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A spherical tokamak (ST) with a plasma center column (PCC) can be formed inside a simply

connected chamber via driven magnetic relaxation. From a practical perspective, the ST-PCC could

overcome many difficulties associated with the material center column of the standard ST reactor

design. Besides, the ST-PCC concept can be regarded as an advanced helicity injected device that

would enable novel experiments on the key physics of magnetic relaxation and reconnection. This

is because the concept includes not only a PCC but also a coaxial helicity injector (CHI). This com-

bination implies an improved level of flexibility in the helicity injection scheme required for the

formation and sustainment phases. In this work, the parameter space determining the magnetic

structure of the ST-PCC equilibria is studied under the assumption of fully relaxed plasmas. In par-

ticular, it is shown that the effect of the external bias field of the PCC and the CHI essentially

depends on a single parameter that measures the relative amount of flux of these two entities. The

effect of plasma elongation on the safety factor profile and the stability to the tilt mode are also ana-

lyzed. In the first part of this work, the stability of the system is explained in terms of the minimum

energy principle, and relevant stability maps are constructed. While this picture provides an ade-

quate insight into the underlying physics of the instability, it does not include the stabilizing effect

of line-tying at the electrodes. In the second part, a dynamical stability analysis of the ST-PCC con-

figurations, including the effect of line-tying, is performed by numerically solving the magnetohy-

drodynamic equations. A significant stability enhancement is observed when the PCC contains

more than the 70% of the total external bias flux, and the elongation is not higher than two.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4975018]

I. INTRODUCTION

Spherical torus or tokamak (ST) plasmas are toroidal

confinement configurations with a very small aspect ratio. It

has been demonstrated that they have a number of attractive

physical features, such as a high b limit and a low geodesic

curvature of the magnetic field lines. From the perspective of

a fusion reactor, the low aspect ratio implies the possibility

of compact fusion at low field and modest cost.1,2 In conven-

tional spherical tokamaks, the plasma torus is linked by a

central post containing the inner part of the toroidal magnet

and the ohmic transformer. Due to the very limited space left

at the low aspect ratio, the design of this centerpost becomes

a very difficult challenge. Another problem is that the center-

post cannot be shielded from the neutron flux and therefore

cannot be a superconductor.

To overcome these limitations, it has been proposed to

replace the center-post by a pair of electrodes linked by open

flux surfaces across the plasma center.3,4 Biasing these elec-

trodes, a poloidal current may be driven along the open flux

surfaces to produce the toroidal magnetic field. With this

approach, configurations with many features in common

with spherical tokamaks could be formed and sustained

inside simply connected chambers. The first and simplest

configuration using this idea is the flux-core spheromak

(FCS),5 although in this configuration much of the toroidal

field is produced by currents flowing in the closed flux

region. A more advanced proposal is the Proto-Sphera exper-

iment,3 which involves a central screw-pinch fed by electro-

des and surrounded by a spherical torus.

Another configuration of this type is the spherical toka-

mak with plasma center column (ST-PCC).4,6 This configura-

tion can be naturally formed by driven relaxation inside a

cylindrical flux conserver. The required injection of magnetic

helicity is provided by the PCC along with a coaxial helicity

injector (CHI). In this sense, the ST-PCC may be regarded as a

combination of a FCS and a conventional gun spheromak.7–9

Tang and Boozer4 studied these configurations under the

assumption of complete relaxation5,10 and showed that their

magnetic structure is primarily determined by four factors: (1)

the flux amplification factor [see Eq. (4)], (2) the elongation of

the cylinder, (3) the requirement of stability to the tilt mode,

and (4) the vacuum bias flux imposed by a set of electrodes.

In this paper, we study the relaxed states of ST-PCC

configurations. The first important result is the demonstration

that the analysis of these configurations can be greatly sim-

plified by noting that the effect of the vacuum bias flux on

the equilibrium essentially depends on a single quantity: f,
the normalized magnetic flux content of the PCC (see Sec. II

and Fig. 1). This observation allowed us to identify thea)Electronic mail: lealamp@cab.cnea.gov.ar
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relevant parameter space of ST-PCC plasmas as (e, k, and f),
where e is the elongation, and k is the normalized parallel

current [see Eq. (1)]. The role of each parameter is clearly

displayed in the mathematical statement of the equilibrium

[Eq. (3)]. Furthermore, we cast a theoretical stability condi-

tion (to the tilt mode) based on the minimum energy princi-

ple4,11,12 into a stability map, which relates the amplification

factor and the stability of the configuration to the control

parameters in an intuitive way. We note that the effect of

line-tying at the electrodes is not considered by this simpli-

fied stability criterion. Notwithstanding, this effect is taken

into account in the dynamic stability analysis performed in

the second part of this work, as described below. The

extreme values of the main figures of merit, such as the

safety factor, of the configurations lying on the stable region

are given.

Fully relaxed configurations provide a reasonable

approximation to the actual ST-PCC equilibria. In fact, they

play an important role because the initial formation sequence

by driven relaxation is expected to leave the system very

close to the fully relaxed state.4 Moreover, deviations from

this state during sustainment will provide a free energy to

feed instabilities that, in case of being triggered, will cause

the plasma to relax back again. An additional motivation to

focus on these preferred states as an starting point is to facili-

tate the comparison of our results with the existing data on

equilibria and stability.4,11,12

The sustainment phase of the proposed ST-PCC experi-

ment aims to ramp up the plasma pressure towards conven-

tional high-b equilibria with tokamak-like safety factor

profiles. Since these scenarios necessarily involve deviations

from the relaxed state, the requirement of auxiliary current

drive and heating such as rf and neutral beam injection is

foreseen.4,6 The operating conditions must be carefully

selected in order to avoid deleterious modes (in particular,

due to the absence of a material center column). In order to

study the stability as well as the dynamics of magnetohydro-

dynamic (MHD) modes in these scenarios, the development

of a reliable non-linear MHD code is required.

In the second part of this work, a dynamical stability

analysis of the tilt mode in ST-PCC configurations is per-

formed using a non-linear MHD code. As a first validation

step, the evolution of isolated configurations (i.e., without

external bias flux) is computed for different elongations. The

theoretical threshold to the tilt mode, as well as the growth

rates of the unstable cases previously obtained with linear-

ized codes,11,12 is correctly reproduced. Next, the stability of

relaxed ST-PCC configurations including the external bias is

studied. Several sets of runs are used to identify the stability

boundaries predicted by the non-linear scheme for different

elongations. The results are consistent with the theoretical

stability criterion based on the minimum energy principle. In

this case, however, the stability thresholds are higher due to

the field line-tying at the electrodes, which is not considered

by the theoretical criterion. This effect, not considered in

previous works,4,6 produces a significant stability enhance-

ment for configurations with e¼ 2 and f in the range 0.7–0.9

but becomes less important for higher elongations and

smaller values of f.

The use of a non-linear MHD code in the present work is

considered as a desirable validation step in view of future

studies of more complicated phenomena in this kind of config-

urations. We note that the same numerical scheme was suc-

cessfully used in previous works to study the current driven

instabilities (kink modes)13–15 as well as the dynamics of for-

mation and sustainment16,17 of spheromak configurations.

The rest of the paper is organized into three parts. First,

in Sec. II, the ST-PCC concept is described in more detail

(Sec. II A). The required background on the relaxation theory

as well as the mathematical statement of the problem are

given (Sec. II B). The role of the relevant control parameters

and the construction of stability maps are explained (Secs.

II C and II D). The expected safety factor profiles within the

stable region are also presented (Sec. II E). Second, in Sec.

III, a dynamical stability analysis of the tilt is performed.

The MHD model and the numerical scheme employed are

described (Sec. III A). Isolated configurations are studied as

a preliminary validation step (Sec. III B). The analysis of

ST-PCC equilibria including the external bias flux and the

effect of line-tying at the electrodes is performed (Sec.

III C). Finally, in Sec. IV, the concluding remarks are

summarized.

II. SPHERICAL TOKAMAK WITH PLASMA CENTER
COLUMN

A. Description of the configuration

The ST-PCC concept, proposed by Tang and Boozer,4

combines a PCC, which is essentially a screw pinch plasma,

with a coaxial helicity injector (CHI) to form a toroidal pinch

(or ST) via driven relaxation. Fig. 1 shows the flux con-

server, the set up of electrodes, and the magnetic field lines

of these three magnetic structures.

In order to begin the formation sequence, the open bias

flux must be set. The external magnetic flux enters through

the central electrode at the bottom (w0). A fraction f of it

leaves the chamber through the central electrode at the top

FIG. 1. Magnetic flux surfaces of a typical ST-PCC configuration (a). The

PCC is formed by the flux connecting the central electrodes (red lines).

The CHI flux links the two concentric electrodes at the bottom (blue lines).

The ST composed by closed field lines is formed by driven relaxation (black

lines). The distribution of flux across the top (b) and bottom (c) ends of the

chamber is also shown.
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(the PCC flux, wPCC), and the rest leaves the chamber

through the outboard electrode at the bottom (the CHI flux,

wCHI). Note that the possibility of varying the value of f is a

first degree of freedom of this configuration.

The configuration is formed by driven relaxation. In the

present scheme, this is accomplished by driving current along

the open bias field lines. This produces a build up of magnetic

helicity, and a jk=B gradient is established. Eventually, the

system becomes globally unstable, and the relaxation process

is triggered. During this process, the magnetic energy is rap-

idly dissipated, while the magnetic helicity remains approxi-

mately constant. As a result, the plasma adopts a preferred

state of minimum energy, or relaxed state. There is a large

amount of experimental,8,18–20 theoretical,5,10 as well as

numerical16,21 work supporting and describing this self-

organization mechanism.

After the initial formation stage, the relaxed plasma

has low b and a flat jk=B profile. In this situation, the q pro-

file typically has reversed shear (i.e., q is maximum at the

magnetic axis). The sustainment phase aims to ramp up the

plasma pressure towards a conventional high-b equilibrium

with a tokamak like q profile. The operating conditions of

the PCC must be carefully designed in order to achieve

these scenarios without triggering the external MHD modes

(due to the absence of a material center column). The CHI

provides, at this stage, an additional actuator system to

drive (either increase or reduce) the parallel current near

the separatrix. This may be useful to modify (control) the q
profile or act on the stability of the system (the PCC modes

for instance).

While the helicity injection from a single CHI has

proven to be a robust method not only for the formation but

also for the sustainment of related configurations,7–9 the

requirement of auxiliary current drive and heating schemes,

such as rf and neutral beam injection, is foreseen in order to

achieve high temperatures and good particle confinement.4,6

This is because the current drive by helicity injection relies

on the tendency of the plasma to relax, and this necessarily

involves MHD fluctuations that could degrade the confine-

ment. However, we note that this is a highly non-linear pro-

cess, and the dynamics of the fluctuations is very sensitive to

the operation regime;17 thus, it is not clear what steady or

quasi-steady conditions could achieve in ST-PCC configura-

tions sustained by helicity injection. Moreover, the capability

of independently biasing the PCC and CHI provides an

improved level of control compared to previous helicity

injection experiments. This brings about interesting possibil-

ities of novel research on the dynamics of magnetic relaxa-

tion, which is a largely open issue of practical as well as

fundamental interest.

B. Relaxed states and mathematical statement

After the formation phase, the plasma is left in a relaxed

state. During the subsequent sustainment phase, departures

from this state will provide free energy for potential instabil-

ities which, in case of being triggered, would cause the

plasma to relax back again. It is clear then that these

preferred states play a key role, and a deep understanding of

their properties is required.

Relaxed states are a special case of force-free plasmas:

those for which the ratio between the current and the mag-

netic field is spatially uniform. This is expressed by the

relation

r� B ¼ kB; (1)

with k being a constant. The fundamental ansatz of relax-

ation theory is that localized magnetic reconnection

events dissipate energy but preserve the global magnetic

helicity. Therefore, turbulent fluctuations make the plasma

evolve toward the minimum energy state compatible with

the initial amount of magnetic helicity.10 The minimiza-

tion of the magnetic energy under the constraint of mag-

netic helicity conservation leads to the linear force-free

field (1).22

When applied to a simply connected domain with homo-

geneous boundary conditions, i.e., B � n¼ 0, Eq. (1) leads to

an eigenvalue problem with a non trivial solution for a dis-

crete set of eigenvalues ki. For a magnetic field satisfying

Eq. (1), it is easy to verify that

k ¼ 2
W

K
; (2)

where W is the magnetic energy and K is the magnetic helic-

ity. Thus, the plasma will tend to evolve toward the mini-

mum allowed k (the lowest eigenvalue in the homogeneous

case). Actual helicity injected devices typically involve elec-

trodes intercepted by the magnetic flux thus, B � n 6¼ 0 at the

boundary. In this case, Eq. (1) has a unique solution for any

value of k, excluding the eigenvalues, where there is a reso-

nant behavior. Moreover, it has been shown that Eq. (2) can

be extended to open configurations using a gauge invariant

definition of the helicity.5,23

Since we are interested in axisymmetric configurations,

it is convenient to express the condition (1) as a Grad-

Shafranov equation for the poloidal flux w. In this way, the

relaxed states corresponding to the ST-PCC configurations

studied in this work are specified by the following mathemat-

ical problem

D�wþ k2w ¼ 0; on X ¼ ðr; zÞ 2 ½0; 1� � ½0; e�;
w ¼ welec;f on @X;

8<
: (3)

where D� � @2=@r2 � ð1=rÞ@=@r þ @2=@z2 is the Grad-

Shafranov operator and welec,f is a function defined on the

boundary that specifies the flux distribution across the electro-

des. All quantities are nondimensionalized using the radius of

the flux conserver, a and the open bias flux w0, i.e., the flux

entering through the central electrode at the bottom. The role

of the three control parameters is clearly highlighted in Eq.

(3). In particular, k modifies the governing equation, f deter-

mines the boundary condition, and the elongation (e¼ h/a)

sets the geometry of the domain. In Secs. II C-E and III, we

analyze the different configurations that can be obtained by
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varying these parameters. The stability boundaries on the rele-

vant parameter space will also be identified.

C. Relevant parameter space

In this section, the choice of the set {k, f, e} as the rele-

vant parameter space defining the relaxed states of the ST-

PCC configuration is explained. To begin, we note that k
gives the spatially uniform normalized parallel current jk=B,

as is clear from Eq. (1). The problem defined by Eq. (3) has

inhomogeneous boundary conditions and thus has a unique

solution for every k 6¼ ki, where ki are the eigenvalues of the

Grad-Shafranov operator in the rectangle X. For the study of

ST-PCC plasmas, we restrict our attention to the so-called

regular configurations, i.e., those below the first resonance.

This is expressed as k< k1, where k1 is the lowest eigen-

value. In this case, the solution w is a monotonic function

whose maximum gives the magnetic axis.

An important figure for merit of this kind of configura-

tions is the amplification factor, defined as

A ¼ wm:a:

w0

; (4)

that is, the normalized poloidal flux at the magnetic axis. It is

a measure of the effectiveness of a helicity injection scheme

since the poloidal flux in the closed flux region is propor-

tional to the toroidal current, which is self-generated by the

relaxation process. Note that wm.a. includes the open as well

as the closed fluxes. This means that A > 1 implies the for-

mation of a closed flux region (the toroidal pinch). For

A ¼ 2, the amount of poloidal flux enclosed by the toroidal

pinch is equal to the external bias flux.

As k approaches k1, the amplification factor diverges.

This is shown in Fig. 2 for different values of f. Note that if f
is set to zero, the configuration reduces to the standard CHI

spheromak. On the other hand, by setting f¼ 1, one recovers

the flux core spheromak (FCS) configuration.5

The function welec,f, in Eq. (3), specifies the flux distri-

bution across the electrodes. This function must be zero at

the axis of symmetry (r¼ 0) and equal to f at the wall (r¼ a).

At the base, the (normalized) flux increases up to one at rb1,

decreases to f at rb2, and then remains constant, as shown in

Fig. 1(c). At the top, welec,f increases up to f at rtop and then

remains constant, as shown in Fig. 1(b). In principle, one

should consider not only f but also rb1, rb2, and rtop as the

parameters defining the boundary condition.

It turns out, however, that the size of the electrodes

plays only a minor role. This is shown in Fig. 2. By changing

f, configurations with very different amplification factors are

obtained for each k (solid curves). On the other hand, if f is

held fixed (equal to 0.5) while {rb1, rb2, rtop} are varied over

a large interval, the gray region is obtained. The upper limit

of this region corresponds to the “concentrated electrode”

configuration, rb1¼ rtop¼ 0.1 and rb2¼ 0.2, while the lower

limit is obtained for rb1¼ 0.9 and rb2¼ rtop¼ 1. The solid

lines correspond to rb1¼ rtop¼ 0.4 and rb2¼ 1. This choice is

used in the rest of the paper. We verified that the effect of

the flux distribution across the electrodes is also weak when

compared with the effect of changing the fraction of flux of

the PCC. All these reasons led us to choose f as the relevant

parameter defining the boundary condition.

Once the electrodes are magnetized, and the value of f is

set, different amounts of current can be driven along the

open flux, resulting in different values of k (assumed to

remain spatially uniform due to complete relaxation). Using

the same device, i.e., the same flux conserver and electrodes,

different values of k and f can be explored. In this sense,

(k, f) can be regarded as the set of operation parameters. In

Fig. 2, it is clear that a given amplification factor can be

obtained for different combinations of k and f. This clearly

shows one of the additional degrees of freedom of the ST-

PCC configuration when compared with the conventional

CHI spheromak or the FCS.

The remaining relevant parameter defining the ST-PCC

relaxed state is the elongation, which appears in the defini-

tion of the domain. Physically, the geometry of the plasma

container must be changed in order to vary e. For this reason,

e is regarded as a design parameter. The effect of this param-

eter is worth studying because it is possible to achieve rela-

tively large values of the safety factor with low toroidal

fields at high elongations.4 However, it is well known that

elongation is connected to the tilt instability in simply con-

nected configurations.11,12 In Sec. II D the stability of elon-

gated configurations is discussed in terms of the minimum

energy principle.

D. The tilt mode and the stability map

Relaxed states are quite robust against ideal MHD

modes because they are minimum energy states, therefore,

any perturbation results in a positive dW.5,24 This is no sur-

prising, since they have zero b and a uniform jk=B distribu-

tion, and thus the two main ideal instability drivings are

absent. Still, the configurations described by Eq. (3) may

exhibit a tendency to tilt if the elongation is high enough.

This may be understood in terms of the energy minimization

principle as follows.4

Consider Eq. (1) inside a cylinder with the vanishing

normal magnetic field at the boundary. We already men-

tioned that this problem has non-trivial solutions for a

FIG. 2. Flux amplification factor versus k (normalized with k1) for e¼ 1 and

different values of f. For f¼ 0.5, the effect of varying the electrode configu-

ration is indicated by the gray region.
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discrete set of eigenvalues ki, the lowest of which gives the

minimum energy eigenstate, i.e., the relaxed state. At this point,

it is important to stress that this set of eigenstates includes axi-

symmetric as well as non-axisymmetric solutions (the

Chandrasekhar-Kendall functions25). Let us assume that k1 is

the lowest eigenvalue of the axisymmetric (n¼ 0) family of

eigenstates and that kn¼1
1 is the lowest eigenvalue of the non-

axisymmetric eigenstates. It turns out that k1 < kn¼1
1 as long as

e< 1.67. For higher elongations, the solution with toroidal

mode number n¼ 1 becomes the minimum energy state. In that

case, the plasma exhibits the tendency to “tilt.”11,12

This result can be used to estimate the threshold of the tilt

mode for the configurations defined by Eq. (3). Since we deal

with non-homogeneous boundary conditions, the system has a

resonance at k1, and k must remain below that resonance in

order to have a regular configuration. When e> 1.67, kn¼1
1

falls below the first resonance predicted by Eq. (3), which

only captures the axisymmetric solutions. In these highly

elongated cases, one can still avoid the growth of the tilt insta-

bility by keeping the operation parameter k below kn¼1
1 .

Therefore, the tilt stability threshold can be simply stated as

k ¼ kn¼1
1 . We note, however, that kn¼1

1 represents the onset of

the tilt instability for isolated configurations (i.e., without the

external flux), and thus, this criterion does not include the sta-

bilizing effect of line-tying at the electrodes. This effect is

considered in the dynamical stability analysis presented in

Sec. III.

This situation is shown in Fig. 3, where the amplification

factor is plotted against k for e¼ 2 and different values of f.
Our numerical solution of Eq. (3) recovers the theoretical

position of the axisymmetric resonance, k1ðe ¼ 2Þ ¼ ðx2
11

þp2=e2Þ1=2 ¼ 4:14, where x11 is the first zero of the J1

Bessel function. The tilt stability threshold is kn¼1
1 ðe ¼ 2Þ

¼ 3:97;11,12 above which, the curves are shown with dashed

lines. Note that even at e¼ 2, which is above the theoretical

threshold for closed configurations, tilt stable configurations

can be obtained for suitable combinations of k and f, as indi-

cated by the shaded region.

Taking the pair (k, f) as the operation parameters, the

red region in Fig. 3 may be regarded as the region of stable

operation (or stable relaxed states) for e¼ 2. This region of

stability, or operation range, can also be displayed by plot-

ting the amplification factor against f, as shown in Fig. 4.

Once f is set, by choosing the fraction of flux carried by the

PCC, the flux of the closed configuration can be increased by

raising the parallel current, i.e., by increasing k. The ramp up

in k produces an increase of A. The maximum amplification

factor achievable for each f can be directly deduced from

this stability map.

As already observed in Figs. 2 and 3, for a fixed k, f has

a strong effect on A. In Fig. 4, this effect is clearly shown by

the contours of k. Although these contours look like straight

lines, they have a very small curvature. The first conclusion

we can draw is that increasing the flux of the PCC improves

the stability to the tilt: k can be reduced by increasing f, and

thus, the configuration can be moved away from the stability

threshold. In this sense, high values of f are preferable. We

note, however, that in the limit f¼ 1 (FCS), helicity can only

be injected using the PCC, and therefore, we lose one of the

main advantages of the present configuration, the possibility

of independent control of the “external” toroidal field and

the helicity injection rate.

In Fig. 5, the tilt stability boundary for configurations

with different elongations is shown. As in Fig. 4, stable equi-

libria for each case lie below the corresponding threshold in

FIG. 3. Amplification factor versus k for e¼ 2 and different values of f.
Solutions with k > kn¼1

1 (dashed lines) are unstable to the tilt mode. The

region of stable solutions is shaded in light red.

FIG. 4. Stability map for ST-PCC equilibria with e¼ 2. Contours of constant

k are plotted with solid (dashed) lines in the stable (unstable) region.

FIG. 5. Stability boundary for configurations with different elongations. As

in Fig. 4, stable equilibria lie below the threshold.
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an almost triangular region. A second important conclusion

drawn from these stability maps is that the region of stable

equilibria shrinks rapidly with the elongation. In this sense,

configurations with e> 2.4 are, in principle, of limited prac-

tical interest.

Another important property of a toroidal confinement

configuration is the aspect ratio (the ratio of major to minor

radius). As already noted,4 the aspect ratio scales approxi-

mately inversely proportional to the amplification factor and

has only a weak dependence on the other parameters of the

configuration. Taking advantage of this fact, the aspect ratio

has been incorporated on the right y-axis scale of the stability

maps in Figs. 4 and 5.

E. Safety factor profile

The safety factor q is a fundamental figure of merit

closely related to the stability of different types of modes, in

particular, current driven modes. At each flux surface, q
gives the number of toroidal turns that a field line completes

after one poloidal circuit. Clearly, this quantity depends on

the local value of the normalized parallel current k. It turns

out that the parameters e and f also have an effect on the q
profile because they affect the geometry of the flux surfaces,

which in turn affect the field line trajectories.

The q profiles obtained for the configurations at three

points of the region of stability of Fig. 5 are shown in Fig. 6

for e¼ 2 and e¼ 2.4. The label of each point is indicated in

the inset at the upper-left corner of Fig. 6(a). The first point

(1), corresponds to k ¼ kn¼1
1 and f¼ 1, i.e., the marginally

stable configuration having the largest A. The second point

(2) is at k ¼ kn¼1
1 and A ¼ 2. Finally, the third point (3) is at

f¼ 1 and A ¼ 2, which has the lowest k among these three

cases. Note that (1) and (2) have the same k, (1) and (3) have

the same f, and (2) and (3) have the same A.

As is common for relaxed plasmas, the configurations

have a central reversed magnetic shear, in the usual tokamak

sense. At low amplification factors, the interaction with the

open bias results in an increase of q near the separatrix

(qedge), producing a region of regular magnetic shear.4 It is

also observed that an increase in k decreases the central q
(and viceversa). This is in agreement with the basic behavior

in tokamaks: for an imposed toroidal field, the central q
drops as the toroidal current becomes peaked (i.e., as the

central k is increased).

An important goal in the proposal of the ST-PCC config-

uration,4 as well as the Proto-Sphera experiment,3 is to pro-

duce magnetic equilibria with tokamak like q profiles inside

a simply connected chamber. Since fully relaxed states tend

to have flat or reversed q profiles, as observed in Fig. 6, the

sustainment phase will necessarily involve non-uniform dis-

tributions of k (along with a non-zero j? in order to have a

finite b). Despite these unavoidable deviations, relaxed states

with a high qedge would in principle help to achieve the target

configurations with regular shear and improved stability.

In Fig. 7, qedge is shown as a function of the amplifica-

tion factor for different elongations. As already observed in

Fig. 6, q increases with an elongation and decreases with A.

Note that several values of qedge can be obtained for each A,

since different combinations of k and f are possible in the

stable region. For this reason, two curves are plotted for each

elongation, one corresponds to k ¼ kn¼1
1 (the stability thresh-

old) and the other to f¼ 1 (the FCS limit). Despite this free-

dom, it turns out that qedge is essentially determined by e and

A and has only a weak dependence on the other parameters.

As observed in Fig. 6, qedge increases faster than the

minimum q, as the amplification factor decreases. This gives

rise to a small region of regular shear and a local minimum

in the q profile. This can also be observed in Fig. 7 where the

minimum q for the marginally stable configurations is shown

with dashed lines. This effect only becomes noticeable for

A < 4.

Finally, Fig. 8 summarizes the maximum A and the

range of qedge (dashed lines) that can be obtained for differ-

ent elongations. The upper qedge limit is arbitrarily set to

A ¼ 2 (as much closed flux as externally imposed flux)

while the lower limit corresponds to the tilt stability bound-

ary (without line-tying).

III. DYNAMICAL STABILITY ANALYSIS

A. MHD model and numerical methods

The stability of the configurations described in Sec. II is

studied by solving the MHD equations as a time dependent

FIG. 6. Safety factor profiles at three points of the stability region for two

different elongations. Since quantities vary smoothly inside this region,

intermediate profiles may be qualitatively inferred.

FIG. 7. Safety factor at the separatrix as a function of the amplification fac-

tor, for different elongations. Values correspond to the marginal stable states

with k ¼ kn¼1
1 (red) and the FCS limit f¼ 1 (blue). The minimum q for the

marginally stable configurations is shown with dashed lines.
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problem in three spatial dimensions. The MHD code

employed is based on the Versatile Advection Code (VAC)26

and has already been used to study the dynamics of magnetic

relaxation and the helicity injection in spheromak configura-

tions.13–17,27 In this work, the full MHD equations in the

zero b limit are used. The dimensionless form of these equa-

tions is

@u

@t
þ u � rð Þu ¼ 1

q0

J� Bð Þ þ 1

Re
rP;

@B

@t
¼ �r� E;

E ¼ � u� Bð Þ þ 1

Rem
J;

J ¼ r� B;

r � B ¼ 0; (5)

where P ¼ ðruþruTÞ � 2=3ðr � uÞ. The scales chosen

are the chamber radius a, the external poloidal magnetic flux

w0 (from which the normalization factor for the magnetic

field is obtained), and the Alfv�en velocity cA. Time is nor-

malized with the Alfv�en time sA¼ a/cA. The magnetic field

and the current density have been further rescaled to absorb

the constant l0. The Reynolds and magnetic Reynolds num-

bers are Re¼ acA/� and Rem¼ acA/g, where � is the kine-

matic viscosity, and g is the electrical resistivity. The

magnetic Reynolds number used in this work is Rem¼ 105.

The magnetic Prandtl number is set to one, i.e., Re¼Rem.

The Equations (5) are solved in a uniform cartesian grid

(Nx, Ny, and Nz) with Nx¼Ny¼ 100, and Nz is proportional

to the elongation. A high-resolution finite volume scheme

based on a linearized Riemann solver for MHD was

employed.28–30 The total variation diminishing (TVD) condi-

tion of the solution was held using the Woodward limiter.31

The r � B ¼ 0 constraint was enforced using the projection

method.32

Dirichlet boundary conditions are imposed for the nor-

mal component of the magnetic field (zero at r¼ 1 and non-

zero at the electrodes). In addition, we set j� n̂ ¼ 0 and use

the no slip condition u¼ 0. Boundary conditions at the circu-

lar wall of the flux conserver are imposed using a high-order

boundary treatment for regular grids.33

B. Isolated configurations

As described in Section II D, when homogeneous

boundary conditions are imposed, Eq. (1) leads to an eigen-

value problem. Each eigenvalue (kn
i ) is proportional to the

energy to helicity ratio of its corresponding eigenfunction,

therefore, the plasma will evolve toward the state with the

minimum of these eigenvalues, i.e., the relaxed state. In the

case of a cylindrical domain, the relaxed state is axisym-

metric provided that e< 1.67. For elongations above this

value, kn¼1
1 becomes smaller than k1 (n¼ 0 has been implic-

itly assumed), and thus, the relaxed state has an n¼ 1

dependence.11,12

To check if our scheme reproduces this behavior, we

solved the system (5) inside a cylinder of elongation two,

with vanishing normal fields at the boundary, using the axi-

symmetric state with k¼ k1 as the initial condition. The ana-

lytic expression for these states can be found elsewhere.5

The evolution of the magnetic configuration for e¼ 2 is

shown in Fig. 9. In agreement with the previous studies, we

observe that the system rapidly becomes unstable and

evolves toward a completely tilted configuration. We note

that the verification of the long term evolution towards the

final minimum energy state was not performed in the previ-

ous works.11,12

To activate the instability, we applied a small and arbi-

trary n¼ 1 perturbation to the initial equilibria. Since the

case e¼ 2 is well above the stability threshold, the exponen-

tial growth of the n¼ 1 mode was observed after a small

FIG. 8. Flux amplification factor range of stable relaxed states as a function

of elongation. The values of q at the separatrix on the limits of the range are

also shown.

FIG. 9. Poloidal magnetic field (arrows) and toroidal magnetic field (colormap) showing the evolution of the tilt instability for e¼ 2.
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transient. To eliminate this transient, the structure of the

n¼ 1 mode during the phase of exponential growth was used

as the perturbation in a new run. The process was repeated

until the initial transient disappears, and the perturbation

grew exponentially from t¼ 0. In practice, a few restarts

were required to obtain the correct tilt mode. The initial

energy content of the perturbations was set to 10� 6 of the

magnetic energy of initial condition. The evolution of the

magnetic energy content of the n¼ 1 mode is shown in Fig.

10(a). In less than 100 Alfv�en times, the magnetic energy of

the system is completely transferred to the n¼ 1 mode.

The same procedure was applied to configurations with

lower elongations, as shown in Fig. 10(a). As the elongation

is reduced, the growth rate of the mode decreases, as

expected. When values below the theoretical threshold 1.67

were used, the initial perturbation did not grow. Near this

marginally stable situation, the estimation of small growth

rates based on the time evolution of our non linear model

becomes inaccurate. In order to improve the estimation of

the stability threshold, the growth rates of unstable configu-

rations were fitted and extrapolated. This procedure is shown

in Fig. 10(b). The threshold elongation obtained in this way

is 1.69, which is in reasonable agreement with the theoretical

value.

C. Effect of the open bias flux

When there is magnetic flux intercepting the boundary,

Eq. (1) has the solution for any k, excluding the eigenvalues.

Since the description of ST-PCC plasmas was restricted to

axisymmetric configurations, we were only able to capture

the axisymmetric eigenvalues (i.e., a resonant behavior, see

Figs. 2 and 3). We only consider regular configurations, thus

k< k1. A further restriction on the maximum value of k is

imposed to prevent the tilt instability: k < kn¼1
1 . The latter

condition becomes more restrictive for e> 1.67 and imposes

a limit on the maximum amplification factor attainable for

each f (see Fig. 4). It is important to note that the preceding

analysis is entirely based on the value of kn¼1
1 , defined for

isolated configurations. This means that this stability thresh-

old does not take into account the effect of the external field

lines tied to the electrodes.

To verify the scenario described above, based on the

minimum energy (relaxation) principle, as well as to assess

the improvement of stability produced by the external bias,

we performed a series of simulations using the ST-PCC

configurations described by Eq. (3), as the initial condition.

Three elongations were considered, namely, 2, 2.2, and 2.4.

It is clear that, once the value of f is set, the equilibria will

become unstable provided that k (or equivalently A) is high

enough. A stability threshold higher than kn¼1
1 is expected

due to line-tying stabilization.

Fig. 11 shows the growth rates obtained for three series

of runs (one for each e) when f¼ 0.63. The abscissa was cho-

sen to be A (instead of k) for compatibility with the stability

maps of Figs. 4 and 5. Each point was obtained following the

same procedure that in Fig. 10(b) (see the explanation in

Section III B). Again, extrapolation of the computed growth

rates for unstable equilibria is used to estimate the stability

boundary (a threshold in A, in this case, that may also be

expressed as a limit on k).

The threshold values obtained are plotted in Fig. 12

(points connected with dashed lines). The three zero-

crossings of Fig. 11 give the three points at f¼ 0.63. Note

that each point in this plot corresponds to a family of runs.

Solid lines indicate the stability limits deduced from the con-

dition k ¼ kn¼1
1 (as in Fig. 5). As expected, the simulations

confirm the picture deduced from the minimum energy prin-

ciple but predict a larger stable region due to the effect of the

external bias. This effect produces a significant stability

improvement for configurations with e¼ 2 and f in the range

0.7–0.9 and becomes less important for higher elongations

and small values of f.

FIG. 10. (a) Evolution of the magnetic

energy of the n¼ 1 mode (W1) relative

to the total magnetic energy (W) for

isolated configurations with different

elongations. (b) The growth rates

obtained (points) are fitted and extrap-

olated to estimate the stability thresh-

old (c¼ 0).

FIG. 11. Growth rates obtained for three series of runs with elongations 2,

2.2, and 2.4. The fraction of flux of the PCC is f¼ 0.63 in the three cases.

Each point corresponds to one simulation.
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Finally, we point out that our study clarifies the double

stabilizing role played by the central column. First, we

showed that when the fraction of flux contained by the PCC

increases, a larger A can be achieved for the same k. Since

the tilt stability imposes a limit on k, a central column with

more flux allows for larger amplification factors below the

threshold. This is a rather subtle and unexpected effect.

Second, we confirmed the expected stabilizing effect of the

line-tying at the electrodes and provided an estimation for it.

Moreover, we showed that this effect is more pronounced for

larger values of f, indicating that line-tying is more stabiliz-

ing at the PCC than at the CHI.

IV. CONCLUSIONS

The parameter space and stability of spherical tokamaks

with a plasma center column have been studied. The mathe-

matical statement of the equilibrium fields was given in

terms of a Grad-Shafranov equation, and the role of the three

relevant control parameters k, f, and e was clearly shown.

Their impact on the main figures of merit of the equilibria,

such as the flux amplification factor, the safety factor, and

the aspect ratio, as well as on the stability to the tilt mode,

was studied.

A first important conclusion of this study is that the

effect of the vacuum bias flux on the equilibrium configura-

tion essentially depends on a single quantity, namely, f,
which gives the fraction of the external flux contained by the

central column. We showed that the size of the electrodes

and the flux distribution across them have only a minor

impact on the equilibrium fields. Since f could in principle

be varied for a given electrode set up (at least between differ-

ent discharges), it turns out that it can be regarded as a rele-

vant control parameter.

In particular, we showed that the flux amplification fac-

tor increases with f when k is held constant. k gives the nor-

malized parallel current, is assumed to be spatially uniform

(full relaxation hypothesis), and imposed by the electrostatic

biasing of the electrodes. Therefore, (k, f) can be regarded as

the operation control parameters defining the family of

relaxed states with a given elongation. This clearly shows

one of the additional degrees of freedom of the ST-PCC con-

figuration, compared to the conventional CHI or flux core

spheromaks.

The elongation is regarded as a design control parame-

ter because it cannot be changed without modifying the

geometry of the device. We observed, as expected, that the

safety factor increases with e. Therefore, configurations

with high elongations are desirable. However, the tilt mode

becomes unstable for e> 1.67, in the absence of external

bias flux.11,12 When there is an external bias flux, on the

other hand, stability is ensured provided that k remains

below the lowest non-axisymmetric eigenvalue of the

homogeneous problem.4 This criterion, based on the mini-

mum energy principle, was graphically illustrated in the

stability map of A versus f. The region of tilt-stable relaxed

states as well as the maximum amplification factor achiev-

able for a given f and e are quickly deduced from these

graphs.

A straightforward conclusion is that larger amplification

factors can be achieved for larger values of f. This highlights

a first, and rather subtle, stabilizing effect of the central flux

column. The second stabilizing effect of the central column

of flux is due to the field line-tying at the electrodes, as

explained below. We also observed that the region of stable

equilibria shrinks rapidly with the elongation. This suggests

that configurations with e> 2.4 may be of limited practical

relevance.

The analysis presented so far is limited to the relaxed

states of the ST-PCC configurations and does not take into

account the line-tying of the external bias at the electrodes.

In this work, we employed a non-linear MHD code to per-

form a dynamical stability analysis of the tilt mode including

this effect. In the isolated case (no external bias), we

observed that the code correctly reproduces the theoretical

stability threshold (e¼ 1.67). The threshold value was

obtained by extrapolation of the growth rates for different

elongations. In the presence of the external bias, the results

are consistent with the stability criterion based on the mini-

mum energy principle, but the stability thresholds are higher

due to the effect of field line-tying at the electrodes. This

effect produces a significant stability improvement for con-

figurations with e� 2 and f in the range of 0.7–0.9 but

becomes less important for higher elongations and smaller

values of f.
The use of a non-linear MHD code in the present work

is justified as a desirable validation step in view of future

studies of more complicated phenomena, such as the current

and pressure driven modes, in this kind of configurations.

We note that the same numerical scheme was successfully

used in previous works to study the current driven instabil-

ities13–15 as well as the dynamics of formation and sustain-

ment16,17 of spheromak configurations.
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FIG. 12. Stability boundary predicted using the minimum energy principle

(solid lines) compared to the computed stability threshold including the

effect of the external flux (points and dashed lines). Note that each point cor-

responds to a family of simulations.
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