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Universal depinning transition of domain walls in ultrathin ferromagnets
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We present a quantitative and comparative study of magnetic-field-driven domain-wall depinning transition in
different ferromagnetic ultrathin films over a wide range of temperature. We reveal a universal scaling function
accounting for both drive and thermal effects on the depinning transition, including critical exponents. The
consistent description we obtain for both the depinning and subthreshold thermally activated creep motion
should shed light on the universal glassy dynamics of thermally fluctuating elastic objects pinned by disordered
energy landscapes.
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I. INTRODUCTION

The depinning transition from a pinned to a sliding
state upon increasing a driving force is a nonequilibrium
phenomenon observed in extremely diverse systems, ranging
from fractures [1,2], charge density waves [3], vortex glasses
in superconductors [4,5], ferroelectric [6,7] and ferromagnetic
materials [8–11] to wetting [12], reaction fronts [13], and cell
migration advancing fronts [14]. At zero temperature, a pinned
elastic system presents, upon increasing the driving force f ,
a depinning threshold fd separating the zero velocity state for
f < fd from a finite velocity regime for f > fd . At finite
temperature and below the depinning threshold, the thermal
fluctuations result in a so-called “creep” motion over effective
pinning barriers. In this dynamical regime, the velocity follows
an Arrhenius law v ∼ exp(−�E/kBT ) where kBT is thermal
activation (and kB the Boltzmann constant). Close to zero
drive (f → 0), phenomenological scaling theory [15,16] and
functional renormalization group [17] calculations for an
elastic line moving in a random pinning disorder predict the
effective pinning barriers present a universal power-law vari-
ation �E ∼ f −μ with a critical exponent value μ = 1

4 which
was observed in a real system [18]. More recently, it was shown
experimentally that the whole thermally activated dynamical
regimes up to the depinning threshold can be universal and
controlled by a unique pinning energy barrier function [19].

For the depinning transition, the situation is much less
clear since the pinning barriers vanish and their height
becomes comparable to thermal activation. Statistical
physics approaches predict universal scaling functions of
the driving force and temperature for the velocity near
depinning [17,20–25]. Above the depinning threshold, it is
well established that the velocity displays the critical behavior
v ∼ (f − fd )β , β being the depinning exponent [3,20,26]. At
finite temperature, the combined effects of drive and thermal
noise produce a “thermal rounding” of the velocity-force
characteristics. The velocity is usually described by v ∼ T ψ

at the threshold (f = fd ), with ψ the thermal rounding
exponent [20,24,25]. Just above the depinning threshold
(f � fd ), the combined effects of the drive and thermal noise
are conjectured to be caught by v ∼ T ψg[T −ψ (f − fd )β],
where g is a universal scaling function [3,20,22–25]. This
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kind of response, phenomenologically predicted by exploiting
the analogy with equilibrium phase transitions, is supported
by numerical simulations of a driven elastic string [24,25],
the random-field Ising model [21], and charge density waves
models [20] but still remains elusive to a rigorous functional
renormalization group (FRG) treatment [17]. Experimentally
on the other hand, it has been extremely challenging to go
beyond critical exponent analysis [1,6–8]. Investigations of the
depinning transition is complicated by the thermal rounding
of the velocity-force characteristics [24,25] which impedes a
straightforward determination of the depinning threshold and
consequently a clear distinction between material-dependent
and universal behaviors. Therefore, assessing the very
existence of a universal scaling function of a reduced force
and temperature remains an important open issue.

In this work, we address the question of the universality
of the depinning transition in presence of drive and thermal
fluctuations, going beyond the determination of critical expo-
nents and we evidence a universal function which captures
both the temperature and external drive scaling properties.
Strategically, we have chosen to study the motion of domain
walls driven by magnetic field in an ultrathin film with
perpendicular anisotropy [9,27]. In this system, the magnetic
field corresponds to the driving force and the domain walls
to elastic one-dimensional lines moving in a two-dimensional
medium. The subthreshold creep universal behavior is well
understood, so that the nonuniversal material-dependent pa-
rameters can be treated consistently. The effective energy
barrier [19] �E ∼ (H/Hd )−μ − 1, with a creep exponent
μ = 1

4 [9,17,18], describes the whole subthreshold regime up
to the depinning threshold. The depinning thresholds as well as
the other material-dependent parameters are nonambiguously
determined from the methods developed in Ref. [19] and
are then used to analyze the depinning transition. At and
above threshold, we use the depinning critical exponents
β = 0.25 [26] and ψ = 0.15 [24,25] which are deduced
from recent numerical simulations and are compatible with
experimental findings [27].

II. DOMAIN-WALL DYNAMICS

A. Experimental methods

In order to test the universal behaviors of depinning tran-
sition, the domain-wall dynamics was analyzed for a Pt/Co/Pt
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FIG. 1. Domain-wall velocity in Pt/Co/Pt measured for different temperatures and presented in linear (a) and semilog (b) scales to show the
high and low drive regimes, respectively. The creep regime [0 < H < Hd (T )] is highlighted by the black dotted curves corresponding to fits of
Eq. (1) with μ = 1

4 and ends for velocities v(Hd (T ),T ) indicated by black diamond symbols. The depinning regime extends from the depinning
threshold H = Hd (T ) to the universality limit Hu(T ) (indicated by black solid spheres). The depinning velocities vT (Hd (T ),T ) deduced from
Eq. (3) correspond to empty diamonds. The dashed curves are the predictions of Eq. (4) for a unique value of x0 = vT /vH = 0.65 and match
with part of all velocity curves as indicated by black solid segments. The linear flow regime, indicated by a straight dashed-dotted line, is
reached for sufficiently high drive (and only for T > 50 K). Inset: universal reduced energy barrier as a function of reduced field deduced from
velocity curves. The solid line is a plot of Eq. (2).

ultrathin film and then compared to results published in the
literature for Au/Co/Au (Ref. [28]) and CoFeB (Ref. [29])
ultrathin films which present different strengths of pinning
disorder.

The Pt(3.5 nm)/Co(0.45 nm)/Pt(4.5 nm) ultrathin film was
grown by sputtering on an etched Si/SiO2 substrate [9].
It was placed in an optical He-flow cryostat in order to
explore a large range of temperature (4.4–300 K). For the
measurement of domain-wall velocity, we used the bubble
expansion method. A set of circular domains were submitted
to magnetic field pulses of variable amplitude (between 0
and 160 mT) using a small coil (∼100 turns and ∼1 mm
in diameter) placed on the film. Depending on the pulse
amplitude, the duration was set from 1 μs up to 1 s. The motion
of domain walls was observed by polar magneto-optical Kerr
effect microscopy (PMOKE). The displacement produced by
magnetic field pulses was deduced from the difference between
images recorded before and after the pulses. The velocity was
defined as the ratio between domain-wall displacement and
pulse duration. The raw velocity curves were smoothed using
a sliding average over five points to facilitate the comparison
between predictions and experiments. The obtained velocity
curves are shown in Fig. 1. For the lowest temperatures, the
low drive limit of the creep regime (H � Hd ) was beyond
experimental access due to the combined large magnetic field
amplitude and long pulse duration (>60 μs) required to move
domain walls. The exploration of the flow regime was limited
by multiple nucleation of magnetization reversal occurring
during magnetic field pulses.

B. Unified description of the glassy dynamics

Different dynamic regimes can be identified in the velocity-
field curves obtained for the Pt/Co/Pt ultrathin film (see
Fig. 1). An inflection point in the velocity-field curve separates
the low drive [0 < H < Hd (T )] creep regime, where the

velocity varies several orders of magnitude over a relatively
narrow applied magnetic field range [see Fig. 1(b)], from the
depinning regime observed for [H � Hd (T )]. At sufficient
large drive, domain walls follow the flow regime characterized
by a linear variation of the velocity [see Fig. 1(a)]. The
slope m = 0.28 ± 0.02 m/(s mT) is compatible with results
obtained for the asymptotic precessional regime in Pt/Co/Pt
ultrathin films of similar thickness [9]. For Au/Co/Au and
Ta/CoFeB/MgO films, the velocity curves (see Fig. 2) also
present an inflection point corresponding to the depinning
threshold Hd (T ). However, the linear flow regime is not
observed at high drive.

In order to discuss those different regimes on a quantitative
basis, we propose a unified description of the glassy domain-
wall dynamics. For the whole creep regime, the domain-wall
velocity is described [19] by the following expression:

v(H,T ) = v(Hd,T ) exp

(−�E

kBT

)
(1)

with an effective pinning energy barrier

�E = kBTd

[(
H

Hd

)−μ

− 1

]
, (2)

where Hd and v(Hd,T ) are the coordinates of the upper
boundary of the creep regime (�E → 0) and kBTd is a
characteristic energy scale measuring the pinning strength. The
parameters v(Hd (T ),T ), Hd (T ), and Td (T ) were determined
from the creep motion for each temperature using the method
developed in Ref. [19] (see Sec. II C for details and the obtained
values). As shown in Fig. 1, the fit of Eqs. (1) and (2) presents
a good agreement over the whole creep regime.
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FIG. 2. Domain-wall dynamics observed (a) in Au/Co/Au for different temperatures and (b) in Ta/CoFeB/MgO for different cobalt and
iron concentrations and for as-grown (ag) and annealed (an) films. The data are taken from Refs. [28,29], respectively. The diamond symbols
represent the upper boundaries of the creep regime [Hd (T ),v(Hd,T )]. The black solid spheres correspond to the universality limit Hu(T ). The
dotted lines are fits of Eqs. (1) and (2) for the creep regime. The solid and dashed lines correspond to the predictions of Eq. (4) for x0 = 0.65
and is obtained without adjustable parameter.

For the depinning transition, the asymptotic power laws can
be written as

v(Hd,T ) = vT

(
T

Td

)ψ

, (3)

reflecting the variation with temperature of the velocity at the
threshold (H = Hd ) and

v(H,T � Td ) = vH

(
H − Hd

Hd

)β

, (4)

corresponding to the variation with magnetic field at zero
temperature (T � Td ). Here, vT and vH are depinning ve-
locities. Following the more general scaling hypothesis [30],
the velocity can be described as a generalized homogeneous
function [25,31], which implies the following scaling form:

y = g

(
x

x0

)
, (5)

where we have defined the scaled dimensionless variables

x = [(H − Hd )/Hd ]β(T/Td )−ψ (6)

and

y = (v/vT )(T/Td )−ψ, (7)

and where x0 = vT /vH is the amplitude ratio [31] of the
depinning velocities.

In this model, the function g is expected to be universal
within a given class of universality, as it is the case for the
critical exponents. The shape of the function g should reflect
the two asymptotic behaviors described by Eqs. (3) and (4).
For x � x0, we should have g(x/x0) → 1 which corresponds
to Eq. (3). On the opposite, for x � x0, we expect g(x/x0) →
x/x0 in agreement with the zero-temperature asymptotic limit
[Eq. (4) with vH = vT /x0].

Therefore, close to the depinning threshold [x � x0,
i.e., H − Hd � Hd (Td/T )−ψ/β], velocity should depend on

temperature while for increasing fields far from the depin-
ning threshold [x � x0, i.e., H − Hd � Hd (Td/T )−ψ/β] the
velocity should not have an explicit temperature dependence
and follow Eq. (4). The precise form of the scaling function
g determines the extent of the crossover between these two
behaviors, as further discussed in Sec. III E.

Moreover, the parameters vT , vH , Hd , and Td are nonuni-
versal material and temperature dependent. As the velocities
vT and vH both reflect the dynamics of domain-wall depinning
at the same length scale (Larkin length) [18,27] and time scale,
their values should be of the same order of magnitude and x0

close to 1. However, since vT and vH act here as purely metric
factors in the function g [31], x0 is a priori a nonuniversal
parameter.

C. Material- and temperature-dependent parameters

The material- and temperature-dependent parameters
Hd, v(Hd ), and Td were deduced from Eqs. (1) and (2)
describing the creep regime, with the creep exponent μ = 1/4.
For each velocity curve, the following iterative method was
used:

(i) Step 1: We assumed the coordinates of the upper
boundary of the creep regime [Hd, v(Hd )] to correspond to the
inflection point of the velocity characteristics v(H ). Indeed,
the curvature is predicted to be positive [see Eqs. (1) and (2)]
for the creep regime (H < Hd ) and to become negative [see
Eq. (4)] for the depinning regime (H > Hd ).

(ii) Step 2: An estimate of Td is then deduced from a fit of
v(H ) with Eqs. (1) and (2) over the range 0 < H < Hd .

(iii) Step 3: In order to improve the accuracy for the values
of Hd and v(Hd ) a fit of Eqs. (1) and (2) was performed
for increasing values of H . The upper boundary of the creep
regime [Hd, v(Hd )] was defined as the limit above which the
fit and the experimental curve start to diverge.

(iv) Steps 2 and 3 were then repeated in order to provide a
fine tuning of the values of Hd, v(Hd ), and Td .
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TABLE I. Material- and temperature-dependent parameters. For each material, the thickness [Thick. (nm)] and the temperature of the
experiment [T (K)] is indicated. The fitted parameters are the depinning temperature (Td ), magnetic field (Hd ) and the domain-wall depinning
velocity (vT ). The coordinates [Hu, v(Hu)] correspond to the upper boundary of the universal behavior. The data depicted for Au/Co/Au and
CoFeB are deduced from results reported in Refs. [28,29], respectively.

Material Thick. (nm) T (K) Td (K) Hd (mT) vT (m/s) Hu (mT) v(Hu) (m/s)

Pt/Co/Pt 0.5 4.4 450(100) 136(3) 40.0(1.0) 151(3) 18.5(1)
10 660(70) 130(1) 39.3(1.0) 138(2) 29(1)
50 2860(150) 120(2) 35.8(1.0) 133(3) 31(2)
100 3090(280) 107(2) 31.3(1.0) 117(2) 27(1)
150 2700(150) 101(1) 28.7(1.0) 116(2) 27(1)
225 2750(120) 75(1) 21.5(1.0) 96(3) 24(1)
300 2650(20) 57(1) 16.6(1.0) 73(2) 18.5(1)

Au/Co/Au 1.0 150 25800(1000) 123.5(1.0) 23.1(1.0) 126.5(0.5) 15.8(0.6)
183 28800(1500) 115.0(1.0) 23.9(1.0) 121.5(0.5) 16.7(0.6)
213 29400(1500) 110.0(1.0) 22.8(1.0) 116.0(0.5) 16.9(0.6)
243 29300(1500) 102.5(1.0) 23.0(1.0) 108.5(0.5) 16.5(0.6)
273 29000(1500) 96.5(1.0) 20.5(1.0) 102.0(0.5) 15.5(0.6)
318 28400(1500) 88.0(1.0) 18.5(1.0) 90.5(0.5) 12.2(0.6)

Co20Fe60B20 an 1.0 293 1800(100) 6.6(0.2) 2.4(0.5) 27.0(7.0) 4.9(0.4)
Co20Fe60B20 ag 1800(100) 4.8(0.2) 3.3(0.5) 16.0(3.0) 6.4(0.6)
Co40Fe40B20 an 1400(100) 5.0(0.2) 2.8(0.5) 12.6(3.0) 4.9(0.6)
Co40Fe40B20 ag 2000(100) 4.3(0.2) 8.1(0.5) 8.9(2.0) 12.2(2.0)
Co60Fe20B20 an 2200(100) 3.5(0.5) 3.7(0.5) 10.7(2.0) 6.5(0.5)

Note that when the flow regime is observed [as in the case
of Pt/Co/Pt films, see Fig. 1(a)], the coordinates [Hd, v(Hd )]
could be also finely adjusted using Eq. (3) and assuming vT

to coincide with the velocity of linear flow regime (see the
discussion in Sec. III).

The set of temperature-dependent parameters [Hd, v(Hd ),
and Td ] are reported in Table I. Equation (1) is then used
to plot the reduced energy barrier height �E/kBTd (T ) =
[T/Td (T )] ln[(v(Hd (T ),T )/v(H,T )], as a function of the
reduced force H/Hd (T ). As shown in the inset of Fig. 1(b),
this transformation collapses all the velocity curves onto a
single master curve which reflects the universal behavior
of the pinning energy barrier [19]. The good agreement of
data with Eq. (2) for μ = 1

4 indicates that the whole creep
dynamics indeed belongs to the universality class described
by the motion of an elastic line with short-range elasticity
in a random-bond short-range correlated microscopic pinning
potential [19]. The clear discrimination between the universal
behavior of the creep energy barrier and the the material- and
temperature-dependent pinning properties controlled by the
parameters Hd, v(Hd ), and Td paves the way for a systematic
study of domain-wall depinning.

III. UNIVERSALITY OF THE DEPINNING TRANSITION

Let us now address the universality of the depinning
transition on the basis of Eqs. (3) and (4), using the parameters
deduced from the analysis of creep motion, and the critical
exponents ψ = 0.15 and β = 0.25.

A. At the depinning threshold

At the depinning threshold (H = Hd ), Eq. (3) (with ψ =
0.15) allows to determine the value of the depinning velocity

vT for different temperatures. As it can be seen in Fig. 1(a),
vT presents systematically a good agreement with the velocity
corresponding to the linear flow regime. This suggests the
depinning velocity vT to correspond to the velocity domain
wall would reach in absence of pinning. Moreover, assuming
vT = mHd , where m is the slope of the flow regime, and
inverting Eq. (3), we can estimate the critical exponent ψ ,
directly from the velocity curves. As shown in Fig. 3, ψ

is found to be temperature independent and equal to 0.154
± 0.006. The good agreement with previous experimental
findings [27] and with numerical predictions [24] is a first
signature of the universality of the depinning transition.

B. Upper limit of the depinning transition

In order to analyze universal behaviors above the depinning
threshold, it is particularly important to define a criterion fixing

FIG. 3. Depinning critical exponent ψ deduced from experimen-
tal curves of Fig. 1 and shown as a function of temperature.
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the upper limit Hu of the depinning transition. Above the depin-
ning threshold, since the temperature ratio Td/T is large (see
Table I), part of velocity curves should follow the predictions
of Eq. (4) with β = 0.25, provided the depinning universality
class corresponds to the elastic line model with short-range
elasticity in a random-bond short-range correlated microscopic
pinning potential, previously shown to be compatible with
the observed creep behavior. In order to test this hypothesis,
the values of vH were adjusted so that the predictions
present the largest matching with the velocity curves [see
Fig. 1(a)]. As expected, a good agreement is only obtained
over a limited field range. The latter starts slightly above Hd

(H − Hd > 1 − 7 mT for T = 4.4 − 300 K) due to thermal
effect. The onset of the divergence between the experimental
curve and the fit of Eq. (4), can define the upper boundary
of the depinning regime [Hu, v(Hu)]. The obtained values for
Pt/Co/Pt as well as for Au/Co/Au and Ta/CoFeB/MgO are
reported in Table I. Above Hu(T ), domain walls should follow
an a priori nonuniversal crossover to the linear flow regime
observed at larger drive.

C. Universal depinning velocity ratio

We now investigate the universality of the whole depinning
transition (Hd < H < Hu) beyond power laws and critical
exponents. Let us first discuss the variations of the ratio
x0 = vT /vH with the reduced temperature Td/T . Surprisingly,
x0 is found to be temperature independent (x0 = 0.64 ± 0.02)
as shown in Fig. 4. As direct consequence, a unique value
of x0 allows the predictions of Eq. (4) to describe the full
set of velocity curves [see Fig. 1(a)]. Moreover, an identical
analysis can be performed for other ferromagnetic ultrathin
films (see Fig. 2). As shown in Fig. 4, the obtained results
present a particularly good agreement for CoFeB [29] (x0 =
0.64 ± 0.02) and a slightly lower value x0 (= 0.62 ± 0.02) for
Au/Co/Au [28]. Therefore, as the mean values vary by less
than 5% over wide explored range of reduced temperature
(10 < Td/T < 170), x0 can be reasonably considered as
material and temperature independent, which was a priori

FIG. 4. Universal velocity ratio x0 = vT /vH as a function of
the reduced temperature Td/T for different ferromagnetic materials.
The solid and dashed lines indicate the average value and standard
deviation deduced from a fit of the curve in Fig. 5 (see text),
respectively.

not predicted. This result implies that only three material-
and temperature-dependent parameters (vT = x0vH , Hd , and
Td ) are sufficient to describe the whole domain-wall glassy
dynamics in a universal way.

D. Universal depinning function

As discussed in Sec. II B, both magnetic field and tempera-
ture effects on domain-wall dynamics should be described by
a single function g. Figure 5 shows experimental values for the
scaled velocity y [see Eq. (7)] as a function of the scaled driving
field x [see Eq. (6)]. All the velocity curves collapse onto a
single master curve, thus indicating that x and y are appropriate
reduced variables to describe the depinning transition and
the existence of a universal function g. The expected linear
asymptotic behavior g(x/x0) → x/x0 [derived from Eq. (4)]
and corresponding to the low-temperature limit (Td/T � 1)
is observed for x > 0.8. For x < 0.5, the scaled field y

remains almost constant and data extrapolate to y = 1 for
x → 0 as derived from Eq. (3) (for H → Hd ). Therefore, the
universal g function essentially displays two linear asymptotic
behaviors and a narrow crossover region (0.5 < x < 0.8),
which is in qualitative agreement with predictions deduced
from numerical simulations which found x0 ∼ 1 [25]. A rather
accurate empirical description of data (see the solid lines in
Fig. 5) is given by g(x) = [1 + ( x

x0
)n]1/n, where n reflects

the width of the crossover [32], with a best fit obtained for
x0 = 0.65 ± 0.04 and n = 8.7 ± 0.4. This law is also found
to be relevant for other magnetic materials. In the inset of
Fig. 5, we show the scaling of the velocity data corresponding
to Au/Co/Au [28] and CoFeB [29] using exactly the same
function g (i.e., using the same values for x0 and n as for

FIG. 5. Universal depinning scaling function obtained using the
scaled domain-wall velocity y [see Eq. (7)] as a function of the scaled
field x [see Eq. (6)]. The data points only correspond to universal
depinning transition (Hd < H < Hu). The solid curve (also shown
the inset) is an empirical function g(x/x0) describing the data (see
text). The dashed-dotted straight line is the linear asymptotic limit of
function g(x/x0). Inset: scaled domain-wall velocity y as a function
of scaled field x for Au/Co/Au [28] and for CoFeB [29].
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FIG. 6. Domain-wall velocity in reduced coordinates for different
reduced temperatures Td/T and materials. The vertical dashed-dotted
line corresponds to the depinning threshold which separates the
creep regime (H/Hd < 1) from the depinning transition (H/Hd > 1).
The inclined dashed line corresponds to the linear flow regime
(v/vT = H/Hd ). The solid curve corresponds to the zero-temperature
depinning curve, Eq. (4). The gray surface area is the magnetic and
velocity ranges over which thermal effects are expected to contribute
to the velocity (and which corresponds to the range x < x̃ = 0.8 of
Fig. 5). At higher drive, the reduced velocity becomes independent
of temperature as reflected by the merging of velocity curves on the
solid curve. Eventually, velocity curves quit the universal depinning
transtion at a magnetic field Hu which depends on temperature and
material and undergo a crossover to the flow regime.

Pt/Co/Pt), thus bringing further evidence that the depinning
transition is well described by a unique universal function.

E. Thermal effects on the depinning velocity

The shape of the universal depinning function allows to
go beyond the usual asymptotic analysis and to address,
in particular, the question of the thermal rounding of the
depinning transition. Figure 6 presents a comparison of
velocity curves in reduced coordinates (v/vT vs H/Hd ) for
increasing values of the reduced temperature Td/T covering a
large range of values (9–172). For the creep regime (H/Hd <

1), the velocity presents a strong variation with temperature
associated to the thermal activated nature of the motion [see
Eq. (1)]. For the depinning transition, just above the depinning
threshold (H/Hd = 1), the thermal effects are still important
(see the gray area in Fig. 6). The range of magnetic field for
which thermal effects are relevant depends on the values of
Td/T which reflects the shape of the universal function g.

As discussed previously, thermal effects are expected to play a
role in the depinning transition only for x < x̃ ≡ 0.8 (with ỹ ≡
x̃/x0). Following Eqs. (6) and (7), this corresponds to H/Hd <

H̃/Hd = 1 + [x̃(T/Td )ψ ]1/β which is the upper magnetic field
boundary below which thermal effects are observed in the
depinning transition. Concomitantly, a velocity upper limit is
given by ṽ = vT x̃/x0. Figure 6 shows indeed that the reduced
velocity curves join the predictions of Eq. (4) for a ratio
H/Hd which decreases as Td/T increases. Moreover, for the
explored reduced temperature range, no more thermal effects
are observed above H/Hd ≈ 1.1. Above this limit, the re-
duced velocity displays explicit temperature independence as
reflected by the merging of the curves on predictions of Eq. (4).

The crossover between the depinning transition and the
flow regime is also highlighted in Fig. 6. The reduced upper
limit of the depinning transition Hu/Hd is found to depend on
temperature and to strongly differ between magnetic materials.
For Pt/Co/Pt, the ratio Hu/Hd varies between 1.1 and 1.3
over the reduced temperature range Td/T = 9−102 and it is
significantly smaller than for CoFeB (Hu/Hd = 3−4). The
variation of Hu/Hd and of xu (= 1.1−2.0) suggests that
the limit of universality Hu is not associated to a universal
phenomenon.

IV. CONCLUSION

In conclusion, the depinning transition of domain walls
driven by magnetic field in ultrathin films has been shown
to present a universal behavior. The latter is characterized
by a universal function of the rescaled field, temperature,
and velocity whose shape governs the domain-wall velocity
including its asymptotic scaling law behaviors. Moreover,
the proposed phenomenological model and a single set of
material- and temperature-dependent parameters (Hd, Td , and
vT ) are found to allow a self-consistent analysis of both the
depinning transition and the subthreshold thermally activated
creep regime. Our study thus paves the way for a unified and
systematic description of thermal effects in the driven glassy
dynamics of disordered elastic systems.
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