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Abstract

We study an infinite system of moving particles, where each particle is of

type A or B. Particles perform independent random walks at rates DA > 0

and DB > 0, and the interaction is given by mutual annihilation A+B → ∅.

The initial condition is i.i.d. with finite first moment. We show that this

system is site-recurrent, that is, each site is visited infinitely many times. We

also generalize a lower bound on the density decay of Bramson and Lebowitz

by considering a construction that handles different jump rates.

This preprint has the same numbering for sections, theorems, equations and figures

as the published article “Probab. Theory Related Fields 170 (2018), 587-615”

1 Introduction

In this paper we study an infinite system of moving particles, where particles can

be of two types, A or B. Particles of opposite type mutually annihilate when they

meet. Particles of type A, or simply A-particles, jump at rate DA > 0, and B-

particles jump at rate DB > 0. Several particles of the same type are allowed to

share a site, and they do not interact among themselves. We consider the question

of whether sites are visited infinitely often, and the related question of asymptotic

decay of particle density.
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Interest in long-time behavior of two-type annihilating particle systems, in partic-

ular with different jump rates, naturally stems from different areas of mathematics

and physics.1 These models have attracted much attention in the physics literature,

especially after it was observed that some chemical reactions with two diffusing reac-

tants exhibit anomalous kinetics in low dimensions. More precisely, the evolution of

the density of constituents depends strongly on the initial spatial fluctuations, and

for dimensions d < 4 its decay is slower than predicted by mean-field rate equations.

This was first noted in the seminal work [22], and described in more detail in [26].

Mathematically rigorous results came in a series of papers by Bramson and

Lebowitz [6, 7, 8, 9, 10]. They obtained the asymptotic density decay for uni-

form nearest-neighbor walks on Z
d with jump rates DA = DB = 1, and Poisson or

Bernoulli i.i.d. initial conditions. For different initial densities µA

0 < µB

0 , they showed

that

µA

t ∼















e−c
√
t, d = 1,

e−c t/ log t, d = 2,

e−c t, d > 3,

settling down conflicting predictions from theoretical physics. For equal initial den-

sities µA

0 = µB

0 they proved

µt ∼

{

t−d/4, d 6 4,

t−1, d > 4,

in agreement with heuristic arguments of spatial segregation for d 6 4 and mean-

field rate equations for d > 4. They also studied in detail the spatial structure of

the system in low dimensions and obtained its hydrodynamic limit [10].

The question of site recurrence for stochastic annihilating systems was first raised by

Erdős and Ney [13], and answered affirmatively for one-type systems in dimension

one [1, 20, 25]. At the same time, additive and cancellative systems became one of

the central topics in the field of interacting particle systems, and important progress

was made in their understanding [17, 14, 16, 15, etc]. The question of site recurrence

for one-type annihilating random walks in arbitrary dimension was answered by

Griffeath [14] for a particular class of initial conditions, and the i.i.d. case was settled

by Arratia [3]. Both approaches used an equivalence between one-type annihilating

random walks and coalescing random walks or voter model sets with odd parity.

However, available methods and techniques did not encompass the case of two-type

systems. In fact, as observed in [8], the analysis of the two-type particle annihilating

process is considerably more difficult due to the lack of comparison with an attractive

particle system. Another important mathematical challenge emerges when A and
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B-particles jump at different rates, causing most existing approaches for two-type

systems to break down.

In this paper we tackle the question of site recurrence for this model, and in the

course of the proof we also obtain a universal lower bound on density decay. Below

is a brief description of our results.

Our main theorem states that, almost surely, every site is visited infinitely often. The

jump rates DA and DB need not be equal (though one of them must be positive).

The underlying space where the system is defined can be any graph G baring a

group of automorphisms Γ such that, for every x, y ∈ G, there is π ∈ Γ for which

πx = y and πy = x. These graphs are called generously transitive graphs, see

Section 5. It is also assumed that, for some group Γ that makes G generously

transitive, p(πx, πy) = p(x, y) for all π ∈ Γ and x, y ∈ G. No assumptions are

made on the tail of the jump distribution p(o, z) as z → ∞. The initial condition

is assumed to be an i.i.d. field with finite first moment. Moreover, the lower bound

µt >
c
t
proved in [8] is extended to the same level of generality.

Theorems will be stated and proved progressively, and the last result encompasses

the previous ones. Each proof introduces an extra layer of difficulty and requires

new ideas. Formal statements, as well as comments on the methods and ideas of

the proofs, appear at the beginning of each section.

In Section 2 we present a graphical description of the process. This particular

construction will be used throughout the rest of the paper. We also state properties

of mass conservation and monotonicity.

In Section 3 we assume that G = Z
d, p(x, x+ y) = p(o, y) = p(o,−y), and that the

jump rates are DA = DB = 1. We first revisit the proof of µt >
c
t
from [8], and then

push the argument in order to obtain site recurrence.

1Models with mutual annihilation were originally introduced in chemical physics for the study

of radiation-chemical processes in polymers. It was proposed in [19] that a radical may move

along a polymer chain, and that the act of recombination takes place when two migrating radicals

encounter one another. A diffusive mechanism for the motion of radicals was proposed in [23], and

a kinetic equation describing concentration of free radicals as function of the time was derived.

The same model served as a prototype of multi-type diffusion-limited chemical reactions with

annihilation or inert compound outcome [4, 22], and as caricature modeling particle-antiparticle

annihilation of superheavy magnetic monopoles in the very early universe [26].

Our motivation comes from the study of driven-dissipative lattice gases which undergo absorbing-

state phase transitions. The authors arrived to the present model as a caricature of a system

starting from an active state with critical density [12, 24]. The A-particles should correspond to

regions that are slightly supercritical due to fluctuations, whereas B-particles represent slightly

subcritical regions. Surprisingly enough, some of the techniques developed in this paper have been

applied with success in the study of the original model [11].
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In Section 4, we prove µt >
c
t
and site recurrence for the general case 0 6 DB < DA.

The previous construction is replaced by a new one, which is suitable to handle

different jump rates. This way the argument from Section 3 can be generalized

to this setting. Site recurrence for DB = 0 is shown separately, via a re-sampling

technique.

In Section 5 we extend the previous arguments to generously transitive graphs.

These include uniform nearest-neighbor walks on Z
d, regular trees, Cayley graphs,

as well as products thereof.

The proofs translate without significant modifications to multi-type systems, as well

as to one-type systems on generously transitive graphs.2

Finally, proofs of well-definedness of the graphical construction, mass conservation,

monotonicity, ergodic properties of random walks, and 0 -1 laws, are postponed to

Appendix A.

2 Graphical construction

In this section we give an explicit construction of the system described informally

in the Introduction. This construction will be used in the rest of the paper in order

to prove properties thereof.

Let DA > 0 and DB > 0 denote the jump rates. For simplicity we consider the

graph Z
d and a jump distribution p : Zd×Z

d → [0, 1] satisfying p(x, x+y) = p(o, y)

for all x and y, where o denotes the origin. What follows still holds true for any graph

having a transitive unimodular group of automorphisms under which the transition

kernel p(·, ·) is diagonally invariant.

The evolution will be denoted ξ = (ξt)t>0, where ξt ∈ Z
Z
d

for t > 0, such that

ξt(x) = k means that k particles of type A are present at site x at time t, and

ξt(x) = −k means that k particles of type B are present. We assume that (ξ0(x))x∈Zd

is i.i.d. with marginal ν, where ν is a given distribution on Z with finite first moment.

We denote by ξxy the configuration obtained from ξ after an A-particle jumps from

2In multi-type systems particles are of types A1, A2, . . . , AM , and jump at rate 1 according

to a generously transitive transition kernel p(·, ·). Interaction is given by Ai + Aj → ∅ for any

i 6= j. Each site initially contains one particle of type Ai with probability p

M
and no particles with

probability 1− p, independently of other sites. In the one-type system the interaction is given by

A+A → ∅ and the initial condition is i.i.d. Bernoulli. The proofs given in the next sections for site

recurrence work in these settings. For the one-type system, there is a simpler and more general

proof in [5].
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x to y or a B-particle jumps from y to x, which is given by

ξxy(z) =















ξ(x)− 1, z = x,

ξ(y) + 1, z = y,

ξ(z), otherwise.

The formal generator is given by

Lf(ξ) =
∑

x,y

DA[ξ(x)]
+p(x, y)

(

f(ξxy)− f(ξ)
)

+DB[ξ(x)]
−p(x, y)

(

f(ξyx)− f(ξ)
)

.

Below we describe an explicit construction of this process, where the number of

particles per site and the putative trajectory of each particle prior to annihilation are

sampled beforehand. Later on we will show that such construction is well-defined.

From general results in [2], there exists a unique process (ξt)t>0 corresponding to the

above generator. Moreover, this is a Feller process with respect to a topology that

is weak enough so that the probability of any local event3 can be approximated by

taking a system that starts without particles outside a large enough box. Therefore,

any construction given by the limit of finite systems whose particles interact accord-

ing to the previous description will yield a process with the same distribution. We

insist on using this particular construction which handles infinitely many particles

simultaneously, because it allows the use of re-sampling in Section 4.4, and has good

spatial ergodicity properties that lead to a simple proof of Lemma 2 below with its

numerous consequences, including 0 -1 Laws.

So let us describe the construction. Each A-particle is identified by a label (x, j) for

1 6 j 6 ξ0(x), and each B-particle by a label (x, j) for ξ0(x) 6 j 6 −1. For each

x ∈ Z
d and j ∈ Z

∗ = Z \ {0}, let Sx,j = (Sx,j
t )t>0 be a continuous-time random walk

starting at x which jumps according to the transition kernel p(·, ·), and whose jump

rate is DA for j > 0 and DB for j < 0, independent over x and j. Moreover, let hx,j

be independent, uniform on [0, 1]. We call (ξ0(x))x∈Zd the initial condition, and refer

to the pair (S, h) =
(

(Sx,j)x∈Zd,j∈Z∗, (hx,j)x∈Zd,j∈Z∗

)

as the instructions. These fields

are sampled independently.

To each particle (x, j) we assign a putative trajectory Sx,j and a braveness hx,j.

Particles follow their putative trajectory as time evolves, until they are annihilated.

When a particle jumps on a site occupied by particles of the opposite type, it

mutually annihilates with the bravest one.

Let M(x, j, x′, j′, z, t) = M(x′, j′, x, j, z, t) denote the event that particle (x, j) and

(x′, j′) are present in ξ0 and that they mutually annihilate at site z during [0, t].

3An event is “local” if its occurrence is determined by
(

ξt(x)
)

|x|6M,t6M
for some M < ∞.
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We need to show that this construction is well-defined. That is, we need to show

that, almost surely, for each x, j, x′, j′, z, and t, when determining whether or

not M(x, j, x′, j′, z, t) occurs, it is possible to decide its occurrence from the initial

condition and instructions.

Lemma 1. For any distribution of the initial condition ξ0 satisfying

sup
x∈Zd

E|ξ0(x)| < ∞,

the above construction is a.s. well-defined and translation covariant.

Proof. Postponed to Appendix A.

Let

M(x, j, t) =
⋃

x′,z∈Zd,j′∈Z∗

M(x, j, x′, j′, z, t)

denote the event that particle (x, j) has been annihilated by time t, and let

V (x, j, t) = [1 6 j 6 ξ0(x) or ξ0(x) 6 j 6 −1] \M(x, j, t)

denote the event that particle (x, j) is alive at time t. For x ∈ Z
d, write δx for the

field in Z
Z
d

given by δx(y) = 1 for y = x and 0 for y 6= x. So δx and −δx denote

respectively the configuration having a single A or B particle, located at site x. For

an event A, let 1A denote the corresponding indicator function. With this notation,

the configuration ξt at any time t is given by

ξt =
∑

x∈Zd

∑

σ=±1

∑

j∈N
σ · 1V (x,σj,t) · δSx,σj

t
.

Let Tx,j denote the time of annihilation of particle (x, j), with Tx,j = 0 in case (x, j)

is not present on ξ0. With this definition, Tx,j > t if and only if V (x, j, t) occurs.

We finish this section with the following facts.

Lemma 2 (Mass conservation). Let

µA

t = E[ξt(o)
+], µB

t = E[ξt(o)
−], ρt = µA

t + µB

t = E|ξt(o)|

denote the density of A-particles, B-particles and total density of particles per site

at time t. Let

Θt =
1
2

∑

x,x′,j,j′

P
[

M(x, j, x′, j′,o, t)
]
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denote the density of annihilations per site by time t. Then Θt is increasing in t and

µA

t − µA

0 = µB

t − µB

0 =
ρt − ρ0

2
= −Θt.

Therefore, µA

t − µB

t is constant in time. Moreover,

µA

t =
∑

j∈N
P
(

V (o, j, t)
)

and, in particular, P
[

To,1 < ∞
]

= 1 if an only if µA

t → 0 as t → ∞. Analogously

for −j instead of j and B instead of A.

Proof. Postponed to Appendix A.

Lemma 3 (Monotonicity). Suppose that ξ0(x) 6 ξ′0(x) for all x ∈ Z
d. Let ξ and ξ′

be a pair of two-type annihilating systems constructed using the same instructions.

Then

Tx,j 6 T ′
x,j and T ′

x,−j 6 Tx,−j for all x ∈ Z
d and j ∈ N.

In particular,

ξt(x) 6 ξ′t(x) for all x ∈ Z
d and t > 0.

Proof. Postponed to Appendix A.

3 Site recurrence and density decay on the lattice

In this section we prove the following:

Theorem 1. Let (ξt)t>0 be a two-type annihilating particle system on Z
d. Suppose

that the initial condition ξ0 ∈ Z
Z
d

is an i.i.d. field whose marginal ν on Z is non-

degenerate and has finite first moment. Suppose that the jump rates are DA = DB =

1 and that the jump distribution p(·, ·) satisfies p(x, x + y) = p(o, y) = p(o,−y).

Then ξ is site recurrent, i.e., P [ξt(o) = 0 eventually ] = 0.

We start constructing a copy ξm of the system ξ, which has the same distribution

as ξ and differs from it by a set of particles having small density m. This coupling

is used to obtain a lower bound for the particle density decay, as in [8]. We then

extend these arguments to handle additivity and correlations, finally proving site

recurrence.
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3.1 Coupled evolutions and tracers

We start with a coupling of initial conditions. From now on we assume that ν(0) > 0

and ν(1) > 0, and in Section 3.4 we consider general ν.

Lemma 4. For every m small enough depending on ν, there exists a coupling
(

ξ0(x), ξ
m
0 (x)

)

x∈Zd such that both (ξm0 (x))x∈Zd and (ξ0(x))x∈Zd are i.i.d. fields with

marginal ν and such that ξ0(x) − ξm0 (x) = ±1 with probability m
2

each, and

ξ0(x) = ξm0 (x) with probability 1−m, independently over x ∈ Z
d.

Proof. Let (ξ0(x))x∈Zd be i.i.d. with distribution ν, and let (Ux)x∈Zd be i.i.d. U [0, 1]

and independent of (ξ0(x))x∈Zd . Write

B1
r := {x ∈ Z

d : ξ0(x) = 0; Ux
6 r}

and

B2
r := {x ∈ Z

d : ξ0(x) = 1; Ux
6 r}.

Take r1 such that P[o ∈ B1
r1 ] =

m
2
and r2 such that P[o ∈ B2

r2 ] =
m
2
. Define

ξm0 (x) :=















1, x ∈ B1
r1
,

0, x ∈ B2
r2
,

ξ0(x) otherwise.

Then the pair
(

ξ0(x), ξ
m
0 (x)

)

x∈Zd has the desired properties.

We define two systems, ξ = (ξt)t>0 and ξm = (ξmt )t>0, using the same instructions

but initial conditions ξ0 and ξm0 given by the above lemma. Let A+
m := {x : ξm0 (x)−

ξ0(x) = +1}, A−
m := {x : ξm0 (x)− ξ0(x) = −1}, and Am := A+

m ∪ A−
m. In the sequel

we define a family of tracers which will keep track of the discrepancies between ξ

and ξm.

As a warm up, suppose that Am = A+
m = {x} consists of a single site x, and

A−
m = ∅. Imagine for instance ξ0(x) > 0 and ξm0 (x) = ξ0(x)+1. We define the tracer

Xx = (Xx
t )t>0 by following the difference between ξ and ξm due to the presence

of this extra particle. At t = 0 we have Xx
0 = x. Initially, Xx will follow the

trajectory of the extra A-particle on ξm, until it is annihilated by the collision with

a B-particle. After this time, the difference between ξ and ξm will persist, but it

will be transferred to another particle.

The particle being tracked by tracer Xx may be annihilated in ξm, and this can

happen in two ways. First case: the B-particle responsible for annihilation in ξm

8



remains alive in ξ. This happens if the annihilation is due to the tracked A-particle

jumping on a site occupied by B-particles, or a B-particle jumping on a site occupied

by the tracked A-particle alone. Second case: the same B-particle which annihilates

with the tracked A-particle in ξm annihilates simultaneously with some other A-

particle in ξ. This happens if the annihilation is due to a B-particle jumping on a

site occupied by several A-particles including the tracked one. In both cases, the

difference between ξm and ξ immediately after annihilation of the tracked A-particle

is now due to another particle’s presence: an extra B-particle present at ξ, or an

extra A-particle present at ξm, depending on the case. From this instant onwards,

the tracer Xx will follow this extra particle.

This procedure can be continued indefinitely. This difference will last for all times,

and we obtain (Xx
t )t>0 with the property that

ξmt − ξt = δXx
t

(1)

for all t > 0. Notice that (Xx
t )t>0 is distributed as a random walk with jump rate

DA = DB = 1 and jump distribution p(·, ·).

The tracer described above always corresponds to an extra A-particle in ξm or an

extra B-particle in ξ. We call this tracer a ⊕-tracer. Analogously, if we had assumed

that Am = A−
m = {x}, A+

m = ∅, ξm0 (x) > 0, and ξ0(x) = ξm0 (x)+ 1, we would end up

with a tracer that for all times corresponds to an extra A-particle in ξ or an extra

B-particle in ξm. Such a tracer is called a ⊖-tracer.

The next step is to define the set of tracers {Xx}x∈Am
in the case where Am is not a

singleton. The same construction is still well-defined, but it may happen that a given

tracer corresponds to a discrepancy only for a finite period of time. It occurs when

two tracers of opposite sign correspond respectively to two extra particles of opposite

types, both present in the same system and absent in the other, and these particles

mutually annihilate in that system. In this case the discrepancies disappear, and

both tracers are left with nothing to track. Another scenario is when two tracers of

opposite sign correspond respectively to two extra particles of the same type, one

of them present in ξ and the other in ξm, and they are simultaneously annihilated

by some particle of opposite type present in both systems. Again, in this case both

tracers are left with nothing to track. These are the only possible cases.

For convenience, once this happens to a given tracer, we extend its trajectory to

all times, by sampling a random walk independent of anything else. We say that a

tracer is active before such event, and wandering after that. Also, for convenience,

at t = 0 we start with one wandering tracer at sites x 6∈ Am. This way we get a

set {Xx}x∈Zd whose distribution is that of a set of independent walks. Observe that

9



each active tracer remains active at least until the first time when it meets an active

tracer of opposite sign.

Analogously to the case of a single tracer, we have

ξmt − ξt =
∑

σ=±

∑

y∈Aσ
m

σ 1[Xy active at time t] · δXy
t
. (2)

Finally, observe that the presence of an active tracer at site w at time t implies that

ξt(w) 6= 0 or ξmt (w) 6= 0.

3.2 Lower bound for density evolution

In this section we present an argument for the study of density decay that works in

any dimension.

Theorem 2 ([8]). Under the assumptions of Theorem 1,

ρt >
c

t

for all large enough t, where c > 0 is a universal constant.

We now prove the above result. The essence of the argument is taken from [8].

Assume that ν(0) > 0 and ν(1) > 0. In Section 3.4 we consider general ν. For t > 0,

we write Xz6 | Xy if Xz
s = Xy

s for some s ∈ [0, t], and Xz//Xy otherwise. Analogously

for Xz6 | w and Xz//w. Let (Y w
s )s>0 denote a random walk with jump rate 2 starting

at w. The main estimate is that, for any y ∈ Z
d,

P
[

Xz6 | Xy for some z ∈ Am \ y
]

6
∑

z∈Zd\y

P
[

z ∈ Am, X
z6 | Xy

]

= m
∑

z∈Zd\y

P
[

Xz −Xy6 | o
]

(3)

= m
∑

z∈Zd\y

P
[

Y z−y6 | o
]

= m
∑

z∈Zd\y

P [Y o6 | y − z] (4)

= mE [# new sites visited by Y o]

6 2mt.

Fix some δ2 < 1
2
, and for t > 0 let

m =
δ2

t
.
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Take t large enough such that m is sufficiently small for Lemma 4 to hold. Plugging

this into the previous estimate gives

P
[

Xz//Xy for all z ∈ Am \ y
]

> 1− 2δ2. (5)

Now notice that

P [ξt(o) 6= 0 or ξmt (o) 6= 0] 6 P [ξt(o) 6= 0] + P [ξmt (o) 6= 0] = 2 · P [ξt(o) 6= 0] 6 2ρt,

and thus

2ρt > P [Xy
t = o for some y ∈ Am and Xy active at time t]

> P [Xy
t = o for some y ∈ Am and Xz//Xy for all z ∈ Am \ y]

= P [Xy
t = o for unique y ∈ Am and Xz//Xy for all z ∈ Am \ y]

=
∑

y P [y ∈ Am, Xy
t = o, and Xz//Xy for all z ∈ Am \ y]

=
∑

y P [o ∈ Am, Xo

t = y, and Xz//Xo for all z ∈ Am \ o]

= P [o ∈ Am and Xz//Xo for all z ∈ Am \ o] , (6)

where the first two equalities hold because Xz//Xy implies that Xz
t 6= o.

Plugging (5) we get for t > δ2

2ρt > m (1− 2δ2) =
δ2(1− 2δ2)

t
,

proving the theorem with c = δ2(1
2
− δ2).

The above argument gives c = 1
16

for any dimension, any jump distribution and any

integrable initial distribution. It can be improved to c = 1
8
by using the fact that

⊕-tracers can only be canceled by ⊖-tracers and vice-versa. A mean-field heuristics,

which is supposed to be the worst case, gives c = 1.

3.3 Site recurrence

In the proof of Theorem 2 one gets a lower bound c
t
for the probability of finding

an active tracer at o at time t. We want to extend that argument and obtain a

constant lower bound for the probability of finding an active tracer at o at any time

before t. This, together with the following 0 -1 law, will imply the main result.

Lemma 5. P [ ξt(o) = 0 eventually ] = 0 or 1.

Proof. Postponed to Appendix A.
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We now prove Theorem 1 in the case when the transition kernel p(·, ·) yields a

transient random walk on Z
d.

The core of the argument is to obtain a lower bound for the probability of the event

Bt :=
[

an active tracer visits o during [0, t]
]

. (7)

We use the following decomposition:

P(Bt) > P
[

for some y ∈ Am, X
y6 | o and Xz//Xy for all z ∈ Am \ y

]

> P
[

Xy6 | o for a unique y ∈ Am, and Xz//Xy for all z ∈ Am \ y
]

= m
∑

y P
[

Xy6 | o, Xz//o and Xz//Xy for all z ∈ Am \ y
]

. (8)

By (5) we have P
[

Xz6 | Xy for some z ∈ Am \ y
]

6 2δ2, and an analogous argument

gives

P
[

Xz6 | o for some z ∈ Am \ y
]

6

6 mE [ number of sites visited by Xo up to time t ] 6 m(t+ 1) 6 2δ2

for t large enough.

When summing over y, we cannot afford loosing the additive factor of 2δ2 for

each y ∈ Z
d. We would like to deal with a multiplicative factor instead. How-

ever, in the occurrence of both events [Xy6 | o] and [Xy//Xz] there is a negative

correlation which we cannot handle. To work around this issue, we introduce the

following event. We say that the path Xy = (Xy
t )t>0 is good if

P

[

Xz//Xy for all z ∈ Am \ y
∣

∣

∣
Xy

]

> 1− δ.

The key observation is that (5) yields

P [Xy good] > 1− 2δ,

as δ · P [Xy bad ] 6 P
[

Xz6 | Xy for some z ∈ Am \ y
∣

∣Xy bad
]

· P [Xy bad ] 6 2δ2.

Now

P(Bt) >m
∑

y P
[

Xy good, Xy6 | o, Xz//o and Xz//Xy for all z ∈ Am \ y
]

=m
∑

y P
[

Xy6 | o, Xy good
]

×

E

[

P
[

Xz//o and Xz//Xy for all z ∈ Am \ y
∣

∣Xy
]

∣

∣

∣
Xy6 | o, Xy good

]

.

The last identity follows from the fact that both [Xy6 | o] and [Xy good] are Xy-

measurable. Notice that the conditional probability is only being integrated on a

12



subset of [Xy good], and thus by a simple union bound and translation invariance

we get

P(Bt) > m(1− δ − 2δ2)
∑

y P
[

Xy6 | o, Xy good
]

= m(1− δ − 2δ2)
∑

y P
[

Xo6 | y, Xo good
]

(9)

= m(1− δ − 2δ2) E
[

# sites visited by Xo during [0, t], Xo good
]

. (10)

Let Rt denote the number of sites visited by a random walk during [0, t]. Since the

walk is transient, writing γ = P[Xo never returns to o] we have that Rt

t
→ γ in L1.

Hence, for t large enough

P(Bt) > m(1 − δ − 2δ2) γ t (1− 2δ − δ) = γ δ2 (1− δ − 2δ2) (1− 3δ). (11)

Choosing δ = 1
4
and writing ǫ = γ

103
, the above estimate yields P(Bt) > ǫ for all t

large enough.

Finally, let us check that this uniform lower bound implies site recurrence. For T > 0

fixed, consider the decomposition

Bt = B
T−
t ∪ B

T+
t ,

where B
T+

t and B
T−

t denote the events that an active tracer visits o respectively

during [T, t] and during [0, T ]. Now notice that

P(BT−
t ) 6 mE[RT ] 6

δ2T

t
→ 0 as t → ∞,

and therefore

ǫ 6 lim inf
t→∞

P(BT+
t ) 6 2P[ξs(o) 6= 0 for some s > T ] −→

T→∞
2P[o visited i.o. in ξ].

With Lemma 5 this finishes the proof for the transient case.

Finally, suppose that the transition kernel p(x, y)x,y∈Zd yields a recurrent walk on Z
d.

We consider a coupling (ξ0, ξ
m
0 ) such that ξm0 (x) = ξ0(x) for all x 6= o and ξm0 (o)

is sampled independently of ξ0(o). We define the systems ξ and ξm using the same

evolution rules. Note that there is a positive probability that the initial conditions ξ0
and ξm0 differ at o by a single particle. On the occurrence of this event, the difference

between ξ and ξm will evolve according to a tracer Xo. By assumption, the tracer

is recurrent, and hence ξ(o) 6= ξm(o) infinitely often. By the 0 -1 law it follows that,

almost surely, o is visited infinitely often in ξ.

13



3.4 General initial distribution

We now drop the condition that ν(0) > 0 and ν(1) > 0. By assumption, the initial

distribution ν is non-degenerate, so there exist n ∈ Z and K ∈ N such that ν(n) > 0

and ν(n + K) > 0. In the sequel we indicate what changes in the previous proofs

suffice to accommodate this case.

The coupling of initial conditions is given as follows. Let

B1
r := {x ∈ Z

d : ξ0(x) = n; Ux
6 r}, B2

r := {x ∈ Z
d : ξ0(x) = n+K; Ux

6 r}.

As before, we take r1 such that P[o ∈ B1
r1 ] =

m
2
and r2 such that P[o ∈ B2

r2 ] =
m
2
,

and define

ξm0 (x) :=















n +K, x ∈ B1
r1
,

n, x ∈ B2
r2
,

ξ0(x), otherwise.

Let A+
m = B1

r1 , A
−
m = B2

r2 , and Am = A+
m ∪A−

m. Then

ξm0 − ξ0 =
∑

σ=±

∑

y∈Aσ
m

σK · δy.

At each site y ∈ A+
m there are K different ⊕-tracers, which we denote by Xy,j,

j = 1, . . . , K. Analogously, at each y ∈ A−
m there are K different ⊖-tracers, also

denoted by Xy,j, j = 1, . . . , K. As before we say that a tracer is active until the

time when it finds no particle left to track. Thus, for t > 0,

ξmt − ξt =
∑

σ=±

∑

y∈Aσ
m

K
∑

j=1

σ 1[Xy,j active at time t] · δXy,j
t

and the presence of an active tracer at site w at time t implies that ξt(w) 6= 0 or

ξmt (w) 6= 0. Recall that each tracer may only become wandering when it meets a

tracer of opposite sign. In particular it stays active at least until the first time when

it meets a tracer which started at a different site.

We now prove the lower bound for density decay under general initial conditions.

Following the proof of Theorem 2, a union bound on j gives

P
[

Xz,j6 | Xy,1 for some z ∈ Am \ y and j
]

6

K · P
[

Xz,16 | Xy,1 for some z ∈ Am \ y
]

6 2Kmt = 2δ2

if we take m = δ2

Kt
. Also, following the arguments of (6) we get

2ρt >
∑

y P
[

y ∈ Am, Xy,1
t = o, and Xz,j//Xy,1 for all z ∈ Am \ y and j

]

= P
[

o ∈ Am and Xz,j//Xo,1 for all z ∈ Am \ o and j
]

,

14



finishing the proof of Theorem 2 with c = δ2(1
2
− δ2)K−1. The term K−1 can be

eliminated, as we do after (14).

For Theorem 1, repeating the arguments between (8), (10), and (11) gives

P(Bt) > m
∑

y P
[

Xy,16 | o, Xz,j//o and Xz,j//Xy,1 for all z ∈ Am \ y and j
]

> m(1− δ − 2δ2) E
[

# sites visited by Xo,1 during [0, t], Xo,1 good
]

> m(1− δ − 2δ2) γ t (1− 2δ − δ) = γ δ2 (1− δ − 2δ2) (1− 3δ)K−1 > 0.

From this estimate the previous proof may be concluded along the same lines.

4 Distinct jump rates

In this section we prove the following:

Theorem 3. Let (ξt)t>0 be a two-type annihilating particle system on Z
d. Sup-

pose that the initial condition ξ0 ∈ Z
Zd

is an i.i.d. field whose marginal ν on Z

is non-degenerate and has finite first moment. Suppose that the jump rates are

0 6 DB 6 DA = 1 and that the jump distribution p(·, ·) satisfies p(x, x + y) =

p(o, y) = p(o,−y). Then there exists a universal c > 0 such that

ρt >
c

t

for all large enough t. Moreover, unless DB = 0 and µB

0 > µA

0 ,

P
[

ξt(o) eventually constant
]

= 0,

i.e., the system ξ is site recurrent.

We would like to implement the strategy of tracking differences between coupled

evolutions, as in Section 3. The challenge is to construct a coupling which saves the

previous strategy from breaking down. We want to do this by unraveling different

tracers from their dependence, while keeping some control on their trajectories.

4.1 Coupling evolutions via tracers

We are going to construct a coupling between two systems so that the trajectories

of the tracers are given a priori. We present this coupling first for DA = DB and

then for DA 6= DB.
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Assume that DA = DB = 1, and that the initial conditions ξ0 and ξm0 differ by

only one particle. The pair (ξ, ξm) constructed in Section 3 satisfies (1) and yields

(Xx
t )t>0, distributed as a random walk with jump rate 1. Let us consider an al-

ternative construction. Instead of obtaining Xx by following the tracked particle

until its annihilation, we sample Xx beforehand, and force the tracked particle to

follow Xx until its annihilation. Now the tracer is actually dragging the particle, but

to keep consistency with previous sections we still say that it is tracking it. When

the particle being tracked is annihilated, there is another particle which will carry

the difference between systems ξ and ξm. From that time on, this particle forgets

its instructions and follows the trajectory of the tracer (i.e., the tracer begins to

track/drag that new particle).

This alternative construction yields a coupled pair of systems (ξ, ξm) with the same

distribution and satisfying (1). Again, this is a ⊕-tracer, and for each time t it

corresponds to an extra A-particle in ξmt or an extra B-particle in ξt. The opposite

holds for a ⊖-tracer.

We now consider the case DA = DB but when ξ0 and ξm0 differ by infinitely many

particles, as given by Lemma 4. Again, this is well-defined, except that the presence

of two tracers of opposite sign at the same site may result in annihilations that leave

both of them with no particles to track. As before, we say that the tracer is active

before that time and wandering after that. This way we construct a pair (ξ, ξm)

satisfying (2) and differing at t = 0 on a random set Am, which is Bernoulli and has

intensity m.

Now suppose DA > DB > 0. We want a construction of Xy that retains a good

control on the set of sites visited by this path, which was used in the proof of

site-recurrence for equal jump rates, particularly in (9).

Let X y,j denote a triple
(

W y,j, T A
y,j , T

B
y,j

)

, where W y,j = (W y,j
n )n=0,1,2,... is a discrete-

time random walk with transition kernel p(·, ·) starting at y, T B
y,j ⊆ R+ is a Poisson

clock with intensity DB, independent of W
y,j, and T A

y,j ⊆ R+ is obtained by adding

an independent Poisson clock of intensity DA − DB to T B
y,j. The triples X y,j are

sampled independently over y and j.

For each y ∈ Am and each j = 1, . . . , K, the tracer Xy,j is defined by following the

steps prescribed by W y,j, and at each instant listening either to clock T A
y,j or T B

y,j ,

depending on whether it is tracking an A-particle or a B-particle. More precisely,

each time t ∈ T A
y,j when a new Poissonian mark is found, Xy,j moves to the next

position in the sequence (W y,j
n )n if the particle being tracked it is of type A, or if it

is of type B and t ∈ T B
y,j. If the particle being tracked is of type B and t ∈ T A

y,j \T
B
y,j ,

nothing happens.
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The rest of the construction is analogous to that described in Section 3. Particles

which are not being tracked move according to their respective instructions, which

are the same in systems ξ and ξm. When a tracked particle is annihilated, the tracer

starts to track another particle, unless there is a tracer of opposite sign at the same

site and the differences cancel, in which case both tracers may be left with no parti-

cles to track. We say that the tracer is active before that time, and wandering after

that. For completeness, after the tracer is no longer active it becomes wandering,

and it listens to one of the clocks, say T A
y,j. Also for completeness, at sites y 6∈ Am,

we launch K tracers, which are wandering for all t > 0.

Remark 1. With the above construction, every active ⊕-tracer corresponds to an

extra A-particle in ξm or an extra B-particle in ξ, and the opposite holds for ⊖-

tracers. The difference between ξm and ξ is given by (2). An active tracer remains

active at least until the first time when it meets a tracer of opposite sign. Finally, the

presence of an active tracer at site x at time t implies that ξt(x) 6= 0 or ξmt (x) 6= 0.

In order to obtain lower and upper bounds that will play the role of identity (9),

we define the paths Xy,j
± =

(

Xy,j
± (t)

)

t>0
by following the discrete path W y,j while

listening respectively to clocks T A
y,j and T B

y,j . This way we have
[

Xy,j
− 6 | w

]

⊆
[

Xy,j6 | w
]

⊆
[

Xy,j
+ 6 | w

]

for all w ∈ G. Moreover, Xy,j
± is distributed as a random walk with transition

kernel p(·, ·) and jump rate given respectively by DA and DB. Also, since the pairs

(Xy,j
+ , Xy,j

− ) depend only on the respective X y,j, they are independent over y and j,

and independent of Am.

We denote by P the underlying probability measure. This construction is well-

defined and yields a coupled pair of systems (ξ, ξm) having the desired distribution.

The proof is in the same spirit as that of Lemma 1, and will be omitted.

We will need yet another coupling. Recall that (4) was based on the fact that

Xz,1 −Xy,1 d
= Y z−y,

where Y w is distributed as a random walk of jump rate 2DA = 2DB = 2 starting

at w. The following construction intends to provide Xz,1 and Xy,1 simultaneously,

and still allow some control on the set of sites visited by Y yz := Xz,1 −Xy,1.

Let y and z be fixed. For all (x, j) ∈ Z
d×{1, . . . , K} except (y, 1) and (z, 1), we build

the tracer Xx,j using X x,j as above. The tracers Xy,1 and Xz,1 will be entangled, and

they are constructed from the quintuple Yyz = (Zyz, T A
y , T B

y , T A
z , T B

z ) as follows.

Let Zyz = (Zyz
n )n∈N0 be a discrete-time random walk that starts at Zyz

0 = z − y

and jumps according to p(·, ·). At all times, the tracer Xy,1 is listening either to
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clock T A
y or T B

y , depending on the state of the particle it is tracking. Analogously,

the tracer Xz,1 is listening either to clock T A
z or T B

z . When a new Poissonian mark is

found at t ∈ T A
z , the tracer Xz,1 performs the next jump found in the sequence Zyz,

i.e., it jumps by Zyz
k+1 − Zyz

k if the particle being tracked is of type A or if it is of

type B and t ∈ T B
z . If the particle being tracked is of type B and t ∈ T A

z \ T B
z ,

nothing happens. Similarly, when a new Poissonian mark is found at t ∈ T A
y , the

tracer Xy,1 performs the opposite of the next jump found in the sequence Zyz, i.e.,

it jumps by Zyz
k −Zyz

k+1 if the particle being tracked is of type A or if it is of type B

and t ∈ T B
y . If the particle being tracked is of type B and t ∈ T A

y \ T B
y , nothing

happens. This way the difference Y yz is reproducing in continuous time the discrete

path prescribed by Zyz.

As before, each of Xy,1 and Xz,1 is active if it is actually tracking a particle, or else

it is wandering, in which case it listens respectively to clock T A
y or T A

z .

We define the path Y yz
+ =

(

Y yz
+ (t)

)

t>0
by following the discrete path Zyz and jumping

on T A
y ∪ T A

z , that is, it jumps when any of the clocks ring. This way we have

[Y yz6 | w] ⊆ [Y yz
+ 6 | w] .

Moreover, Y yz
+ is distributed as a random walk with transition kernel p(·, ·) and jump

rate 2. To indicate the use of this construction we denote the underlying probability

measure by P
yz. Notice that Remark 1 still holds for this construction.

4.2 Density decay

For brevity we introduce the notation P̃ = P( · | y ∈ Am), P̂ = P( · | y ∈ Am, z ∈ Am),

and P̂
yz = P

yz( · | y ∈ Am, z ∈ Am). Let Y
o

+ be a continuous-time random walk with
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jump rate 2 started at the origin. For any y ∈ Z
d, we have

P̃
[

Xz,j6 | Xy,1 for some z ∈ Am \ y and j
]

6

6 mK
∑

z∈Zd\y

P̂
[

Xz,1 −Xy,16 | o
]

(12)

= mK
∑

z∈Zd\y

P̂
yz
[

Y yz6 | o
]

6 mK
∑

z∈Zd\y

P̂
yz [Y yz

+ 6 | o]

= mK
∑

z∈Zd\y

P
[

Y o

+6 | y − z
]

= mK E
[

number of new sites visited by Y o

+ up to time t
]

6 2mK t.

Fix some δ2 < 1
2
, and for each large enough t let

m =
δ2

Kt
.

Plugging this into the previous estimate gives

P̃
[

Xz,j//Xy,1 for all z ∈ Am \ y and j
]

> 1− 2δ2. (13)

Again as before,

2ρt > P
[

o ∈ Am and Xz,j//Xo,1 for all z ∈ Am \ o and j
]

.

Plugging (13) we get for t large enough

2ρt > m (1− 2δ2) =
δ2(1− 2δ2)

Kt
, (14)

which would prove the theorem with c = δ2(1
2
− δ2)K−1.

Finally, let us eliminate the K−1 term. By symmetry,

2ρt = E
[

|ξt(o)|+ |ξmt (o)|
]

> E|ξmt (o)− ξt(o)| = 2E[ξmt (o)− ξt(o)]
+.

Hence

ρt > E
[

ξmt (o)− ξt(o)
]+

=

= E
[

number of active ⊕-tracers minus active ⊖-tracers at o at time t
]+

.
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Now observe that, if at time t the origin has a ⊕-tracer that has not yet met any

tracer with different starting point, then this ⊕-tracer must be active and there

cannot be a ⊖-tracer at o at time t. Therefore, continuing from the above lower

bound we get

ρt > E
[

#
{

(x, i) : y ∈ A+
m, X

y,i
t = o, Xz,j//Xy,i for all z ∈ Am \ y and j

}]

=
∑

y∈Zd

K
∑

i=1

P
[

y ∈ A+
m, X

y,i
t = o, Xz,j//Xy,i for all z ∈ Am \ y and j

]

= m
2
K

∑

y∈Zd

P
[

Xy,1
t = o, Xz,j//Xy,1 for all z ∈ Am \ y and j

∣

∣y ∈ A+
m

]

= m
2
K

∑

y∈Zd

P
[

Xo,1
t = y,Xz,j//Xo,1 for all z ∈ Am \ o and j

∣

∣

o ∈ A+
m

]

= m
2
K P

[

Xz,j//Xo,1 for all z ∈ Am \ o and j
∣

∣

o ∈ A+
m

]

>
m
2
K (1− 2δ2),

proving the lower bound with c = δ2(1
2
− δ2).

4.3 Site recurrence

We now prove site recurrence. We assume that DB > 0. The case DB = 0 is

considered in Section 4.4.

As in Section 3, we consider Bt given by (7), and show that P(Bt) > ǫ for some

ǫ > 0, for all t sufficiently large. From that, one obtains site recurrence by the same

reasoning as in Section 3.3.

Again, choose m = δ2

Kt
as above. By (13) we have

P̃
[

Xz,j6 | Xy,1 for some z ∈ Am \ y and j
]

6 2δ2

for t large enough, and an analogous argument gives

P̃
[

Xz,j
+ 6 | o for some z ∈ Am \ y and j

]

6 mK E
[

number of sites visited by Xo,1
+ up to t

]

6 mK(t + 1) 6 2δ2.

We say that Xy,1
− is good if P̃

[

Xz,j//Xy,1 ∀z ∈ Am \ y and j
∣

∣Xy,1
−

]

> 1 − δ. Notice

that by (13) we have P[Xy,1
− is good] = P̃[Xy,1

− is good] > 1 − 2δ. The probability

20



of Bt is estimated as follows.

P(Bt) >m
∑

y P̃
[

Xy,1
− 6 | o, Xy,1

− good, Xz,j
+ //o, Xz,j//Xy,1 for all z ∈ Am \ y and j

]

=m
∑

y P
[

Xy,1
− 6 | o, Xy,1

− good
]

×

× Ẽ

[

P̃

[

Xz,j
+ //o and Xz,j//Xy,1

for all z ∈ Am \ y and j

∣

∣

∣

∣

Xy,1
−

]

∣

∣

∣

∣

∣

Xy,1
− 6 | o, Xy,1

− good

]

.

As in Section 3, the conditional probability is only being integrated on a subset of

[Xy,1
− good], and Xy,1

− is independent of Xz,j
+ , thus by a simple union bound we get

P(Bt) > m(1− δ − 2δ2)
∑

y P
[

Xy,1
− 6 | o, Xy,1

− good
]

= m(1 − δ − 2δ2)
∑

y P
[

Xo,1
− 6 | y, Xo,1

− good
]

= m(1 − δ − 2δ2) E
[

# sites visited by Xo,1
− during [0, t], Xo,1

− good
]

.

As in Section 3 this gives, for t large enough,

P(Bt) > m(1− δ − 2δ2) γDB t (1− 2δ − δ) = δ2 γDB (1− δ − 2δ2) (1− 3δ)K−1.

Choosing δ = 1
4
and writing ǫ = DBγ

103K
, the above estimate yields P(Bt) > ǫ for all t

large enough. As shown in Section 3, this implies site recurrence.

If the transition kernel p(·, ·) yields a recurrent random walk on Z
d, the same argu-

ment given for DA = DB in the previous section works.

4.4 Fixed obstacles

We now prove site recurrence for the case DB = 0 and µA

0 > µB

0 (in the case µA

0 < µB

0 ,

there is a positive density of fixed B-particles which survive forever and the state

of the origin is eventually constant, being empty or containing B-particles. Hence,

in this case the system is not site-recurrent). The proof consists on showing that a

system which is not site recurrent necessarily satisfies µB

0 > µA

0 . The latter assertion

follows from the two propositions below.

Proposition 1. If the two-type annihilating system with fixed B-particles is not site

recurrent, then, with positive probability, ξt(o) = ξ0(o) 6 −1 for all t > 0.

Proposition 2. If, with positive probability, ξt(o) = ξ0(o) 6 −1 for all t > 0, then,

almost surely, every A-particle is eventually annihilated.

Proposition 1 implies that the density of B-particles does not vanish, that is,

limt µ
B

t > 0. On the other hand, by Proposition 2, every A-particle is eventu-

ally annihilated. Therefore, using Lemma 2, we get that the density of A particles
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satisfies limt µ
A

t = 0. Again by Lemma 2, µA

t −µB

t is constant in time, and therefore

µA

0 − µB

0 < 0.

Proof of Proposition 1. Suppose that the system is not site recurrent, i.e.,

P[o is visited infinitely often] < 1.

This implies that, with positive probability, the set of A-particles which visit o is

finite. Thus, there exist r ∈ N and x1, . . . , xr ∈ Z
d, such that P(A ) > 0, where A

denotes the event that only particles starting at x1, . . . , xr visit o and these sites

contain no B-particles.

Consider a pair of two-type annihilating systems (ξ, ξ′) constructed as follows. We

sample the same instructions for ξ and ξ′. Let ξ0 be sampled as an i.i.d. field with

marginal ν. Take ξ′0(x) = ξ0(x) for x 6∈ {o, x1, . . . , xr}. For x ∈ {o, x1, . . . , xr},

sample ξ′0(x) independently with marginal ν. Let us consider the events

[

A occurs for ξ′
]

and
[

ξ0(xi) 6 0 for i = 1, . . . , r, and ξ0(o) 6 −1
]

.

Suppose that both of the above events occur. Then all A-particles which visit the

origin in ξ′ are absent in ξ0. Recalling that the systems share the same instructions,

by Lemma 3 the lifetime of other A-particles can only decrease compared to ξ′, and

therefore no A-particle can ever visit o in the system ξ. Since ξ0(o) 6 −1, in the

system ξ the site o does contain B-particles and they are never annihilated.

On the other hand, the events
[

A occurs for ξ′
]

and
[

ξ0(xi) 6 0 for i =

1, . . . , r, and ξ0(o) 6 −1
]

are independent, and they both have positive probability.

Hence the probability that ξt(o) = ξ0(o) 6 −1 for all t is positive.

Proof of Proposition 2. Since the law of the system is invariant under translations

and under permutations of the labels of particles initially present at the same site,

it suffices to show that, almost surely on the event [ξ0(o) > 1], particle (o, 1) is

eventually annihilated.

Consider a pair (ξ, ξ′) of two-type annihilating systems constructed as follows. The

initial condition is the same for ξ and ξ′ and the instructions are the same except

for the trajectory assigned to the first A-particle (o, 1) possibly present at o, which

is chosen independently for ξ and ξ′.

Define

B = {x ∈ Z
d : ξ′t(x) = ξ′0(x) 6 −1, for all t > 0},

that is, B is the set of sites that initially contain at least one B-particle and that

are never visited by A-particles in the system ξ′. Since B is a translation co-variant
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function of initial conditions and instructions, which, in turn, are distributed as a

product measure, it follows that B is ergodic under every translation on Z
d. By

assumption, the set B has positive density.

Note that, on the event [ξ′0(o) > 1], the system ξ is obtained from ξ′ by deleting the

first A-particle at o and then placing a new one, with an independent trajectory,

which we denote by So,1. By Lemma 3, this deletion cannot cause sites in B to

be visited. On the other hand, the walk So,1 is independent of B. Therefore, by

Lemma 6 below, So,1 must hit the set B at some time t at some site x ∈ B. Since x

contains at least one B-particle and is never visited by other particles rather than

(o, 1), the first A-particle at o in the system ξ is either annihilated before time t, or

it is annihilated at x at time t.

Lemma 6. Let p(·, ·) be a transition kernel on Z
d satisfying p(x, x+ y) = p(o, y) =

p(o,−y). Let B ⊂ Z
d be a random set, whose distribution is ergodic and invariant

with respect to translations. Let (Xn)n∈N0 be a random walk on Z
d which starts at o

and jumps according to p(·, ·), and independent of B. Then almost surely X hits B

infinitely often.

Proof. Postponed to Appendix A.

5 Generously transitive graphs

Let G be a transitive, connected graph of finite degree, and let o denote an arbitrary

site ofG. We say thatG is generously transitive4 if there is a group of automorphisms

Γ of G such that, for all x, y ∈ G there exists π ∈ Γ satisfying πx = y and πy = x.

Let p : G×G → [0, 1] be a transition kernel. Take Γp as the set of automorphisms π

of G such that p(πx, πy) = p(x, y) for all x, y ∈ G. We say that p is reflectable if

the group Γp makes G a generously transitive graph.

Generously transitive graphs are for instance, regular trees, finite complete graphs,

and products of these, such as slabs with periodic boundary conditions. Examples

of reflectable walks include the uniform nearest-neighbor walk, or any walk whose

transition probability depends only on the distance.

4A graph G being generously transitive is stronger than being unimodular, and it is neither

stronger nor weaker than being Cayley. An example of a graph that is generously transitive but

not Cayley is the product P ×Z, where P is the Petersen graph. Cayley graphs of Abelian groups

are generously transitive. An example of a graph that is not generously transitive but is Cayley is

the free product Z2 ∗ Z3.
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To avoid degenerate cases we assume that the sets

Cx = {w ∈ G : ∃n ∈ N0, p
n(x, w) > 0} (15)

are infinite. In this section we prove the following:

Theorem 4. Let (ξt)t>0 be a two-type annihilating particle system on a generously

transitive graph G. Suppose that the initial condition ξ0 ∈ Z
G is an i.i.d. field whose

marginal ν on Z is non-degenerate and has finite first moment. Suppose that the

jump rates are 0 6 DB 6 DA = 1 and that the jump distribution p(·, ·) is reflectable.

Then there exists a universal c > 0 such that

ρt >
c

t

for all large enough t. Moreover, unless DB = 0 and µB

0 > µA

0 ,

P
[

ξt(o) eventually constant
]

= 0,

i.e., the system ξ is site recurrent.

We will not present a self-contained proof. Assuming that the reader has gone

through the previous sections, we will focus on the parts of the proofs where the

structure of Zd was used, and replace them accordingly. The most delicate part,

which we will do in detail, is the construction of a pair of entangled tracers, and

verifying conditions for these tracers to meet in finite time.

By assumption, the distribution of (ξ0, S, h) is Γp-invariant. Moreover, the construc-

tion of the system from (ξ0, S, h) is Γp-covariant. Since Γp makes G generously tran-

sitive, it is a unimodular group, and thus proofs based on mass-transport principle

remain valid. Since by assumption Cx is infinite, proofs based on ergodicity remain

valid as well. In particular, Lemmas 1–6 hold in this setting. See Appendix A.

The coupling (ξ, ξm) described in Sections 3 and 4 can be defined in the present

setting. Again, the difference between ξ and ξm is given by a family of tracers

(Xx,j)x∈G,j=1,...,K , and relation (2) holds.

In the proofs of Theorems 1, 2, and 3, there are a few passages where a sum over Zd

is rewritten, such as (4) and (9). The desired identity follows from re-indexing

the sum or, alternatively, by keeping the same indexes and using invariance under

reflections. In these places we can keep the indexes and consider, for each term in

the sum, an automorphism π ∈ Γp which swaps o for y, z, or z − y.

The weak law of large numbers for the range of the walk used to obtain (11) holds

for transient random walks on generously transitive graphs whose transition kernel

is reflectable. This follows from the argument presented in [18, §6.2.1].
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The step that has no immediate analogue is [Xy6 | Xz] = [Xz −Xy6 | o], used in (3)

and (12), together with the fact that Xz −Xy is a process that jumps according to

p(·, ·). For a general graph G the subtraction Xz −Xy is not even defined.

We want a representation of Xy and Xz that provides a treatable characterization

of the event [Xz6 | Xy]. The construction below provides a process Y yz = (Y yz
t )t>0

which jumps according to p(·, ·), and with the property that d(Xz
t , X

y
t ) = d(Y yz

t , z).

In particular, [Xz6 | Xy] = [Y yz6 | z].

The main step is to find a coupling at the discrete-time level. Let Z = (Zn)n∈N0 be

a discrete-time random walk on G starting at Z0 = y with transition kernel p(·, ·).

Let ℓ = (ℓ1, ℓ2, ℓ3, . . . ) ∈ {1, 2}N and take ℓ0 = 1.

We will construct a pair of processes (W y
n )n∈N0 and (W z

n)n∈N0 with W y
0 = y and

W z
0 = z, satisfying the following properties. First, d(W y

n ,W
z
n) = d(Zy

n, z) for all

n ∈ N0. Second, the conditional distribution of (W y
n+1,W

z
n+1) given (W y

i ,W
z
i )i6n

and (ℓi)i6n+1 is given by p(W y
n , ·)⊗ δW z

n
if ℓn+1 = 1 and δW y

n
⊗ p(W z

n , ·) if ℓn+1 = 2.

The role of ℓn here is to indicate which of the walks is going to jump.

Let us describe the construction. For each x, w ∈ G, fix some πx,w ∈ Γp such that

πx,wx = w and πx,ww = x. At step n = 0 we take

Z0 = Z, z0 = z, W y
0 = Z0

0 = y, W z
0 = z0 = z.

For n ∈ N, take

πn =

{

Id, ℓn = ℓn−1,

πZn−1
n−1 ,zn−1, ℓn 6= ℓn−1.

Take

Zn = πnZn−1 and zn = πnzn−1

and

W y
n =

{

Zn
n , ℓn = 1,

zn, ℓn = 2,
W z

n =

{

zn, ℓn = 1,

Zn
n , ℓn = 2.

The first property is immediate. Indeed, writing πn! = πn · · ·π1, we have

d(W y
n ,W

z
n) = d(Zn

n , zn) = d(πn!Z0
n, π

n!z0) = d(Zn, z).

For the second property, assume that ℓn+1 = 1. The case ℓn+1 = 2 is analogous.

If ℓn = 1, it means that πn+1 is the identity and W z
n+1 = zn+1 = zn = W z

n . More-

over, W y
n = Zn

n , and W y
n+1 = Zn+1

n+1 = Zn
n+1. Now Zn = πn!Z, and the conditional
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distribution of Zn+1 given Z1, . . . , Zn, is p(Zn, ·). Since π1, . . . , πn ∈ Γp, the con-

ditional distribution of Zn
n+1 = πn!Zn+1 given Z1, . . . , Zn and ℓ1, . . . , ℓn is given by

p(πn!Zn, ·), which in turn equals p(W y
n , ·).

If ℓn = 2, it means that πn+1 = πZn
n ,zn and W z

n+1 = zn+1 = πZn
n ,znzn = Zn

n = W z
n .

Moreover, W y
n = zn = πZn

n ,znZn
n = πZn

n ,znπn!Zn and W y
n+1 = Zn+1

n+1 = πZn
n ,znZn

n+1 =

πZn
n ,znπn!Zn+1. As in the previous case, the conditional distribution of Zn+1 given

Z1, . . . , Zn is p(Zn, ·). Again, πZn
n ,znπn! ∈ Γp, and thus the conditional distribution

of Zn
n+1 = πZn

n ,znπn!Zn+1 given Z1, . . . , Zn and ℓ1, . . . , ℓn is given by p(πZn
n ,znπn!Zn, ·),

which in turn equals p(W y
n , ·).

We finally describe the continuous-time construction using the above one. This is

the last missing step for Theorem 4 to be proved along the same lines as Theorem 3.

Let y and z be fixed. Sample a quintuple Yyz = (Z, T A
y , T B

y , T A
z , T B

z ), where Z =

(Zn)n∈N0 is a random walk starting at Z0 = y and jumping according to p(·, ·), and

the clocks are given as in Section 4. As before, the entangled tracers Xy,1 and Xz,1

will be constructed from this quintuple.

The sequences (ℓn)n∈N, (W
y
n )n∈N, and (W z

n)n∈N will be defined dynamically. Starting

with n = 0, define ℓ0, W
y
0 , and W z

0 as above. Let the tracers Xy,1 and Xz,1 start at

positions y and z and listen to the appropriate clock, as in Section 4. When one of

these tracers is supposed to jump due to a clock ring, we increment the value of n,

and take ℓn as 1 or 2 depending on whether Xy,1 or Xz,1 is going to jump. Knowing

the value of ℓn we can define W y
n and W z

n , which will be the new positions of Xy,1

and Xz,1. Carrying this procedure indefinitely, we obtain a sequence ℓ ∈ {1, 2}N

As in Section 4, we define the path Y yz
+ =

(

Y yz
+ (t)

)

t>0
by following the discrete

path Zyz and jumping on T A
y ∪ T A

z , that is, it jumps when any of the clocks ring.

So again we have

[Y yz6 | w] ⊆ [Y yz
+ 6 | w] .

This finishes the construction of the entangled tracers.

A Postponed proofs

As mentioned at the beginning of Section 2, the construction was described for Zd

with p(x, x+y) = p(o, y), but works for any graph G having a transitive unimodular

group of automorphisms Γ such that p(x, y) = p(πx, πy) for any π ∈ Γ and x, y ∈ G.

We present the proofs for this setting.

During this appendix we will make use of the mass transport principle, which we
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now briefly recall, referring to [21, §8] for details. We say that f : G × G → R is

diagonally invariant under Γ if f(x, y) = f(πx, πy) for all x ∈ G and π ∈ Γ. Under

our assumption that Γ is unimodular, we can apply [21, Corollary 8.8] which says

that
∑

y∈G
f(x, y) =

∑

y∈G
f(y, x) (16)

for all x ∈ G. Later on we will assume that Γp makes G generously transitive, which

implies that it is unimodular so

Lemma (Lemma 1 restated). Under the above assumptions, the construction de-

scribed before Lemma 1 is well-defined and is Γp-covariant.

Proof. Let B(w, n) := {y ∈ G : d(w, y) 6 n}. Take ξn0 = ξ0 · 1B(o,n), that is, the

initial condition ξ0 with all particles outside B(o, n) deleted. Consider the truncated

system given by (ξn0 , S, h). The truncated system is well-defined, since it contains

finitely many particles.

Define T n
y,j as the time of annihilation of the particle (y, j) in this system. We set

T n
y,j = 0 if the particle (y, j) is initially absent and T n

y,j = ∞ if the particle survives

forever. Notice that the history of particle (y, j) can be reconstructed from Sy,j

and T n
y,j . We will show that, almost surely, T n

y,j = T m
y,j for all m and n large enough.

As a consequence, the construction of the full system can be defined as the limit of

truncated systems as n → ∞.

Recall from Section 2 that the difference between two systems which share the same

instructions but have different initial conditions can be followed by a set of tracers.

Let (Xn,x,i)x,i denote the set of tracers that keep track of the differences between

ξn and ξn+1, where x ranges over G and i ranges over {1, . . . , |ξn+1
0 (x) − ξn0 (x)|}.

Denote by RT (X
n,x,i) the set of sites visited by Xn,x,i

t during t ∈ [0, T ]. Now notice

that T n
y,j ∧ T may differ from T n+1

y,j ∧ T only if some of these tracers intersects Sy,j

before time T . Therefore we have, for any L > 0,

P
[

T n
y,j ∧ T 6= T m

y,j ∧ T for infinitely many (m,n)
]

6 P[RT (S
y,j) 6⊆ B(o, L)] +

+ P
[

infinitely many tracers Xn,x,i visit B(o, L) by time T
]

. (17)

Let Xx denote a random walk of jump rate DA starting at x and jumping according
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to p(·, ·) and RT (X
x) its range up to time T . For all L ∈ N

∑

n∈N
P
[

∃x ∈ ∂+B(o, n), i 6 |ξ0(x)| : RT (X
n,x,i) ∩ B(o, L) 6= ∅

]

6
∑

n∈N

∑

x∈∂+B(o,n)

∑

i>1

P
[

|ξ0(x)| > i
]

P
[

RT (X
x) ∩ B(o, L) 6= ∅

]

=
∑

x∈G
E
[

|ξ0(x)|
]

P[RT (X
o) ∩ B(x, L) 6= ∅]

6 sup
x∈G

E
[

|ξ0(x)|
]

∑

x∈G
P[RT (X

o) ∩ B(x, L) 6= ∅] (18)

6 sup
x∈G

E
[

|ξ0(x)|
]

E[#{y ∈ G : d(RT (X
o), y) 6 L}]

6 sup
x∈G

E
[

|ξ0(x)|
]

|B(o, L)| E
[

|RT (X
o)|

]

6 sup
x∈G

E
[

|ξ0(x)|
]

|B(o, L)| DAT < ∞.

Hence, by virtue of the Borel-Cantelli lemma the last term in (17) is zero. On the

other hand, P[Rt(S
y,j) 6⊆ B(o, L)] → 0 as L → ∞. Therefore,

P[T n
y,j ∧ T = T m

y,j ∧ T for m and n large enough] = 1.

We have shown that the full system can be defined as the limit of truncated sys-

tems (ξn0 , S, h) having null initial condition outside B(o, n).

We need to show that this construction is Γp-covariant, where Γp is the group of

automorphisms defined in the begging of Section 5. We will show that the limit is

the same if instead we take truncations on B(w, n), for any fixed w ∈ G. Let w ∈ G

be fixed. Take ξ̃n0 = ξ0 · 1B(w,n), that is, the initial condition ξ0 with all particles

outside B(w, n) deleted. Consider the truncated system given by (ξ̃n0 , S, h). By the

above argument, the limit of these truncated systems is well-defined.

Let y ∈ G and j ∈ Z
∗. We want to show that P[T̃y,j = Ty,j] = 1. It is enough to

show that P[T n
y,j ∧ T 6= T̃ n

y,j ∧ T ] → 0 as n → ∞, for any fixed T > 0.

Let (Xn,x,i)x,i be the set of tracers which keep track of the differences between ξn

and ξ̃n, where x ranges over B(o, n)△B(w, n) and 1 6 i 6 |ξ0(x)|. As before, T
n
y,j∧T

may differ from T̃ n
y,j ∧ T only if one of such tracers intersects Sy,j before time T .

Therefore, for any L > 0,

P[T n
y,j ∧ T 6= T̃ n

y,j ∧ T ] 6

6 P[RT (S
y,j) 6⊆ B(o, L)] +

∑

x

E
[

|ξ0(x)|
]

P[RT (X
x) ∩ B(o, L) 6= ∅],
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where the sum is over x ∈ B(o, n)△B(w, n). As in the previous argument, the last

term is bounded by

sup
x∈G

E
[

|ξ0(x)|
]

∑

B(o,n)△B(w,n)

P[RT (X
o) ∩ B(x, L) 6= ∅] 6

6 sup
x∈G

E
[

|ξ0(x)|
]

∑

B(o,n−d(o,w))c

P[RT (X
o) ∩ B(x, L) 6= ∅].

Since (18) is finite and B(o, n−d(o, w))c→∅, the above quantity vanishes as n → ∞.

Finally,

lim sup
n

P[T n
y,j ∧ T 6= T̃ n

y,j ∧ T ] 6 P[RT (S
y,j) 6⊆ B(o, L)] → 0 as L → ∞,

finishing the proof.

Proof of Lemma 2. Let ft(x, y) =
∑

i,j∈N,z∈G P[M(x, i, z,−j, y, t)] denote the ex-

pected number of particles of type A which started at x and which have been

annihilated at y up to time t. Then
∑

x∈G ft(x,o) equals the expected number

of particles of type A which have been annihilated at o up to time t. This, together

with the fact that each annihilation at y involves one particle of type A, yields

∑

x∈G
ft(x,o) = Θt. (19)

On the other hand,
∑

y∈G ft(x, y) equals the expected number of particles of type A

started at x which have been annihilated up to time t, and therefore

µA
0 − µA

t =
∑

y∈G
ft(o, y). (20)

Since the jump distribution is invariant under Γp, ft is diagonally invariant, we can

apply (16) to (19) and (20) to obtain −Θt = µA
t −µA

0 . An analogous reasoning gives

that −Θt = µB
t − µB

0 . This proves the first part of the lemma.

To prove the second claim, let Ṽ (x, j, y, t) denote the event that particle (x, j) is

present at site y at time t. Let gt(x, y) =
∑

j∈N P[Ṽ (x, j, y, t)] denote the expected

number of A-particles which started at x and are present at y at time t. Then µA
t =

∑

x∈G gt(x,o) and
∑

j∈N P[V (o, j, t)] =
∑

y∈G gt(o, y). By arguments analogous to

those above, gt is diagonally invariant under Γp, and (16) yields the second part of

the lemma.

We do not restate Lemma 3, it suffices to replace Z
d by G.
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Proof of Lemma 3. For systems with finitely many particles, these monotonicity

properties are obvious. On the other hand, from the proof of Lemma 1, the real

system ξ, as well as the variables Tx,j, can be approximated by large finite systems.

The lemma follows from these two observations.

For the proof of Lemma 5, recall the definition of Cx from (15). Since we are

now assuming that p(·, ·) is reflectable, these sets split G into equivalence classes.

Moreover, πCx = Cπx for any π ∈ Γp and x ∈ G. Take

Γ′ = {π ∈ Γp : πo ∈ Co}.

Since the orbit of o under Γ′ is Co, which we are assuming to be infinite, and the

graphical construction is a Γ′-covariant function of (ξ0, S, h), whose distribution is

a Γ′-invariant product measure, it follows that the construction is Γ′-ergodic. See

section “Tolerance and Ergodicity” in [21].

Proof of Lemma 5. It suffices to show that Co has probability 0 or 1, where Cx

denotes the event [site x is visited by A-particles infinitely many times]. The same

proof works for B-particles in case DB > 0.

Suppose that the random walk with transition kernel p(·, ·) is transient. For finite

sets ∅ = B0 ⊆ B1 ⊆ · · · with Bn ↑ G, let ξn0 = ξ0 · 1Bc
n
. Write C

n
o
for the occurrence

of Co in the system given by (ξn0 , S, h), so that C 0
o
= Co. Notice that the system given

by (ξn0 , S, h) depends only on (ξ0(x), S
x,·, hx,·)x 6∈Bn

, because the particles starting

in Bn are deleted. Therefore lim supn C n
o
is a tail event, and it suffices to show that

P(C n
o
△C

n+1
o

) = 0 for all n.

To see why this is true, we look at the difference between ξn0 and ξn+1
0 . Similarly as

in Sections 2, 4, and 5, we consider a set of tracers (Xx,i)x,i, where x ranges over G

and i ranges over {1, . . . , |ξn+1
0 (x)− ξn0 (x)|}, and such tat

ξn+1
t − ξnt =

∑

x

∑

i

sgn[ξn+1
0 (x)− ξn0 (x)] · 1[Xx,i active at time t] · δXy

t
.

Now for the event C n
o
△C n+1

o
to hold, necessarily site o is visited by these tracers

infinitely often. But the tracers jump according the transition kernel p(·, ·), which

we are assuming to be transient and, since there are finitely many such tracers, we

deduce that P(C n
o
△C n+1

o
) = 0.

Now suppose that random walks are recurrent. We claim that Co a.s. implies

∩x∈CoCx. The converse implication is trivial. Since the latter event is Γ′-invariant,

it follows that its probability is either 0 or 1.
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It remains to prove the claim. Each time site o is visited by an A-particle, either

that particle is annihilated at o or it jumps to a site chosen according to p(o, ·). By

Lemma 2, E[number of annihilations at o] 6 µA

0 < ∞. Hence, infinitely many visits

to o almost surely imply infinitely many visits to any y such that p(o, y) > 0. By

induction on n, infinitely many visits to o almost surely imply infinitely many visits

to any y such that pn(o, y) > 0 for some n ∈ N0, proving the claim.

Lemma (Lemma 6 restated). If p(·, ·) is a reflectable transition kernel of G, B ⊆ G

is Γ′-ergodic and Xn is a random walk which starts at o and jumps according to

p(·, ·), independent of B, then, almost surely, X visits B infinitely often.

Proof. Write

qn = sup
k∈N0,w∈B

pk(Xn, w).

Since the set B is Γ′-ergodic with positive density, we have

P[q0 > 0] = P[B ∩ Co 6= ∅] = 1.

Now notice that the sequence (qn)n∈N is stationary (because X is independent of B),

and thus P[qn → 0] = 0. Hence, almost surely, there exists random δ > 0 such that

qn > 2δ infinitely often. Therefore, for each time n when qn > 2δ, there is a random

kn ∈ N0 such that P
[

Xn+k ∈ B
∣

∣X1, . . . , Xn;B
]

> δ. The claim then follows from a

conditional Borel-Cantelli lemma.
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