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Abstract

An important consideration for the development of biosensors is the adsorption of the bio 

recognition element to the surface of a substrate. As the first step in the immobilization process, 

adsorption affects most immobilization routes and much attention is given into the research of this 

process to maximize the overall activity of the bio sensor. The use of nanomaterials, specifically 

nanoparticles and nanostructured films, offers advantageous properties that can be fine-tuned for 

interaction with specific proteins to maximize activity, minimize structural changes, and enhance 

the catalytic step. In the biosensor field, protein-nanomaterial interactions are an emerging trend 

that span across many disciplines. This review addresses recent publications about the proteins 

most frequently used, their most relevant characteristics, and the conditions required to adsorb 

them to nanomaterials. When relevant and available, subsequent analytical figures of merits are 

discussed for selected biosensors. The general trend amongst the research papers allows 

concluding that the use of nanomaterials has already provided significant improvements in the 

analytical performance of many biosensors and that this research field will continue to grow.

1-INTRODUCTION

The adsorption of proteins to surfaces is a central concern for the rational design and 

application of materials[1]. As it will be later specifically addressed, the rate and strengths 

of the initial physical interactions between proteins and surfaces dictate (to a large degree) 

the final conformation, stability, and activity of such proteins. This issue, that plays a major 

role in determining the biocompatibility of materials[2, 3], can also dictate the analytical 

performance of almost every analytical device that uses a biorecognition element (antigen, 

antibody, enzyme, nucleic acids, or even whole cells)[4]. The topic has become even more 

relevant in the last decade because an increasing number of applications of biosensors and 

other protein-based analytical devices have been presented, spanning across a wide array of 

applications including healthcare, security, environmental, agriculture, food control, process 

control, and microbiology[5, 6]. Modern biosensors are inexpensive, simple to operate, fast, 
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and provide enough selectivity to be applied in the analysis of relatively complex samples. 

However, and despite the body of research currently available, only a few biosensors are 

commercially available andcan compete with more complex techniques in terms of 

sensitivity and limits of detection. Aiming to address these shortcomings, a series of 

strategies have been recently proposed[7-10]. Among those, and reflecting on the progress 

made in the techniques available for their synthesis and characterization, the use of 

nanomaterials (defined as materials with at least one feature or component having 

dimensions between 1-100 nm) has emerged as one of the leading trends for the 

development of biosensors and other bioanalytical devices [11]. Their unique chemical, 

mechanical, electrical, and structural properties enable tuninginteractions at the nanoscale 

and catering for the most suitable conditions for protein immobilization.

In general, and looking beyond the boundaries imposed by the selected transduction method 

(electrochemical, electrical, optical, piezoelectric, or thermal), assessing the role of the 

chemistry and topography of the surface[12-14], the physical and chemical characteristics of 

the protein to be used[15, 16], the immobilization route, and the experimental conditions 

selected for the coupling are fundamental to overcome current limitations. Considering these 

aspects, researchers currently have a variety of immobilization methods at their 

disposal[17-19], including covalent attachment, entrapment, encapsulation and cross-

linking. While covalent attachment can provide an avenue to form a permanent bond 

between the functional groups of the protein and those of the substrate, the reactions are 

typically slow, laborious, and the experimental conditions required for such reactions can be 

detrimental to both the protein and electronic properties of the substrate[20-23]. The use of 

bifunctional reagents can be a simple and fast method to promote covalent interactions 

between the substrate-protein and protein-protein interface[24-26], but the bioactivity of the 

layer can be compromised by the poor accessibility of active sites. Alternatively, proteins 

can be entrapped within a highly cross-linked polymer matrix[27, 28] or encapsulated within 

a membrane[29, 30]. Depending on the specific conditions, these strategies can impose a 

limitation to the diffusion of both analytes and products.On the other side of the spectrum, 

adsorption can be identified as the mildest immobilization method and therefore has the 

greatest potential to preserve the native structure of the biorecognition element. As it is a 

spontaneous process driven (mainly) by hydrophobic, electrostatic, and van der Waals 

interactions[31-33], adsorption provides a simple and fast way to attach proteins to surfaces. 

Although it dictates the first interaction with the surface and consequently affects all other 

immobilization routes, the main drawback of this method is that the immobilized protein is 

(theoretically) in equilibrium with the solution and can therefore be gradually desorbed 

during the operation, upon changes in the solution pH, or by the addition of competing 

molecules (surfactants or other proteins). To minimize this possibility, it is essential to 

carefully choose the experimental conditions for the immobilization, maximize the initial 

adsorption rate, and strike a balance between the stability of the adsorbed layer and the 

structure of the protein. Studies of protein adsorption to solid surfaces are certainly not 

new[1], however analytical applications of adsorbed proteins to nanomaterials have 

experienced a tremendous growth in the last 10 years (Figure 1) and are projected to 

continue in an upward trend. These materials allow increasing the effective area of the 

sensor, promoting the interaction of the biorecognition element with the substrates, 
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enhancing the detection process, and therefore improving the overall analytical performance 

of the sensor.

Aiming to provide a critical overview of the advantages and limitations of the adsorption of 

enzymes to nanoparticles and nanostructured materials for analytical applications, this 

review will focus on some of the most representative reports published in the last decade. 

Since it is almost impossible to cover every paper published in the topic, the goal of this 

review is to highlight examples of the strategies leading to significant improvements of the 

analytical figures of merit. In order to provide context for the discussion, the review starts 

with a general discussion about the adsorption of proteins and the effects of the most 

relevant variables. Then, recent advances pertinent to the development of biosensors using 

adsorption of proteins to nanomaterials (nanoparticles and nanostructured films) are 

discussed, considering the appropriate analytical figures of merit. As a reference point, the 

review also includes a short description of the techniques used to investigate the adsorption 

of proteins as well as emerging trends with potential applications for analytical devices.

It is also important to mention that previous reviews and articles describing the adsorption of 

proteins to various surfaces have been presented[1, 14, 34-49] and were used as reference 

points to start the discussion related to the analytical aspects of the phenomenon.

2. GENERAL CONSIDERATIONS

Proteins are biopolymers formed by linear sequences of amino acids (primary structure), 

arranged into local three-dimensional units forming (mainly) α-helices and β-sheets 

(secondary structure)that are folded into larger 3D structures conferring the shape of the 

proteins(tertiary structure). A number of these tertiary structures can be assembled 

originating the quaternary structure of the protein[50, 51]. As it defines the charge profile, 

location of hydrophobic patches, and possibility to form hydrogen bonds, the structure of the 

protein should be considered in the experimental design. Obtaining the structure of most 

proteins is quite trivial and can be done by either downloading the corresponding files from 

the Protein Data Bank (http://www.rcsb.org) or by the use of computational methods 

considering the pKa and location of each amino acid. This information has been used to gain 

preliminary insights about the potential adsorptive behavior of proteins[14, 52, 53] and 

estimate the enzymatic parameters from the structure[54]. Without requiring specific 

training or computational facilities, two possible approaches related to the topic of the 

review can be mentioned. The first case involves a docking calculation using Auto Dock 

Vina 4.2[55]. As recently described[20, 56], these calculations can be used to identify the 

most probable binding sites and the energy involved in the adsorption process (Figure 2). 

Dependent on the size of the system, these calculations can be completed in less than 8 h 

using a standard computer.

The second approach that can be used to estimate the protein concentration on a surface only 

requires a series of input variables (protein concentration, protein descriptors derived from 

primary structure, surface descriptors, pH, and ionic strength)[57]. The algorithm is freely 

available online(http://bad.molecularsense.com/) and has a predictive error of <5%, with 

respect to a validated database. In addition to those and aiming to predict the adsorptive 

Bhakta et al. Page 3

Anal Chim Acta. Author manuscript; available in PMC 2016 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.rcsb.org
http://bad.molecularsense.com/


capacity of the surface of nanomaterials, the biological surface adsorption index (BSAI) was 

presented by Xia et. al.[58]. This novel approach was used to characterize surface 

adsorption energy of nanomaterials considering five descriptors (hydrophobicity, hydrogen 

bonding, polarity, polarizability, and lone-pair electrons) of the nanomaterial interaction 

with biological components. Freely available packages to aid inthe visualization of protein 

structures (such as PyMol http://www.pymol.org/, Jmol http://jmol.sourceforge.net/, or 

Polyview 3D http://polyview.cchmc.org/polyview3d.html) can be used to highlight protein 

active sites and functional hot spots[59].

The protein adsorption process comprises of various steps including transport of the protein 

from the bulk solution into the inter facial region, attachment of the protein at the sorbent 

surface, relaxation of the protein on the surface, detachment from the surface, and transport 

of the detached protein back into the solution. These steps take place on various time-scales, 

ranging from a few seconds for the first protein-surface interaction to several hours to 

achieve steady-state conditions. Although the process is rather simple, it involves the 

interplay of many variables including temperature (under most conditions the adsorption is 

an endothermic process), charge(proteins adsorb most onto surfaces at there isoelectric point 

(IEP) minimizing protein-protein repulsions), size (smaller proteins diffuse quicker and 

arrive at the surface faster), shape (dictating the number of contact points with the substrate 

surface)[60], hydrophobic interactions[52, 61-63], and the ability to form π-π stacking and 

hydrogen bonds[44, 64]. The sum of these contributions (some favorable and some 

unfavorable) determines not only how, how fast, and how much proteins are adsorbed, but 

also under what conditions they may be removed from the substrate. It is also important to 

point out that adsorbed proteins are only marginally stable on the surface because the 

beneficial interactions that govern the native structure in solution are counterbalanced by a 

large entropy loss associated with going from a large ensemble of states to a more restricted 

set of conformations, typically affecting the original protein function[38]. Though several 

techniques are available to measure protein stability[65-67], differential scanning 

calorimetry has been mostly used to classify proteins within a range of soft and hard[68] 

based on their denaturation temperature (Td). Soft proteins (like bovine serum albumin, 

BSA, Td=57[69]) are less structurally stable, tend to experience large conformational 

changes (surface-induced unfolding and refolding) during the adsorption process, and can be 

adsorbed under a wide range of conditions. On the other side, hard proteins (such as 

lysozyme, Td= 73[69]− 76[70]) tend to preserve much of the native structure after the 

adsorption step and their adsorption requires a more careful selection of the environment. 

Needless to say, proteins with Td values in between that range show intermediate behavior 

and provide a much more challenging scenario for the prediction of their adsorptive 

behavior. Likewise, the properties of the substrate are just as important as those of the 

protein when considering adsorption. Hydrophobicity (contact angle), charge, topography, 

and chemical groups can have significant impacts on the adsorption process. In general, 

proteins tend to adsorb more readily to hydrophobic surfaces, promoting the release of water 

molecules and increasing the entropy[52, 57, 71-73]. Several groups have used this property 

to either promote or restrict the adsorption of proteins in analytical applications[74, 75]. 

Protein adsorption and orientation are also influenced by electrostatic interactions between 

the surface and the protein [14, 62, 76]. As an increased surface roughness is typically 
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translated into an increased surface area for adsorption and an increased surface curvature, 

the topography and the number of contact points have also been considered[12, 77-84]. 

Undoubtedly, increasing the amount and preserving the catalytic activity of the immobilized 

proteins is essential to improve the performance of analytical devices. Therefore, using the 

tunable nanoscale properties associated with nanomaterials presents itself as a unique 

alternative to promote favorable conditions and ultimately preserve the bioactivity of the 

protein[12, 81, 85-90].

3. TECHNIQUES TO INVESTIGATE PROTEIN ADSORPTION

There are a number of techniques that can be used to characterize the nanomaterial/protein 

interface[91] and obtain valuable information about the adsorption process. Surface features 

and topography can be determined using atomic force microscopy (AFM) [89, 92-94], 

scanning electron microscopy (SEM), transmission electron microscopy (TEM) [95], and 

scanning tunneling microscopy (STM)[6]. AFM can render 3D images of surface 

topography but can be affected by a series of artifacts [96]. On the other hand, electron 

microscopy techniques can potentially allow the observation of the substrates at the 

subatomic level but are (generally) destructive and require the sample to be conductive. 

Recent progress in the field has allowed the inclusion of cryo-probes and the development of 

electron crystallography (used to determine the structure of several proteins allowing the 

identification, in some cases, of secondary structure motifs) [97, 98]. Other techniques [91] 

used to support research related to protein adsorption include capillary electrophoresis [99], 

mass spectrometry [100, 101] and particle mass spectrometry [102] (to identify and quantify 

proteins through fragmentation), various vibrational spectroscopictechniques [103, 104] (to 

study protein/substrate interface and elucidate the biosensing mechanism), UV-Vis 

spectroscopy [105], Fourier-transform infrared (FTIR) spectroscopy[106, 107] (to analyze 

sequential and competitive adsorption), circular dichroism (CD) spectroscopy[108, 109] (to 

investigate the secondary structure of adsorbed proteins), isothermal titration calorimetry 

[110] (to investigate thermodynamic properties of interactions), surface plasmon resonance 

(SPR)[37, 111-113] (for quantitation of proteins and kinetic studies but limited to gold or 

silver surfaces), total internal reflection fluorescence spectroscopy [114] (for determining 

conformational changes in adsorbed proteins), infrared spectroscopy [115] (to observe 

protein conformation and load but with limited use in multicomponent protein solutions 

because of complex spectra), and fluorescence spectroscopy[84, 116] (to observe structural 

change in protein and protein loading).As their interaction with proteins can lead to spectral 

shifts in gold nanoparticles(AuNP), various colorimetric assays have been presented to 

monitor either protein-protein interactions [117] or conformational changes [118]. 

Additionally, it was recently reported that in the low protein coverage regime, nanoparticle 

tracking analysis, and differential dynamic light scattering (but not differential centrifugal 

sedimentation)correlate with the expected plasmon frequency shift of AuNP[119].

Experiments dealing with the adsorption of proteins to nanomaterials can be performedin 

either static (batch experiments)[16, 108] or dynamic fashion. The latter methodology 

allows calculating not only the adsorbed amount but also the adsorption rate, which could be 

then used to calculate the probability of attachment for a protein under specific experimental 

conditions [120-122]. Among other techniques[123-126] that have been applied, adsorption 
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kinetics of proteins can be investigated using quartz crystal microbalance (QCM)[92, 

127-130] orellipsometry[131, 132]. QCM has the capability of quantifying extremely small 

amounts of proteins (mass changes) adsorbedto flat and fixed surfaces by measuring the 

change in frequency across a quartz crystal. QCM is highly sensitive but it is limited by the 

availability of appropriate substrates[133] and can also be affected by temperature gradients 

and pressure applied to the surface. Ellipsometry measures the amplitude ratio and phase 

difference upon reflectance of parallel and perpendicular components of polarized light 

reflecting from a surface. Since it measures the ratio of two values originated by the same 

signal, the measurements are highly accurate and reproducible. The measurements are 

complementary to the information obtained by QCM and can be used to determine the 

optical properties of asubstrate and the thickness of multiple layers on the surface.The 

technique is simple, nondestructive, has angstrom resolution, and has the capability of 

allowing the observation of the adsorption process inreal time[94, 134, 135]. The use of 

imaging ellipsometry can also provide spatial resolution of protein binding [136]. In most 

cases and considered a major limitation, the substrates’ optical properties should be known 

(at least approximately) and a comparison between an optical model and experimental data 

should be carefully performed to obtain meaning fulresults. Although it requires the 

calculation of a sensitivity factor, reflectometry allows following adsorption experiments in 

real time (with a higher frequency than ellipsometry) using a simpler experimental 

setup[137-140].

4. ADSORBEDPROTEINS

Since nanomaterials made from metals, semiconductors, and organic compounds can 

enhance optical, electrical, chemical, and magnetic properties that are relevant to sensing, 

researchers have extensively applied them for analytical purposes[141, 142]. One common 

problem observed in the literature is that while adsorption has been widely used to 

immobilize biorecognition elements to the surface of nanomaterials, only a fraction of those 

reports involve the corresponding adsorption study. As a result, adsorption has become (for 

some) a naive process in which the protein is brought into contact with the surface at 

conditions that may (or may not) conduce to an efficient and stable attachment. A frequent 

assumption is to adsorb proteins at the optimum pH for biological activity, which may not 

result in maximum coverage.It was also observed in some papers that the biorecognition 

element was adsorbed from a mixture containing BSA[143-146], which could result in 

competition of the two proteins for the active sites of the surface, and therefore a sensor with 

lower analytical figures of merit. Considering the number of reports in the area, this section 

of the review was organized according to the protein selected for the analytical application. 

A summary of the analytical figures of merit for glucose and peroxide biosensors 

(commonly used as model systems) is available in the Supplementary Information.

4.1. OXIDASES

Since a variety of analytical methodologies can be coupled to H2O2, oxidases have been the 

most popular choice for the development of biosensors. The H2O2is generated, for most 

cases, in stoichiometric amountswith respect to the substrate, and can be detected 
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spectrophotometrically (e.g.using o-dianisidine in the presence of peroxidase) or 

electrochemically under a variety of experimental conditions.

4.1.1. Glucose Oxidase—Probably the most commonly used enzyme for analytical 

applications is glucose oxidase (GOx). GOxis a well-characterized enzyme that oxidizes 

glucose to gluconolactone and H2O2 and accounts for approximately 85% of the total 

biosensor market[147]. Since a variety of analytical methodologies can be coupled to H2O2, 

GOx has been considered a model enzyme and used for the development of a suite of 

electrochemical biosensors. To avoid electrostatic interactions between proteins and increase 

the adsorbed amount, the adsorption is usually performed at the IEP of the enzyme (4.2)

[148];however, many researchers have chosen to perform the immobilization at different pH 

values [149, 150]. It is also important to point out that under optimized conditions, most 

surfaces can be saturated with GOx in less than 60 min using a solution containing ~0.1 

mg·mL−1 of GOx[148, 151, 152]. Aiming at increasing the adsorbed amount, but at the risk 

of losing enzymatic activity or increasing cost, a number of papers reported the immersion 

of the substrates for 8 – 24 h[149, 153, 154] and the use of solutions containing as much as 

20 mg·mL−1[150] or 40 mg·mL−1[155] of the enzyme. Due to their exquisite electronic 

properties and adsorptive capacity, some of the most common nanomaterials used for the 

immobilization of GOx are carbon-based nanomaterials[156-163]. Using these substrates, 

GOx can be readily adsorbed by a combination of hydrophobic and (to a much lesser 

degree) electrostatic interactions forming a closely packed and irreversibly bound layer of 

protein with a thickness comparable to the size of the protein [148]. Despite the fact that 

several authors have reported direct electron transfer [164-167], Wooten et al.[168] 

concluded that GOx adsorbed on carbon nanotubes (CNT) yields a pair of surface-confined 

current peaks at −0.48 V that are not compatible with the direct electron transfer between the 

enzymatically active GOx and CNT. In these cases, signal transduction relied on the 

decrease in the O2 reduction current and an increase in the H2O2 reduction current. Multiple 

examples of glucose biosensors built on CNT have been presented [169-179]. CNT can also 

be chemically modified to tweak their optical, electronic, and chemical properties [180-182] 

and therefore improve the performance of the resulting sensors. For example, Deng et al. 

[164] prepared a novel glucose biosensor using nitrogen doped carbon nanotubes (CNx-

MWNTs) and adsorbed GOx. The CNx-MWNTs were prepared using a previously-reported 

method[183] and further modified to get a 4.6% nitrogen doping. The CNx-MWNTs were 

spotted onto a polished glassy carbon electrode (GCE) followed by an immersion in a 

solution of GOx (2 mg·mL−1, 20 h, and 4 °C) to promote adsorption and then spotted with 

Nafion to improve stability. Electrochemical impedance spectroscopy (EIS) showed that 

CNx-MWCTs-GCE exhibits a good electron-transfer rate (Ks=4.6 s−), bioactivity, 

reproducibility (RSD = 5%, n=10), and stability (96% of initial response after 20 days of 

storage). Nitrogen-doping has also been used for the modification of free-standing carbon 

fibers and the development of glucose sensors [184]. Instead of nitrogen doping, Zhang et 

al.[185] prepared a biosensor by immobilizing GOx (12h immersion) onto gold-platinum 

nanoparticle (AuPt NP)-MWNT-ionic liquid (i.e., 1-octyl-3-methylimidazolium 

hexafluorophosphate, [OMIM] PF6) composite. Using EIS, they established that the AuPt3-

MWNT-[OMIM] PF6/GCE had the least electron transfer resistance when compared to 

GCE, MWNT/GCE, and MWNT-[OMIM] PF6/GCE. These electrodes enabled obtaining an 
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apparent Michaelis-Menten constant  of 76 μM, a sensitivity of 3.47 μA·mM−1, and a 

linear range of response in the 0.01 – 9.49 mM. GOx can also be adsorbed to gold surfaces. 

Among those, Wang et al.[186] utilized AuNP (20 – 30 nm) electrodeposited on indium tin 

oxide (ITO)for the development of a disposable sensor and noted that the addition ofcysteine 

yielded significant improvements in the performance and stability of the composite. A 

glucose biosensor obtained by adsorbing GOx onto nanostructured Au thin films was also 

reported by Qiu et al.[154]. These films were prepared electrochemically by displacing 

nanostructured thin films of deposited cobalt with gold on the surface of a GCE. Then, the 

enzyme adsorption was carried out submerging the Au/GCE in a solution containing GOx 

for 24 h. It is also common to observe that nanocomposites of GOx adsorbed to AuNPs are 

prepared with organic polymers. For example, German et al.[187] utilized AuNP(3.5, 6, and 

13 nm) embedded in a polymerized pyrrole layer deposited on a carbon rod (CR) electrode. 

The use of the AuNP (13 nm)provided the basis to obtain a response that was twice as large 

as the one obtained with the bare GOx-CR electrode. Other polymers such as AgCl-

polyaniline [153] have also been explored to support AuNP and adsorb GOx. Aiming to 

create a low mass transport barrier and improve conduction pathways to directelectron 

transfer of the mediator toward the electrode surface, GOx adsorbed to AuNP (11 nm) has 

also been embedded in a porous structure of a silica-gel network[188].

Platinum electrodes and platinum nanoparticles (PtNP) have advantageous catalytic 

properties towards the electrochemical oxidation of H2O2 and have also been used to 

develop sensors based on adsorbed GOx. Combining these catalytic properties with those of 

ordered mesoporous carbon (OMC)[189], CNT[189, 190], or graphene [191] can lead to 

significant improvements in sensitivity due to the synergy between the electrochemical 

properties of the nanoparticles and surface area and fast electron transfer of the substrate. 

PtNP (4 and 28 nm) can also be used in combination with silica nanoparticles (100nm)[192] 

in the fabrication of a glucose biosensor that preserved up to 90% of the initial response 

after 23 days. The large surface area of the nanoparticles ultimately played a crucial role in 

the adsorption of the enzyme to improve the catalytic activity and stability. Using a similar 

electrode, Li et al.[193] obtained a wide linear range for glucose (0.001 −2.6 mM).

Following the examples described with platinum, the system GOx-AuNP has also been 

combined with CNT[177, 194], OMC[195], and graphene oxide [196]. Kang et al.[197] 

synthesized wrinkled graphene sheets with carboxylic and hydroxyl groups which were used 

as a “nanofiller” on a chitosan-GCE. Although the layer of GOx deposited on the graphene-

chitosan GCE slightly affected the electron transfer, this electrode was able to preserve the 

bioactivity of the enzyme, retaining 95% of its initial response after being stored for a week 

at 4 °C.The remarkable properties of graphene towards the adsorption of GOx have been 

combined with quantum dots. In this regard, it is worth highlighting a report from Zhiguo et 

al.[198], who combined graphene nanosheets, AuNP(10 nm) and a CdTe-CdS core shell of 

quantum dots to develop one of the top analytical glucose sensors in terms of response time 

(0.045 s), limit of detection (3 × 10−12 M), sensitivity (5,762,800 μA·mM−1·cm−2), stability 

(95% of its initial signal after 26 weeks) and  (5.24 nM) indicating a fast reaction rate 

even at low concentrations. Figure 3 shows the assembly and the reaction scheme for such a 

biosensor.
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Similarly, Wang et al. [199] utilized a previously developed mixture of GOx with graphene-

CdS-Nafion nanocomposite [200] to modify the surface of a GCE. After verifying that the 

structure of the enzyme was not affected during the preparation of the sensor, they 

confirmed the existence of a synergistic effect in the modified electrode. The biosensor also 

showed good reproducibility by successively detecting 5.0 mM glucose 6 times with a RSD 

of 5.3% and acceptable stability by maintaining 93% of its initial response after being stored 

for a 30 days at 4 °C.

For simplicity, biosensors can be fabricated bythe adsorption of GOx to commercially 

available screen printed electrodes (SPE). For example, Gao et al. [201] prepared a 

biosensor by layer-by-layer (LbL) assembly of single-walled carbon nanotubes (SWCNTs)-

GOx and synthesized osmium (bpy)2-complexed poly (1-vinylimidazole) (PVI-Os) on 

screen-printed carbon electrodes (SPCE) by means of electrodeposition. CV was used to 

determine that the electron transfer resistance increased if more than 4 bilayers were 

deposited. In a similar process, Deng et al. [165] prepared a LbL assembly of adsorbed GOx 

and poly(ethylenimine) (PEI) on a polished GCE modified with multi-walled carbon 

nanotubes (MWCNT). A GCE with CNTs and only GOx was prepared without 

LbLassembly for comparison. They determined that three bilayers of PEI/GOx (with a 

single outer layer of PEI for stability) showed the maximum peak currents for the 

electroactive GOx, showing no decreases in peak current after continuously scanning for 30 

cycles and retainingmore than 95% of its initial response after storage for 20 days. Other 

composites have also been used by other authors [202]. CNT and graphene remain popular 

substrates for the immobilization of GOx, and other carbon-based substrates are also 

emerging for the immobilization of Gox. Using silica (SBA-15 and FDU-5) as templates, 

You et al. [203] developed mesoporous carbon materials and used them for the 

immobilization of GOx (Figure 4). They concluded that the highly branched intertwined 

nanostructure of the material enabled larger loading of GOx that was able to preserve >85% 

of the activity after being stored for 45 days.

In addition to the previously-described CNT and graphene, optically transparent carbon 

electrodes (OTCE) [204] have been used as substrates to immobilize GOx. These electrodes 

can be fabricated by reduction at high temperature of a variety of organic precursors 

(including adsorbed proteins [205] or photoresist[206]) and have enabled the development 

of glucose sensors (OTCE immersed for 1 hin 4 mg·mL−1 under mild agitation).

Thelow-toxicity, potential biocompatibility, and electrochemical activity of other 

nanoparticles such as silver (AgNPs, 14 nm)[207], iron oxide [208] or zinc oxide [209-211] 

has sparked the development of other biosensors. The latter is particularly interesting due to 

its high IEP(about 9.5) which serves as a positively charged substrate for the immobilization 

of GOx (and other negatively-charged proteins) via electrostatic interactions. With the 

intention of preserving the native structure of the enzyme, Bhakta et al. recently 

demonstrated the potential advantages of nanoporous substrates fabricated using block co-

polymers of polystyrene-block-poly(2-vinylpyridine) for the immobilization of GOx [94].

Peroxidase—Peroxidase isozymes are monomeric proteins (~40 kDa)that generally 

contain a polypeptide chain, a hemin group plus Ca2+, and carbohydrate side chains[212]. 
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Their IEP is in the 5.5 −9.0range[213]. The enzymes can catalyze reactions involving the 

breakdown of R-OO-R’ and more commonly, catalyze reactions involving the reduction/

oxidation of H2O2. The enzyme is often used as a conjugate or in tandem with other 

biosensing systems (e.g. immunoglobin labeling[214, 215] and oxidases[216]) because its 

reaction produces an observable electrochemical or even chemiluminescence [217] signal. 

Even though they areless common, stand-alone peroxide biosensors can play an important 

role and provide relevant information for the fabrication of biosensors that use conjugated 

systems.

There are many research papers that highlight the adsorption of peroxidase to 

nanocomposites containing AuNPs including nano-Au/poly2,6-pyridinediamine[218], 

toluidine blue-AuNP [219], nano-Au/thionine/poly (p-aminobenzene sulfonic acid)[220], 

AuNP (3-mercaptopropyl)-trimethoxysilane (MPS) sol-gel[221], nano-Au sol-gelderived 

carbon ceramic electrode[222], AuNP-thionine-AuNP-MWCNs-chitosan [223], Au colloid-

cysteine-nafion-Pt [224], AuNP-chitosanhydrogel modified Au electrode[225], Au nano-

seeds dotted TiO2 nanocomposite [226] and AuNP-ITO[227]. Among those it is worth 

highlighting the work byChen et al.[219], who used a LbL assembly of AuNPs and toluidine 

blue (TB) for the adsorption of horseradish peroxidase (HRP) to fabricate a peroxide 

biosensor. With the use of a cysteine aqueous solution and gold colloid solution, the Au 

electrode surface was deposited with a negatively charged precursor film. Then, 4 h of 

immersion time for each positively charged TB and negatively charged nano-Au solution 

was used to create the bilayers in the form of (TB/Au)n (n>6 to give maximum peak currents 

using CV). Then the electrode was submerged in a solution of HRP at pH = 6.0 for 8 h to 

promote the adsorption of HRP to form the final modified electrode.They determined that 

the linear range of response was between 150 nM to 8.6 mM and the limit of the detection 

was 70 nM. Their biosensor retained 85% of its original response after 30 days of storage 

and decreasing current signal by 8.0% after 100 consecutive scans (0.1 mM H2O2). Wang et 

al. [226] fabricated a peroxide biosensor by dotting and drying a mixture of Au nano-seeds, 

TiO2 dispersion, and HRP on a polished GCE followed by a Nafion coat for stability. It was 

concluded by CV measurements that the nanocomposite facilitates a fast electron-transfer 

reaction. After 100 consecutive scans, no obvious decrease in signal was observed and after 

two weeks of storage, an acceptable 90.1% of original response was retained.

Similar to Au, MWCNTs can also provide a favorable substrate for adsorption of HRP. Li et 

al.[223] used a MWCNT-chitosan composite with thionine and AuNP to fabricate a 

peroxide biosensor. A polished GCE was spotted with a AuNP-MWCNT-chitosan 

nanocomposite followed by electrochemical deposition of a thionine solution. The final 

modified electrode was produced by pipetting a mixture of HRP and AuNP on the substrate 

surface (Figure 5). They determined that the linear range of response was between 500 nM 

and 1.5 mM and the limit of the detection 37.5 nM. Overall, the biosensor showed 

acceptable stability by retaining 97% of its original response after 2 weeks of storage and 

decreasing current signal by 5.6% after 100 consecutive scans (H2O2 concentration not 

listed). Reproducibility was good showing an RSD less than 4% of independently prepared 

electrodes (n=10). Similarly, Zhang et al. [228] used a biosensor fabricated by the 

copolymerization of PtNP and neutral red on a polished GCE modified with MWCNTs, 
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followed by immersion in a solution of HRP for 8 h. The biosensor presented byLi et al.

[223] showed acceptable stability and reproducibility, but better limit of detection and linear 

range.

In addition to Au and MWCNTs, HRP can be adsorbed to ZnO nanorods [229], AgNP-

cysteamine-Au electrode[230], and other nanocomposite systems [231-234]. Among those, 

Gu et al. [229] used an optimized method to hydrothermally grow ZnO nanostructures on 

gold wires. The final modified electrode was fabricated by LbL assembly of negatively 

charged poly(sodium 4-styrenesulfonate) (PSS) and positively charged HRP solution (5 h 

immersion time). Through CV, they concluded more layers (up to 5) resulted in higher HRP 

loading and sensitivity. The  was the lowest when 3 layers were adsorbed to the 

substrate and while the limit of detection was comparable, stability and reproducibility tests 

were not shown. Desorption of the bio-recognition element is probably one of the most 

important disadvantages of the immobilization process carried out by physical interactions 

between the biomolecules and the substrate. In order to improve the stability of the adsorbed 

biologically active molecules, different methods based on adsorption processes were widely 

explored to advance the field of biosensors such as self-assembled monolayers (SAM), 

Langmuir-Blodgett (LB) films, and LbL films. Recently, Wang et al.[235] developed an 

amperometric biosensor to detect hydrogen peroxide in which HRP was adsorbed onto 

SWCNTs and then the resulted composite (HRP/SWCNTs) was immobilized onto a L-

cysteine SAM. The biosensor was acquired following the steps shown in Figure 6. At the 

outset, SWCNTs were oxidized with a H2O2-HCl mixture and sonicated for6 h in order to 

obtain SWCNTsfunctionalized with carboxylic groups. After purification, the oxidized 

SWCNTs were dispersed in asolution of sodium cholate to avoid the aggregation. Next, 

HRP was allowed to adsorb on the SWCNTs and the sodium cholate replaced by the enzyme 

was removed by dialysis. Furthermore, a gold electrode was modified by a self-assembled 

L-cystine monolayer with the aim of attaching the obtained HRP-SWCNTs to the gold 

surface covalently. The electrode performance showed that the most significant aspects of 

the biosensor werethe high biocatalytic response (in the pH range of 7.0 – 8.0) and the low 

detection limit of the device.

Another oxidoreductase enzyme linked to H2O2 iscatalase. This enzymecatalyzes the 

disproportionation of two molecules of H2O2 to molecular oxygen and water. Catalase is a 

hard enzyme with a MW of 240 kDa, an IEP of 5.4, and one of highest turnover numbers in 

nature[236]. Catalase has been adsorbed to a variety of substrates using solutions with pH 

values of 5.6 to 6.5 [237] and for a period of time that ranges from 30 min [238] to 14 h 

[72]. Catalase adsorbed onto Mn2O3 nanoparticles [239], nickel oxide nanoparticles [240] or 

CNT [241] has been used to facilitate the amperometric detection of H2O2. In the latter 

cases, authors discussed the possibility of even achievingdirect electrochemistry. Performing 

experiments at the IEP of the protein, Felhofer et al. [242] demonstrated that not only the 

adsorbed amount but also the initial adsorption rate were determinants of the catalytic 

activity of a CNT-based nanocomposite (Figure 7) and that such scaffolds can be saturated 

in less than 30 min, when the most favorable experimental conditions are selected. In line 

with other studies addressing the curvature of the nanomaterial, Zhang reported that the 
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curvature of the CNT (single-wall, multiple wall, or oxidized) can also influence the activity 

of adsorbed catalase [243].

Lactate Oxidase—Another example of a biosensor developed based on the 

electrochemical detection of H2O2 produced by an enzyme involves lactate oxidase (LOx). 

This enzyme is able to oxidize L-lactate to pyruvate and H2O2 and shows maximum 

catalytic activity at pH = 6.5 and 37 °C.The enzyme has an IEPof approximately 4.6 [244] 

and a molecular weight of about 50 kDa (commonly found as a multimers containing 4-8 

subunits). Although the most common form is obtained fromnatural sources (including 

Pediococcus sp.), other variants have also been engineered, characterized, and used for 

analytical purposes [245]. As an example, Mingli et al. [246] prepared a lactate biosensor by 

incorporating LOx in hydrothermally-processed porous hydrogen titanate (H2Ti3O7) 

nanotubes (TNTs). As observed by SEM, TEM, and X-ray diffraction (XRD), the TNTs 

formed a 3D porous network with high surface area for the support of LOx that provided 

electron transport channels to the electrode surface, promoting direct electron transfer 

between the FAD active site of the LOx and the gold surface. The biosensor also showed 

good reproducibility by successively detecting 6 mM lactic acid 6 times with a RSD of 

2.47%.Platinum nanoparticles and MWCNT were also used as a composite film for the 

detection of lactate [247]. The RSD of the sensor was extremely low at 0.4% after five 

consecutive measurements. Other sensors based on LOx immobilized on ZnO nanorods 

[244], ZnO-CNT [248] or nitrogen-doped CNT [249] have also been presented.

Xanthine Oxidase—Another enzymeused in the fabrication of biosensors is xanthine 

oxidase (XOx). XOx catalyzes the hydroxylation of hypoxanthine to xanthine and H2O2 and 

then xanthine to uric acid (which can be electrochemically oxidized to allantoin) at an 

optimum pH of 7.5. XOx can also act on other groups such as 1-methylxanthine (a 

metabolite of caffeine). XOx is normally isolated as a mixture of two molybdenum-

containing subunits of approximately 150kDaand has 2 flavin molecules (bound as FAD). 

Despite the fact that no recent papers have described the adsorption process, XOx can be 

adsorbed at pH in the range of 6to7 [146, 250] during a period of 2 h [251] – 8h [252]. XOx 

was adsorbed (along with PDDA) on an electrode containing AuNP – single – walled carbon 

nanohorns (5 – 8 nm) hybrids[253], resulting in outstanding sensitivity (141.1 

mA·M−1·cm−2) and detection limits. Physical adsorption between XOx and ZnO 

nanoparticles in a polypyrrole composite film (66 mg·mL−1, 12h and 4 oC) was also used to 

fabricate a biosensor and later optimized for the detection of xanthine by testing different 

experimental conditions[254].Figure 8 displays the scheme for the reaction occurring at the 

biosensor surface.

Shan et al. used 18.5 nm laponite (hydrous sodium lithium magnesium silicate) 

nanoparticles to immobilize xanthine oxidase on a biosensor[255]. The laponite 

nanoparticles supplied a high surface area for protein loading, as well as high surface energy 

that favored the conformation of the protein and the electron transfer. The reproducibility 

was outstanding with a relative standard deviation of 1.2% after 12 different sensors were 

independently tested. Other xanthine sensors based on nano-CaCO3[256] and layered double 

hydroxides [257] have also been described.
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Glutamate Oxidase—Due to the increased consumer awareness of levels of glutamate 

added to foods and its critical role in brain functions, several biosensors based on L-

glutamate oxidase (GluOx) have been presented. The most common form (obtained from 

Streptomyces sp.) is a hexameric structure with a molecular weight of 140 kDa and IEP of 

6.2 [258]. This variant provides high substrate specificity and high stability (~80 oC)[259] 

and though the enzyme is active between pH 4 and10, the optimum catalytic activity is 

obtained at a pH of7.5. These properties have been used to promote adsorption using 

phosphate buffer (pH=7.4). Evans et al. adsorbed GluOx, separately and along with GOx 

and LOx, to 15 nm silica nanoparticles entrapped in cellulose fibers for the fabrication of a 

microfluidic paper-based analytical device (μPAD). Their modified μPAD detected three 

analytes by way of colorimetric detection.

The nanoparticles were used to immobilize the protein to the paper and a 61% increase in 

color intensity was observed when the nanoparticles were incorporated into the device 

versus native paper [122]. A novel glutamate amperometric biosensor was made through the 

assembly of PtNP on modified ordered three-dimensional gold nanowire arrays[260]. 

Adsorbing the enzyme to a nanocomposite of oxygen-rich ceria and titania nanoparticles 

dispersed within a semi-permeable chitosan membrane allowed the detection in hypoxic 

environments with detection limits of 0.5 μM [261]. In a simpler fabrication process, Khan 

et al. [56] prepared a biosensor to detect glutamateusing SPE containing CNT modified with 

GluOx and a flow injection analysissystem. The system enabled obtaining limits of detection 

in the nM level, fast response time (≤5 s), and good operational and long-term stability. 

Even though adsorption was not considered, it is worth mentioning that the effect of several 

immobilization methods has been recently compared [262].

Tyrosinases—Also known as polyphenol oxidase, tyrosinasesarea copper-containing 

enzyme which is extensively distributed in microorganisms, animals, and plants[263]. Due 

to its high availability, the mushroom tyrosinaseis mostly used. With an IEP of 4.2 [264], 

Tyrosinasecatalyzes the oxidation ofphenols to the correspondingo-quinones. Subsequently, 

the quinones can be used to electrochemically follow the enzymatic reaction as a result of 

their electroactive behavior[265]. Baptista-Pires et al.[71] used oxidized graphene oxide 

(oGO) and reduced graphene oxide (rGO) to generate electroactive platforms for biosensing 

applications. Graphene oxide was deposited by drop casting onto graphite SPE. Then, the 

electrodes were used to adsorb the enzyme. The amperometric measurements were achieved 

applying a potential of −0.1 V. The results showed a remarkably higher response of 

SPE/rGO/Tyrosinase biosensor than the SPE/oGO/Tyrosinase biosensor. That behavior was 

attributed to the fact that the electrostatic interactions, as the driving force for enzyme 

binding to oGO, severely affected the activity of tyrosinase. Also, the higher conductivity of 

the rGO promoted high charge transfer. Additionally, Liu et al. [266] also used graphene 

oxide (GO) to adsorb tyrosinaseonto 3D graphene micropillar electrodes. The micropillars 

were patterned in a polydimethylsiloxane (PDMS) substrate and modified with 3-

aminopropyltriethoxysilane (APTES). Then, GO flakes were allowed to self-assemble onto 

the micropillars. Because the oxidative process during the GO synthesis produced 

negatively-charged functional groups (carboxylic acid, hydroxyl, and epoxy), graphene was 

adsorbed onto the substrate by strong electrostatic interactions between the negatively 
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charged GO flakes and the positively-charged micropillars modified with APTES. The 

sensing device was designed with a microchannel for the sample injection, a 3D graphene 

micropillar, two Au electrodes, and one Ag/AgCl electrode as shown in Figure 9.

The enzymatic reaction was measured following the increase in o-quinone produced during 

the enzymatic reaction by amperometry at −0.1 V. Also, Tyrosinase was immobilized by 

adsorbing onto ZnO nanorods as reported by Chen et al.[267]. Because the ZnO nanorods 

have a high IEP (9.5), the immobilization of the enzyme wascarried out taking advantage of 

electrostatic interactions. The biosensors were achieved by casting the nanorod-enzyme 

suspension on the GCE. Then, a Nafion solution was spotted on the biosensors and the film 

was allowed dry overnight. The resulting electrode was used successfully to detect phenol 

and catechol. The  of tyrosinase adsorbed on the ZnO nanorods was found to be 0.24 

mM for phenol and 1.75 mM for catechol. The value observed in the case of phenol was 

slightly lower than that obtained by encapsulation into TiO2 sol-gel films (0.29 mM[268]) 

and in copolymer grafting silica sol-gel composites (0.37 mM[269]). Although the activity 

of the enzyme can be determined by Vmax/KM, Chen et al. stated that the lower  value 

obtained for tyrosinaseled to improved bioactivity.[267]. Additionally, a phenol biosensor 

has been described by Pavinatto et al.[270] incorporating tyrosinasein a LB film of arachidic 

acid and lutetium bisphthalocyanine (LuPc2). In the same way, Apetrei et al.[271] used the 

biosensor based on the LB films developed by Pavinatto et al. to compare the 

tyrosinaseactivity on the detection of one monophenol (vanillic acid), two diphenols 

(catechol and caffeic acid), and two triphenols (gallic acid and pyrogallol). The experimental 

results demonstrated a degree of difference in the sensitivity toward the phenols and showed 

a tendency to decrease in the order of diphenols>triphenols>monophenols.

Laccase—Laccase, also named benzenediol: oxygen oxidoreductase, is a glycoprotein and 

belongs to the group of multi-nuclear copper-containing proteins[272]. This enzyme has an 

IEP of 4.4, a molecular weight of 62 kDa[273], and can catalyze the oxidation of a wide 

range of substrates, which present similar chemical characteristics to p-diphenol[274]. The 

detection of the quinone generated by the enzyme reaction can be monitored using 

electrochemical techniques by the detection of the product on the electrode surface or 

through a mediator. Portaccio et al.[275] modified the surface of a SPE by using a 

nanocomposite formed by carbon black and thionine as the electrochemical mediators in 

order to improve the analytical performance of the biosensor. Thus, the enzymatic reaction 

produced an increase in the amount of oxidized thionine and consequently the increase in 

the cathodic current. Laccase was immobilized by adsorption onto the electrode and used to 

quantify bisphenol A. The obtained biosensor showed better results when compared with 

sensors based on carbon paste [276] or GCE [277]. On the other hand, gold electrodes were 

also used as an immobilization platform for laccase as reported by Casero et al.[278] In this 

case, hydroquinone (HQ) was oxidized enzymatically to quinone and then reduced again to 

HQ on the electrode surface. The cathodic peak current was recorded by cyclic voltammetry 

and used to follow the evolution of the enzymatic reaction.

Other Oxidases—Because highly conductive materials like metals or graphite produce an 

undesirable degradation of the proteinadsorbed on those substrates, metal oxide 

Bhakta et al. Page 14

Anal Chim Acta. Author manuscript; available in PMC 2016 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



semiconductors (TiO2, WO3, SnO2, ZnO, and tin-doped ITO) have ignited significant 

interest in the immobilization of biomolecules such as glucose dehydrogenase (GDH) and 

sulfite oxidase [279] or cytochrome c [280-282] for not only their conductivity but also their 

transparency (enhancing their optical properties). It is important to point out that while ITO 

is the most widely used substrate, the relatively low abundance of indium has sparked the 

development of promising materials with lower indium content[283, 284]. In addition, 

antimony-doped tin oxide (ATO) showed an improved conductivity conferred by the Sb 

dopant and maintained the high transparency observed in ITO. Consequently, ATO has been 

employed for the immobilization of proteins such as cytochrome c and azurin[285]. 

Recently, Frasca et al.[286] also used thin films of ATO with two different porosities (ATO-

F127 and pl-ATO) as platforms to adsorb Human sulfite oxidase (hSO) by immersion for 2 

h. The response of the obtained biosensor was carried out using a flow injection/

amperometric detection system while the electrode was polarized at 0 V.

Uricase is another important oxidase relevant to the degradation of purines because one of 

the metabolites of the pathway (uric acid) remains an important marker for disorders such as 

gout, hyperuricemia and the Lesch–Nyhan syndrome. For these reasons, a number of 

biosensors have been presented using uricase adsorbed to nanomaterials, including ZnO 

nanoparticles [287], LB films of fatty acids [288], and carbon felt [289]. In agreement with 

previous strategies, the adsorption performed at pH values in the 6 – 7 range, from a solution 

containing 0.02 μg·mL−1 – 1 mg·mL−1, yielded the best results. Other alternatives for the 

immobilization of the enzyme have also been presented [290].

Using ellipsometry, Mora et al.[291] investigated the interaction of D-amino acid oxidase 

(DAAO) with SWCNT. In this case, dynamic adsorption experiments, performed as a 

function of the protein concentration, pH, and ionic strength, allowed them to conclude that 

DAAO can adopt multiple orientations on the surface and that the maximum catalytic 

activity can be obtained by controlling the adsorption conditions.

4.2. ANTIBODIES

A very important group of biosensors has been developed by the adsorption of a variety of 

antibodies[111]. Their properties and specific considerations to promote not only the 

immobilization but also the correct orientation have been recently studied [62, 292] and 

therefore will only be briefly discussed. Although different immobilization routes have been 

presented, each one with its own advantages and limitations, physical adsorption of 

antibodies avoids the use reagents and decreases the chances of protein denaturation. 

Probably the most significant advantage is the exquisite selectivity of these sensors. Besides 

stability, one particular limitation for the rational development of immunosensors is the cost 

of these proteins, which in most cases imposes a financial burden for the corresponding 

adsorption studies.

Inorganic nanoparticles are of high interest to researchers because many of these materials 

are presentin vertebrates. Specifically, hydroxyapatite (HA) is biodegradable, 

biocompatible, inexpensive, as well as soluble and less toxic than silica, quantum dots, 

CNT, and magnetic particles.In a recent report, the potential of HA as a carrier for human 

immunoglobulin G (IgG) has been investigated. IgG was adsorbed to 30 nm HA 
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nanocrystals at pH = 7.4[293]. The adsorption capacity of the HA nanocrystals reached a 

plateau at an adsorbed amount of 2.3 mg·m−2 IgG. When measuring the adsorbed amount 

they found two populations of IgG bound with different strengths, with most of IgG having 

a strong link with HA.A reusable sensor for the detection of IgG was fabricated after 

adsorption times, ion strength, and pH were optimized [294]. A 0.2 mg·mL−1 solution of 

anti-hIgG at pH = 7.7 was adsorbed to the magnetic hydroxyapatite (HAP)/γ-Fe2O3/Au 

nanocomposite for 2.5 h and studied with magnetic separation-assisted quartz crystal 

microbalance (QCM). By manipulating the magnetic field, the sensor can be regenerated 

through direct adsorption of the antibody to the transducer surface; therefore avoiding time-

consuming chemical linkers and improving the detection of the analyte.

Nanomaterials have also been utilized as electrochemical signal probes on immunosensors 

made from disposable SPCE for the detection of an antigen associated with human lung 

cancer. A polyethylene glycol layer was adsorbed on the surface of the electrode, followed 

by polyclonal secondary anti-ENO1-antibody-tagged AuNPs to improve the sensitivity of 

the assay. Square wave voltammetry revealed the novel electrochemical immunosensor 

could detect as low as 2.38 pg·mL−1 of ENO1[295]. Another electrochemical sensor was 

developed through the adsorption of anti-carcinoembryonic antigen (CEA) antibodies on the 

surface of a staphylococcal protein A-AuNP modified gold electrode[296]. A rapid increase 

in current was seen (Figure 10) when the electrode was measured with 15 nm AuNPs as 

opposed to 40 nm AuNPs, while a current plateau was first noticed at 0.6 mg·mL−1 when 

adsorbing different concentrations from 0.1 mg·mL−1 to 1.0 mg·mL−1.Saturation conditions 

occurred at 90 min. It is also important to note that natural polymers such as chitin, chitosan, 

and silk fibroin have also been used by means of immobilization matricesin order to 

improve the stabilityof the biorecognition element. As anexample of this strategy, a LbL 

immunosensor prepared by immobilizing the peptide NS5A-1 derived from hepatitis C virus 

(HCV) NS5A protein and silk fibroin (SF)was reported by Moraes et al.[297].

4.3. OTHER PROTEINS

Many other proteins have also been combined with nanomaterials to produce biosensors. For 

example, Costa Rama et al. [298] recently fabricated a biosensor for detection of amyloid-

beta 1-42 (Aβ1-42, a biomarker for Alzheimer’s disease) using a SPCE with the 

incorporation of AuNP. TheseAuNP were generated on the surface of the SPCE by means of 

electrodeposition and the final modified electrode was created according to the schematic 

shown in Figure 11. As previously published, gold nanostructured surfaces show better 

sensitivity than non-nanostructured surfaces. The conditions for the experiment were 

optimized (non-specific binding at the electrode was avoided by adding BSA to the solution 

of the antibody and Aβ1-42 concentration of 300 ng·mL−1 was chosen because of 

reproducibility). The reproducibility was measured by six independently prepared electrodes 

achieving a maximum signal of 61 ± 3 μA. While these types of biosensors show the 

versatility and variety in the industry, a shortcoming of thesespecific electrodes is that they 

are only good for single use measurements. Even so and according to the authors, there has 

only been one other published biosensor for Aβ peptides using similar methods and its limit 

of detectionis about 4.5 μg·mL−1[299] compared to their LOD of 0.1 ng·mL−1.
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The shape-selective properties of zeolites have been utilized as strategy to preferentially 

adsorb certain molecules. That property is related to the crystalline structure of zeolites that 

may produce linked cages, cavities, and channels which can control the entry of molecules 

according to their size[300]. Recently, potentiometric biosensors prepared adsorbing urease 

on different zeolite (silicalite, nano beta zeolite, and zeolite L) monolayers were reported by 

Shelyakina et al.[301]. The zeolite substrates were obtained by immobilizing the zeolite 

particles onto the surface of pH-sensitive field-effect transistors (ISFET). The functioning of 

the biosensor is based on the reaction of urea cleavage to NH +ions and consequently the 

consumption of protons. Thus, the enzymatic reaction was followed by changing the pH 

inside the selective membrane which is recorded by the ISFET. It was observed that the 

additionof zeolites resulted in anincreasedlinear range (mainly with silicalite and nano-

zeolite L), reduced limit of detection forurea determination, improved reproducibility, and 

decreased time of analysis.

Biosensors based on landscape phages adsorbed on the surface of a quartz crystal 

microbalance have been used for the detection of β-galactosidase from Escherichia 

coli[302]. These sensorsprovided a detection limit in the nM range and a response time of a 

~100 s over the range of 0.003–210 nM.

Even though it does not provide specific recognition properties, albumin is a very important 

protein for analytical devices. Albumin (and most commonly BSA) is a heart-shaped soft 

protein with a molecular weight of 66.5 kDa and an IEP of 4.8 [108]. Because BSA typically 

exhibits significant surface-induced spreading upon adsorption, a stable layer of the protein 

can be formed under a wide number of conditions in less than 1 h [135, 205, 303]. For these 

reasons (and its low cost), it has been extensively used as a model protein to study 

adsorption [68, 80, 110, 134, 137, 139, 304, 305], to aid in the suspension of CNT [306], 

and to block the remaining sites of surfaces after the immobilization of a biorecognition 

element [250, 260, 294, 307]. BSA has also been adsorbed to the surface of PMMA 

nanoparticles to enhance the subsequent attachment of GOx by electrostatic interactions, 

retaining most of the activity of the free enzyme[308, 309]. It is also important to mention 

that Benavidez et al. [310] recently reported the possibility to induce the accumulation of 

multiple layers of BSA by the application of an external potential, a phenomenon that is 

compatible with the polarization of the protein described by other authors [311].

5-EMERGING TRENDS

The biorecognition element for biosensors is not only limited to enzymes and antibodies but 

can also span a vast array of compounds including DNA, cells, microorganisms, organelles, 

and plant or animal tissues[4]. Point-of-care monitoring, short analyses times, easy sample 

preparation, and cost are currently of the upmost importance in diagnostic testing. Infectious 

diseases and agents, food intoxication, and contaminated water are still major worldwide 

concerns[312]. To cater to the constant need for rapid onsite monitoring in healthcare, 

environment, agriculture, food control, process control, and microbiology, the research 

industry is heading towards designing biosensors and fabricating nanomaterials tailored to 

the needs of the active biorecognition element[313-315]. Proteins can be considered the 

“nanoscale building blocks” for nanomaterials. In addition, affinity based biosensors are 
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emerging as in-vivo monitoring of the human physiology has become more vital. More and 

more nanotechnology-based immunosensors, DNA sensors, aptasensors, and phage-

basedbiosensors are being developed in tandem with novel electrochemical, optical, and 

mass sensitive detection techniques[316]. It is also important to highlight that the relatively 

recent development of single-domain antibodies (nanobodies) can provide unique 

alternatives to traditional immunosensors in terms of stability and availability [317]. The 

implementation of nanomaterials during the development of biosensors provides a path to 

improve selectivity and sensitivity, portability, and cost leading to low detection limits while 

keeping a wide linear range of detection.

6-CONCLUSIONS

The adsorption of proteins to solid surfaces are mostly regulated by a combination of 

hydrophobic and electrostatic interactions. Other factors such as solution/solvent properties, 

ion co-adsorption, and structural rearrangements can also play important roles in this 

process. The latter is driven by favorable entropic and unfavorable enthalpic changes to 

reduce the overall free energy of the system and may be conducive to significant losses in 

the structural properties of the biorecognition element. A detailed description of the 

adsorption process is required to achieve the full potential of the protein, however, adequate 

coverage of the substrate can be often obtained by immersing the surface in a 1 mg·mL−1 

solution of the protein at the IEPfor approximately 1h. While researchers should be 

encouraged to continue looking beyond GOx, this protein remains dominantin the biosensor 

field. From the surface standpoint, nanoparticles and other nanomaterials have beenthe 

driving force behind the development of sophisticated biosensors in recent years. The use of 

metal nanoparticles, such as gold and platinum, is widely observed in literature because the 

particles can improve the rate of electron transfer at the biointer face. By altering conditions 

such as pH, nanomaterial size and shape, and temperature, analytical figures of merit have 

been improved drastically. The formation of nanofilms for the detection of various analytes 

is also a rapidly growing area of biosensors. The use of nanotubes and their tunable features 

are just a few ways researchers are improving the analytical performance of biosensors. The 

importance of nanomaterials is growing as the demand for quick, selective, inexpensive, 

stable, and reproducible analytical devices continues to surge. The fabrication of the above 

mentioned biosensors all show very unique methodologies to improve bioactivity of the 

enzyme/material nanocomposites, especially if more than one type of nanomaterial is used. 

The compatibility of nanomaterials with enzymes has become the focus of many research 

endeavors and is now recognized as a critical consideration to further the applicability of 

biosensors. The technology highlighted in this review is just a glimpse of the many sensors 

being fabricated and used in the medical, environmental, food, and biological industries. In 

summary, it is expected that the use of nanomaterials as sorbent surfaces for the 

development of biosensors will continue to grow and provide new avenues to bolster the 

field.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Google scholar search comprising the years of 2005 to 2014 using the keywords 

“nanomaterials”, “adsorption”, and “biosensor”. Search conducted on 09/25/2014.
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Figure 2. 
Binding pose of glutamate oxidase on a CNT according to the AutoDock Vina molecular 

docking program. The amino acids of the enzyme’s active site are highlighted in yellow. 

Reprinted from [56], with permission from Wiley.
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Figure 3. 
Fabrication of the biosensor (a) and oxidation of glucose at the GOx/AuNP/CdTe-CdS/G-

AuNP/GE surface (b). Reprinted from [198], with permission from Elsevier.
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Figure 4. 
Schematic diagram of the electron transfer (ET) and the bioelectrocatalytic process of 

GOx/3D-CMM electrode. Reprinted from[203], with permission from Elsevier.
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Figure 5. 
The fabricating procedures for GNPs/MWCNTs–Chits composite (A) and the biosensor 

(B).Reprinted from [223], with permission from Elsevier.
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Figure 6. 
Schematic of preparation of enzyme electrodes. Reprinted from [235], with permission from 

Elsevier.
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Figure 7. 
Activity as a function of effective thickness (left) and initial adsorption rate (right) for pH = 

5.4 (■), pH = 4.4 (▲), pH = 6.4 (●), pH = 4.4 + 100 mmol·L−1 NaCl (△), pH = 5.4 + 100 

mmol·L−1 NaCl (□), and pH 6.4 + 100 mmol·L−1 NaCl (○). Dashed lines are drawn to 

guide the eye. Reprinted from [242], with permission from American Chemical Society.
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Figure 8. 
Schematic representation of chemical reaction at xanthine oxidase (XOD in figure)/ZnO-

NPs-Ppy/Pt. Reprinted from [254], with permission from Elsevier.
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Figure 9. 
Illustration of a 3D graphene micropillar incorporated electrochemical sensor device. The 

microfluidic channel was patternedin the PDM Slayer for sample loading, and the graphene 

micropillar was fabricatedin the middle of the micro channel. The working (W), counter(C), 

and reference(R)electrodes were deposited on a glass substrate. Reprinted from [266], with 

permission from Elsevier.
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Figure 10. 
(A) The schematic description of the preparation procedures of immunosensor and (B) the 

detection principle of antibody-based electrochemical immunosensor. Reprinted from [296], 

with permission from Elsevier.
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Figure 11. 
Schematic representation of the immunosensing strategy for the detection of Aβ1-42 

Reprinted from[298], with permission from Elsevier.
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