; see e.g., Refs. 20 and 37�. These spectra
are often referred to in the literature as “reduced” energy
spectra �a full description of spectral anisotropy can be ob-
tained in terms of two-dimensional axisymmetric
spectra11,23�. Similar procedures can be used to construct the
reduced helicity spectra H�k�� and H�k��. Then, following
Eqs. �8� and �9�, we define perpendicular and parallel inte-
gral scales,

L��,�� = 2�
�k��,��=1

kmax k��,��
−1 E�k��,���

�k��,��=1
kmax E�k��,���

, �10�

L��,��
H = 2�

�k��,��=1
kmax k��,��

−1 H�k��,���

�k��,��=1
kmax H�k��,���

, �11�

where the subindex �� , �� denotes that either parallel or per-
pendicular wave vectors are used.

Figure 4 shows the perpendicular-to-parallel ratio of in-
tegral scales for the energy and the helicity in run B. As � is
suddenly increased at t=0 from its previous value in run A,
these two ratios first decrease from their initial values. Then,
L�

H /L�
H increases slightly and seems to reach a steady state

after t
10, while L� /L� keeps increasing monotonically in
time on the whole, following the increase in the energy due
to the inverse cascade. As a result, the energy �dominated by
large scales� seems to become more anisotropic than the he-
licity, which is concentrated in smaller scales.

Integral scales are dominated by the contributions from
the energy containing scales. Note that both L and LH are,
after the short transient, larger than the forcing scale LF

�see Fig. 3�. The ratios studied previously then give a global
indication of anisotropies at scales that are in the inverse
cascade range. Anisotropies in the �small scale� direct cas-
cade range can be quantified, e.g., by the ratio of the
perpendicular-to-parallel Taylor scales �Fig. 5�. The perpen-
dicular and parallel Taylor scales based on the energy and the
helicity are defined as

	��,�� = 2�� �k��,��=1
kmax E�k��,���

�k��,��=1
kmax k��,��

2 E�k��,���

1/2

, �12�

	��,��
H = 2�� �k��,��=1

kmax H�k��,���

�k��,��=1
kmax k��,��

2 H�k��,���

1/2

. �13�

After a transient, the ratio 	�
H /	�

H in Fig. 5 stabilizes at
its original value at t=0, while 	� /	� increases with time.
However, the increase in this ratio is slower than in the case
of L� /L�, and presents stronger fluctuations in time, being
associated with scales in the inertial range of the direct en-
ergy and helicity cascades. Note that, at the onset of the
inverse cascade for run B, the perpendicular Taylor scale is
	�
0.25, giving for the Taylor Reynolds number of that
flow �based on the perpendicular scale�, R	�

=U	� /�

1600. For run A, we have R	
900 in the turbulent steady
state; the increase in R	 in run B is associated with the
anisotropization and increase in characteristic scales of the
flow when rotation is increased. Indeed, after the fast in-

FIG. 4. Ratio of perpendicular to parallel integral scales, associated to the
energy �solid� and to the helicity �dashed� as a function of time in run B.

FIG. 5. Ratio of perpendicular to parallel Taylor scales, associated to the
energy �solid� and to the helicity �dashed� as a function of time in run B at
Ro=0.06.
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crease in R	�
in run B to the value quoted above in the first

five turnover times, both R	 and R	�
keep growing slowly as

	 and 	� slowly increase. On the other hand, a Taylor
Reynolds number based on the parallel scale for run B,
R	�

=U	� /�, stays approximately constant after t=10. Note
that these values are larger than the typical values considered
in experiments with similar Rossby numbers �see e.g., Ref.
26�. This is the result of the large spatial resolution used in
the simulations, which allows us to study flows at larger
Reynolds numbers than what is often considered.

Yet another measure of small scale spectral anisotropy is
given by the Shebalin angles,38

tan2�
� = 2
�k�

k�
2 E�k��

�k�
k�

2E�k��
, �14�

tan2�
H� = 2
�k�

k�
2 H�k��

�k�
k�

2H�k��
. �15�

These angles measure the spectral anisotropy level, with the
case tan2�
�=2 corresponding to an isotropic flow. As the
previous quantities, they only give a global measure of
small-scale anisotropy and are a byproduct of the axisym-
metric energy spectra �see Refs. 11 and 23�. Figure 6 shows
the time evolution of the angles based on the energy and on
the helicity. The helicity at small scales is again more isotro-
pic than the energy. However, unlike the previous quantities,
the Shebalin angles grow fast and then saturate in both cases,
reaching a steady state after ten turnover times.

Finally, the amount of energy and helicity in two-
dimensional modes can be measured with the ratios
E�k� =0� /E and H�k� =0� /H �see Fig. 7�. Again, the spectral
distribution of energy is more anisotropic than for helicity.
Note that at late times a substantial fraction of the energy is
in modes with k� =0; at t
29 near 95% of the energy is in
those modes, while less than 75% of the helicity is in the
same modes. All these results indicate that the distribution of
energy is more anisotropic than that of helicity at all scales.
As will be discussed next, this is due to the fact that helicity
only suffers a direct cascade and is therefore transported in
spectral space to smaller scales which are more isotropic.

IV. SPECTRAL BEHAVIOR

Figure 8 shows the isotropic energy and helicity spectra
in run A. The run, with negligible rotation effects, displays
the usual Kolmogorov scaling in the inertial range of the
energy and the helicity, with a dual cascade of both quanti-
ties toward small scales. As in many simulations of three-
dimensional isotropic and homogeneous turbulence, the short
inertial range is followed by a bottleneck �which makes the
spectra slightly shallower� and then by a dissipative range.
The dual cascade toward smaller scales is further confirmed
by examination of the energy and helicity fluxes �inset of
Fig. 8� which are both positive and constant across the iner-
tial range to the right of the forcing wave number. At wave
numbers smaller than kF, both fluxes are negligible. The
small amount of energy and helicity observed in the spectra
at those wave numbers is the result of backscatter, not of a
cascade, and the energy in the large scales displays a slope
compatible with a �k2 scaling �see e.g., Refs. 39 and 40�.

The energy and helicity spectra and fluxes at late times
in run B at Ro=0.06 are shown in Fig. 9. An inverse cascade
of energy develops, as evidenced in the spectrum by the pile
up of energy at scales larger than the forcing, and in the
energy flux by a range of wave numbers with nearly constant
and negative transfer. However, unlike two-dimensional
turbulence,41 not all the energy injected in the system under-

FIG. 6. Shebalin angles based on the energy �solid� and helicity spectra
�dashed� as a function of time in run B.

FIG. 7. Ratios E�k� =0� /E �solid line� and H�k� =0� /H �dash line� as a func-
tion of time in run B.

FIG. 8. Isotropic energy spectrum �solid� and helicity spectrum �dashed�
normalized by the forcing wave number in run A with Ro=8.5. Kolmogorov
scaling is shown as a reference. The inset gives the isotropic energy flux,
and the helicity flux normalized by the forcing wave number.
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goes an inverse cascade: a substantial fraction of the injected
energy �approximately half at this Rossby number� is still
transferred to small scales in a direct cascade of energy.
Moreover, this direct cascade of energy is subdominant to a
direct cascade of helicity. All the helicity injected in the sys-
tem cascades to small scales, and as a result the helicity flux
�properly dimensionalized� is larger than the energy flux at
all wave numbers larger than kF.

Figure 10 displays the perpendicular energy and helicity
spectra in run B at the same time as in Fig. 9. The same
features as in the isotropic spectra can be identified, and
almost no differences are observed between these spectra and
the ones showed in Fig. 9. This is in agreement with the fact
that at late times, �95% of the energy and �75% of the
helicity are in modes with k� =0 �i.e., wave vectors perpen-
dicular to the axis of rotation�. Here and in the isotropic case,
the energy spectrum is slightly steeper than the helicity spec-
trum, the result of a dominant direct cascade of helicity.

No clear scaling is observed in the parallel spectra �Fig.
11�. There is an excess of helicity at small scales when com-
pared with the energy, as in the previous spectra, but here an
inertial range cannot be identified. Moreover, the energy and

helicity fluxes in the parallel wave vectors are positive at all
scales, and show no approximately constant range.
The fluxes peak at k� =1 and decrease fast for larger wave
numbers. This indicates that in the parallel direction, a small
portion of the energy transferred toward large scales by the
inverse cascade of energy in k� is transferred back toward
small scales although not through a cascade. The wave num-
ber band where forcing occurs is not identifiable either.

The presence of waves in a rotating flow slows down the
direct energy cascade, resulting in a steeper energy spectrum
than in isotropic and homogeneous turbulence. However, un-
like isotropic and homogeneous turbulence, the slope of the
energy spectrum depends on whether the flow is helical or
not. This is the result of the flow developing, at small scales,
a dominant direct cascade of energy in the former case, and
a dominant direct cascade of helicity in the latter. In a flow
with maximum helicity �H�k�=kE�k��, the energy and
helicity spectra are, according to these arguments �see Ref.
20 for a detailed derivation�, predicted to be E�k�

−2.5 and
H�k�

−1.5. Note that this results in the relative helicity
H�k� / �kE�k�� independent of wave number, i.e., correspond-
ing to an alignment of velocity and vorticity identical at all
scales. In the general case �not maximally helical�, the en-
ergy spectrum gets closer to a k�

−2 spectral law, but with both
spectra such that their product is still E�k�H�k��k�

−4. The
slope of the energy spectrum in the direct inertial range of
Figs. 9 and 10 is �2.1, while the slope of the helicity spec-
trum is �1.9, in good agreement with these predictions
�slopes where obtained through a least square fit�. Figure 12
shows the product of all spectra compensated by k4. The
isotropic and perpendicular spectra show a flat region com-
patible with this scaling, and the results are in good agree-
ment with the arguments based on a dominant cascade of
helicity in the helical rotating case. No clear scaling is ob-
served in the parallel direction, although an �k−4 depen-
dence may be compatible with this spectrum for smaller
wave numbers than for the isotropic and perpendicular spec-
tra. This may be the result of the anisotropy of the flow
which results in a smaller amplitude �and a reduced effective
Reynolds number� for the fluctuations in the parallel direc-
tion. Simulations at larger resolution may be required to con-
firm scaling in this direction.

FIG. 9. Isotropic energy and helicity spectra in run B with Ro=0.06 �same
labels as in Fig. 8�; k−5/3 �Kolmogorov�, and k−2 scaling laws are shown as
a reference. The inset gives the isotropic energy and helicity fluxes. Note the
excess of �normalized� helicity and of its flux in the small scales.

FIG. 10. Perpendicular energy and helicity spectra in run B with Ro=0.06,
with same labels as in Fig. 8. Kolmogorov and k−2 scaling laws are shown as
a reference. The inset shows the perpendicular energy and helicity fluxes.

FIG. 11. Parallel energy and helicity spectra in run B, with same labels as in
Fig. 8. The inset shows the parallel energy and helicity fluxes.
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V. SCALING WITH REYNOLDS AND ROSSBY
NUMBERS

In this section we analyze an ensemble of runs in order
to see the emergence of scaling laws when examining a
range of Reynolds and Rossby numbers; to that effect, we
combine runs A and B of this paper with previous simula-
tions at different Reynolds and Rossby numbers.20 The sub-
dominant direct cascade of energy in run B is the result of
the relation �̃�kF� at the forcing scale �where �̃ is the
helicity injection rate dH /dt and � the energy injection
rate dE /dt�, together with the development of an inverse
cascade of energy at small enough Rossby number which
removes some of the injected energy that would otherwise
be available for the direct cascade. Since a fraction of the
energy injected at kF goes toward large scales �in run B,
��−�
� /2, where �− is the energy flux toward large scales,
measured at wave numbers smaller than kF�, while most of
the helicity injected goes toward small scales �with 
+ the
helicity flux toward small scales�, the energy flux toward
small scales �+ is smaller than 
+ in the entire direct cascade
range �see e.g., Figs. 9 and 10�. This results in a direct cas-
cade dominated by the helicity, reminiscent of the pure direct
cascade of helicity hypothesized in Ref. 42. However, here
the time scale of the direct cascade is affected by the pres-
ence of Rossby waves, resulting in the E�k�H�k��k�

−4 rule as
discussed in Ref. 20.

This scenario is mainly based on two hypothesis, that the
injection rates are related through �̃�kF� �with the propor-
tionality constant equal to one when the forcing injects maxi-
mum helicity at only one wave number, and smaller than one
when the forcing is not maximally helical�, and that the ratio

+ /�+ in the direct cascade range increases with rotation
�either monotonically or saturating at a small value of Ro
such that the direct helicity flux becomes dominant�.

That the former condition holds, in the range of param-
eters tested in the present study, is illustrated in Fig. 13
which displays the ratio �� /�
 as a function of the Rossby
number for several runs, where

�� = �+ − �− = �

and

�
 = �
+ − 
−�/kF = �̃/kF.

Note that these differences �the amount of flux to small
scales plus the amount of flux to large scales, since the latter
is negative� are proportional to the helicity and energy injec-
tion rates �̃ and �. For a forcing that injects maximum helic-
ity, if �̃=kF�, then �� /�
=1. The constancy of �� /�
 for
runs at different Reynolds and Rossby numbers, as observed
in Fig. 13, builds confidence on the validity of the former
hypothesis. For runs A and B the ratio �� /�

0.95,
slightly smaller than unity as the forcing used �being the
superposition of two helical flows at different wave numbers�
is not maximally helical.

Figure 14 shows the ratio 
+ / �kF�+�, i.e., the ratio of
energy flux toward small scales to the normalized helicity
flux toward small scales, as a function of Ro−1. While for
large values of the Rossby number this ratio is close to unity
�where a dual cascade of energy and helicity takes place,
with both quantities having the same spectral index in the
inertial range�, as the Rossby number is decreased the ratio
becomes larger than one. Simulations with very different
Reynolds numbers and scale separation between the domain
size and the forcing scale appear to collapse onto one curve
that grows as Ro decreases, thus building confidence on the
validity of the latter hypothesis.

FIG. 12. Product of the energy and helicity spectra in run B, normalized by
kF and compensated by k4. The solid line corresponds to the isotropic spec-
tra, the dashed line to the perpendicular spectra, and the dotted line to the
parallel spectra.

FIG. 13. Ratio �� /�
 as a function of the inverse Rossby number for
several runs �see text for definition�. Squares correspond to runs A and B.
Diamonds correspond to helical runs with 5123 resolution, kF=7, and
Re
1200 for different Rossby numbers, as analyzed in Ref. 20.

FIG. 14. Ratio 
+ / �kF�+� as a function of the inverse Rossby number for
several runs �see text for definitions�. Squares correspond to runs A and B.
Diamonds correspond to helical runs with 5123 resolution, kF=7, and
Re
1200. Triangles correspond to helical runs with 5123 resolution,
kF=2, and Re
5700 �Ref. 20�.
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VI. CONCLUSIONS

We presented results from two simulations of rotating
turbulence at large Reynolds numbers and moderate Rossby
numbers, with spatial resolution of 15363 grid points and
forced at intermediate scales, allowing for simultaneous di-
rect and inverse cascades of the ideal invariants of the flow
to develop. The forcing injects both energy and helicity, and
both inverse and direct cascades of energy develop in the
case of stronger rotation, together with a direct cascade of
helicity. The inverse cascade range is dominated by the en-
ergy, and the flow is anisotropic and only weakly helical. On
the other hand, in the direct cascade range, the normalized
helicity flux is larger than the energy flux. The dominance of
the helicity flux in this range results in the time scales of the
direct cascade being imposed by the helicity. As a result, the
small scale helicity spectrum is shallower than the energy
spectrum. Both spectra scale as E
k�

−e and H
k�
−h with

e+h=4 as predicted by phenomenological arguments20 �for
the run with Ro
0.06, it was found e
2.1 and h
1.9�. The
slope of the energy spectrum is slightly steeper than what is
found in recent numerical simulations of nonhelical rotating
turbulence �see e.g., Refs. 19 and 25�.

Comparisons with other simulations of helical rotating
flows albeit at lower resolution allowed us to build confi-
dence on the dominance of the direct cascade of helicity over
the energy as the Rossby number is decreased. While direct
and inverse inertial ranges of energy and helicity were iden-
tified in the isotropic and perpendicular spectra and fluxes,
no clear scaling was found in the parallel direction. The en-
ergy and helicity fluxes in this direction are positive for all
wave numbers, and no range of scales with constant flux was
found.

The development of anisotropies in the flow was studied
using global and spectral quantities. In all cases, it was ob-
served that the distribution of helicity is more isotropic than
the distribution of energy. As an example, it was found that
at late times �95% of the energy is in modes with k� =0,
while less than 75% of the helicity is in the same modes �as
a comparison, for run A �24% of both the total energy and
helicity are in modes with k� =0�. Other measures of aniso-
tropy at both large and small scales gave consistent results.
The vortical structures that develop in such flows and the
anisotropy, as well as the recovery of isotropy at small
scales, will be studied in more detail in Paper II using
probability density functions of velocity and helicity incre-
ments, structure functions based on the symmetries of the
problem, and three-dimensional visualizations of the velocity
and vorticity.
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