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ABSTRACT

We developed a new and simple method for denoising
seismic data, which was inspired by data-driven empirical
mode decomposition (EMD) algorithms. The method,
which can be applied either as a trace-by-trace process or
in the f-x domain, replaces the use of the cubic interpolation
scheme, which is required to calculate the mean envelopes of
the signal and the residues, by window averaging. The re-
sulting strategy is not viewed as an EMD per se, but a user-
friendly version of EMD-based algorithms that permits us to
attain, in a fraction of the time, the same level of noise can-
cellation as standard EMD implementations. Furthermore,
the proposed method requires less user intervention and
easily processes millions of traces in minutes rather than in
hours as required by conventional EMD-based techniques
on a standard PC. We compared the performance of the new
method against standard EMD methods in terms of compu-
tational cost and signal preservation and applied them to
denoise synthetic and field (microseismic and poststack)
data containing random, erratic, and coherent noise. The cor-
responding f-x EMDs implementations for lateral continu-
ity enhancement were analyzed and compared against the
classical f-x deconvolution to test the method.

INTRODUCTION

The empirical mode decomposition (EMD) algorithms were first
introduced to the signal processing community by Huang et al.
(1998). These methods decompose a digital signal sn of length N,
where the subscript n denotes the sample number, into a collection
of modes, or intrinsic mode functions (IMFs), without the need
for any predefined basis functions, thus allowing for nonlinear

and nonstationary adaptivity to the intrinsic signal characteristics
(Huang and Wu, 2008; Mandic et al., 2013).
The modes IMFkn, where the superscript k ¼ 1; : : : ; K denotes

the order, have a frequency content that decreases with k and, like
amplitude and frequency modulated sinusoids, have zero mean and
several extrema equal (or different at most by one) to the number of
zero crossings. This means that all their maxima and minima are
positive and negative, respectively (Kopsinis and McLaughlin,
2009; Mandic et al., 2013). It is these extrema and zero mean con-
ditions that allow EMD to provide a finite set of functions that cap-
ture the nonstationary characteristics of the signal (Han and van der
Baan, 2015).
The IMFs obtained by the EMD algorithm are prone to suffer

from the so-called mode mixing/splitting problem, which means
that a single IMF can display oscillatory signals of different scales
(mixing) or that a single oscillatory signal may leak into several
modes (splitting). Throughout the years, many EMD improvements
and strategies have been proposed to alleviate this problem (see Han
and van der Baan, 2015), such as the intermittency check (Huang
et al., 1999) and the noise-assisted EMD extensions, which decom-
pose the original signal with added zero-mean Gaussian white
noise. The noise-assisted repertoire includes the ensemble EMD
(Wu and Huang, 2009; Han and van der Baan, 2015), the modified
ensemble EMD (Zhang et al., 2010), the complementary ensemble
EMD (Yeh et al., 2010), the complete ensemble EMD (CEEMD)
with adaptive noise (Torres et al., 2011) and recently, the improved
CEEMD (ICEEMD) (Colominas et al., 2014), which enhances the
noise cancellation property and reduces the number of spurious
modes often observed in CEEMD. The noise-assisted algorithms
are based on the hypothesis that the contribution of the added noise
will cancel out after stacking a large number of realizations, for each
realization contains a uniform background in the time-frequency
space where different scales of the original signal can be projected
(Huang and Wu, 2008).
Apart from empirically decomposing an input signal into a series

of IMFs, one of the main applications of the various EMD algo-
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rithms is to separate signal from noise. Over the past few decades,
several authors have proposed different strategies for noise attenu-
ation of seismic data using various EMD-based approaches. For
example, Battista et al. (2007) present a method to significantly
attenuate low-frequency cable strum in reflection data. Bekara and
van der Baan (2009) propose a frequency-offset (f-x) domain EMD
filtering and successfully apply it to shot- and common-midpoint
gathers as well as to stacked and migrated sections. Hooshmand
et al. (2012) apply a CEEMD-based filter in the time-offset (t-x) and
f-x domains to remove random and coherent noise from shot gath-
ers. In addition, thresholding EMD offers a very attractive variant
especially suited for improved denoising. The interval thresholded
EMD, for example, was first introduced by Kopsinis and McLaugh-
lin (2009), and recently has been applied to denoise seismic data
(Han and van der Baan, 2015). Han and van der Baan develop
an adaptive-thresholding ensemble EMD scheme to enhance the
signal-to-noise ratio (S/N) of microseismic data and further extend
the method into the f-x domain to denoise stacked seismic reflec-
tion data.
The results shown in these works are very encouraging because

they demonstrate the usefulness of EMD to suppress random and/or
coherent noise not only in the t-x domain but also in the f-x domain.
Consequently, EMD-based denoising represents an interesting alter-
native to standard denoising schemes based on band-pass filtering,
wavelet analysis, or f-x deconvolution (Bekara and van der Baan,
2009; Han and van der Baan, 2015). However, there is a main draw-
back shared by all these empirical methods: the computational cost
that arises when the volume of the seismic data acquires real-life
proportions. For example, processing a relatively small seismic vol-
ume of one million traces may take up to several hours on a standard
workstation, as we will show later.
This computational disadvantage is mainly due to the interpola-

tion step that is used in the EMD algorithm to obtain the mean
envelope of the data, a process that is repeated several times for
each IMF that is calculated. This drawback is even more noticeable
when using the noise-assisted EMD methods because of the usually
large number of signal realizations that are needed to reduce the
inherent mode mixing/splitting problem. The envelopes are usually
calculated by cubic spline interpolation, although a simpler and
faster linear interpolation could be used, but at the expense of seri-
ous mode mixing and splitting (Rilling et al., 2003). The best results
are obtained when the envelopes are accurately computed by Her-
mite polynomials (Meignen and Perrier, 2007) or through optimi-
zation (Fomel, 2008, 2013; Yang et al., 2014). However, none of
these alternatives is faster than the spline interpolation because they
add more computational complexity to the EMD algorithm.
A fast scheme to provide appropriate envelopes is then desirable,

especially when dealing with large volumes of data. The strategy
that we propose as an alternative to the interpolation step and to
significantly reduce the computational cost of the EMD approaches
is based on a window averaging (WA) similar to the one used by Li
et al. (2011). Our strategy also retains the simplicity of the original
EMD algorithm, a feature that is very valuable because it minimizes
the user intervention that is often required to set the various param-
eters in the other EMD methods.
It is important to stress that the focus of this work is not on dis-

playing the benefits of denoising seismic data using the various
EMD flavors, but on showing the advantages of our scheme once
the user is considering using EMD for noise attenuation. In a way,

our method is not an EMD decomposition per se because it only
adopts from EMD the sifting idea, but it is a simple user-friendly
algorithm that can be used to denoise large volumes of seismic data
in an efficient and effective way. In fact, this new strategy, which
will be termed window averaged sifting method (WASM), decom-
poses the data empirically into two modes or components: one con-
taining the noise and the second, which is equal to the residue,
containing the signal. As a result, the processing of moderate vol-
umes of data may be reduced from hours (using the standard tech-
niques) to minutes (using the proposed method) on a standard PC.
In addition, results obtained using synthetic and field data show that
the new procedure attains, in a fraction of the time, the same noise
attenuation of standard EMD algorithms.
We analyze the performance of the proposed method in terms of

efficiency and signal preservation, and contrast the results against
the standard EMD and ICEEMD algorithms. The field data exam-
ples include a microseismic data set that contains random and
erratic noise, and a seismic poststack line containing random and
coherent noise. In the case of seismic 2D data, and to preserve and
enhance the lateral continuity of the events, we implement the f-x
version of the algorithm and compare the results with the classical
f-x deconvolution (Canales, 1984; Gulunay, 1986) and the “stan-
dard” f-x EMD-based approaches.

BACKGROUND

Given an input signal sn, the first IMF is obtained in the original
EMD algorithm by iterating over the following steps:

1) Obtain the mean envelopemn ¼ ðenvþn þ env−n Þ∕2, where envþn
and env−n are the upper and lower envelopes that pass through
the maxima and minima of sn, respectively.

2) Set the residue rn ¼ sn −mn as the new input and repeat step 1.

This two-step iterative process, which is known as “sifting,” is
repeated until a stoppage criterion is satisfied. The resulting residue
of this iteration can be regarded as the first IMF, that is IMF1n. The
next IMFs are derived by subtracting this IMF from the original
signal sn and repeating the sifting iteration. As mentioned before,
the upper and lower envelopes are calculated by means of cubic
spline interpolation.
This might be considered as a deflationary process that continues

until the residue is either another IMF or becomes a monotonic
series, having less than three extrema. The input signal can then
be expressed by the following sum:

sn ¼
XK

k¼1

IMFkn þ Rn; (1)

where Rn is the final residual. Common stoppage criteria for the
sifting process, ordered from faster to slower ones, include: (1) to
sift a low but fixed number of times (fixed criterion; Wu and Huang,
2009), (2) to sift a low and fixed number of times after the IMF
conditions are satisfied for the residue (Huang and Wu, 2008),
and (3) the two-threshold criterion (Rilling et al., 2003), which
works in most practical cases, but requires more sifting iterations
to reach mean amplitudes that are globally small. One key issue
of the EMD algorithms is that if the sifting iterations are excessive,
the resulting IMFs may fail to contain useful information, and if
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they are too few, the resulting modes may display partial or incom-
plete characteristics of the original signal.
As an example, Figure 1a shows a signal that is composed of

three sinusoids of different frequencies, and the corresponding
EMD. In this case, because the signal contains no noise and the
scales of the sinusoids are markedly different, the EMD is able
to capture the tones in the first three IMFs. When the signal is con-
taminated with uniform random noise of amplitude 0.3 of the maxi-
mum signal value, the decomposition displays mode mixing and
splitting, as shown in Figure 2a.
The corresponding decompositions using CEEMD and ICEEMD

are shown in Figures 1b and 1c and 2b and 2c, respectively. The
improvement is noticeable in the noisy case. These results will
be analyzed in the “Examples” section.
So far, ICEEMD is the most effective EMD approach when ap-

plied for mode decomposition. The noise cancellation is improved
by calculating the residues as averages of the mean envelopes re-
sulting from the EMD sifting. The number of spurious modes is
reduced by using only EMD modes of the added white noise in
the realizations (Colominas et al., 2014). Unlike EMD, the ICE-
EMD algorithm requires the user to set not only
the proper sifting stoppage criterion but also the
number of noise realizations Nn and the ampli-
tude of the white noise ε0 to initiate the decom-
position of a given signal. For more details of the
algorithm, the reader is referred to the work by
Colominas et al. (2014).

EMD DENOISING

Denoising a signal using any of the standard
EMD algorithms can be carried out in two steps:
(1) decomposing the input data into a complete
set of IMFs and (2) reconstructing the signal us-
ing either an appropriate subset of IMFs that con-
tain signal and no noise or by band modulating
the EMD via mode weighting without exclusion
(Macelloni et al., 2011). For example, a typical
EMD-based mode exclusion denoising algorithm
may consist of subtracting low-order modes from
the input signal (Bekara and van der Baan, 2009)
or removal of undesired energetic high-order
modes related to coherent noise (Battista et al.,
2007). In this context, the denoised signal sdn
of a given seismic trace sn can be obtained by

sdn ¼ sn −
XM2

k¼M1

IMFkn; (2)

with M1 ≤ M2. Recalling that the IMFs have a
frequency content that decreases with k, then,
to remove high-frequency noise, one may set
M1 ¼ 1 and M2 ≪ K. But to suppress low-
frequency coherent components, one should set
M1 > 1 and M2 ≤ K. A logical combination of
the standard denoising expressed in equation 2 is

sdn ¼
XM2

k¼M1

IMFkn; (3)

with 1 < M1 ≤ M2 ≤ K. In this case, the modes whose order are
lower than M1 are associated with the high-frequency noise compo-
nent of the signal, whereas the modes of order greater than M2 are
associated with coherent and noisy low-frequency components. It can
be shown that the denoising schemes expressed in equations 2 and 3
are similar in applying a series of adaptive band-pass filters, but with-
out the need to specify a priori how many filters and which cutoff
frequencies to use (Colominas et al., 2014).
The parameters M1 and M2 need to be selected by the user. Usu-

ally, M1 ¼ M2 ¼ 1 is enough for most seismic applications when
the original EMD is the chosen algorithm in conjunction with equa-
tion 2. In this case, due to the fact that only the first IMF is taken
into account, the mode splitting is assumed to play a minor role,
otherwise significant high-frequency noise could evade the denois-
ing by mixing with the second and higher modes.

A
m
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itu

de

a)

b)

c)

d)

Data   IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7

Figure 1. Decomposition of a noise-free three-tone sinusoidal into IMFs using
(a) EMD, (b) CEEMD, (c) ICEEMD, and (d) WASM.
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Data   IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8

Figure 2. Decomposition of a noisy three-tone sinusoidal into IMFs using (a) EMD,
(b) CEEMD, (c) ICEEMD, and (d) WASM.
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When using equation 3, instead, the noise-assisted algorithms
should be applied because it is desirable that the IMFs are as free
of mode mixing as possible so that the selection of M1 and M2 is
more robust.
Here, the first modes may be contaminated by residual noise in-

herent in the decomposition algorithm, and may also contain spu-
rious modes (as is the case of CEEMD and shown in Figures 1b and
2b). Hence, selectingM1 ¼ 1 is not always optimal for noise reduc-
tion if the noise-assisted methods are applied. Following Kopsinis
and McLaughlin (2009), a way to select parameters M1 and M2

appropriately consists of decomposing the signal sn into all its
modes and using a measure of their energy for mode inspection
and thresholding (Han and van der Baan, 2015). However, a full
mode decomposition for energy analysis of each trace with spline
interpolation seems unfeasible when terabytes of data are con-
sidered.

WASM DENOISING

The methodology we will describe and propose in this paper is
WASM.WASM has two advantages over the standard EMD denois-
ing. The first advantage is the removal of random noise that is done
by selecting a small value for the parameter α that is used in the
method and is achieved in a fraction of the time required by the
standard EMD and ICEEMD. The second one is, by increasing
α, low-frequency signal attenuation is possible without the need
to estimate the parameter M2 in equation 3. This can be explained
by the fact that after scanning the input data with the moving win-
dow of length Nw, the signal information of the corresponding scale
is captured almost entirely in the first IMF. On the contrary, the
standard EMD and ICEEMD would require a full decomposition
into several modes and inspection of the higher order IMFs to es-
timate the appropriate M1 and M2 values to be used in equation 3.
This full mode calculation for each trace makes the removal of low-
frequency content a much slower process than the proposed WASM
approach.
The cubic spline interpolation of the EMD may become a speed

limitation when processing large volumes of data or when real-time
outputs are required. The standard EMD is computationally effi-
cient, but after processing thousands or millions of traces, the im-
pact of the spline interpolations inside the sifting loop may become
very significant. In addition, often the mode mixing/splitting leads
to situations where most high-frequency noise energy is not trapped
in the first mode, so more than one mode may have to be calculated
for each trace. The noise-assisted EMDs will be more computation-
ally intensive due to the noise realizations of the signal and their
residues. In addition, the existence of spurious modes usually re-
quires that more than one mode has to be calculated for properly
denoising the input signal. As noticed by Macelloni et al. (2011),
EMD with partial sifting or without a strict focus on producing a
complete set of IMFs can improve the computational efficiency of
the algorithm.
To speed up the denoising process while keeping the implemen-

tation and the parameter selection as simple as possible, we propose
using a moving window average to compute in one step the mean
local envelope required in the EMD sifting loop. The WA is calcu-
lated by convolving the signal with a normalized Hanning window
of length Nw. A similar idea was proposed by Li et al. (2011) for
signal decomposition using an adaptive window, but their approach
requires extra user-defined parameters and more rounds of sifting.

In our implementation, the goal is filtering out the noise and not to
decompose the signal into modes. This incomplete decomposition
allows us to significantly improve the computational costs because a
single mode or component needs to be obtained and the denoised
signal is

sdn ¼ sn − IMF1n: (4)

The described algorithm is called WASM because it is neither a
complete nor a partial EMD. Note that the moving window average
of the new algorithm can be applied in the sifting loops of the origi-
nal EMD and ICEEMD methods for denoising either in the time
domain (i.e., on a trace-by-trace process) or in the f-x domain.
The latter follows the same objectives of the classical f-x decon-
volution, that is, attenuating noncoherent noise in the frequency-
space domain to preserve and enhance the lateral continuity of
the events.
The choice of the window length Nw can be automated in a

straightforward and yet effective way as follows. Because of the
information of the zero crossings of the input signal gathered by
the original EMD algorithm, we compute the mean zero-crossing
distance D of the signal as the average of the number of samples
between all successive pairs of zero crossings of the data. Then, the
number of coefficients in the window is set to

Nw ¼ αD; (5)

where α is a user-defined parameter. For data comprising several
traces, we can choose to calculate the mean of the resulting Nw

of each trace hNwi, and then use that value for processing all traces.
As for the stoppage criterion required in the sifting process, we pre-
fer to use the fixed criterion, where approximately 10 sifting iter-
ations are usually enough for a good performance.

NUMERICAL EXAMPLES

Synthetic data examples

To illustrate the EMD methods and their denoising capabilities
as compared with the proposed WASM approach, we consider a
simple sinusoidal signal sampled at 1 ms for 1 s and composed of
three tones: sn ¼ sinð2πf0tnÞþ0.5 sinð2πf1tnÞþ0.25 sinð2πf2tnÞ
with frequencies f0 ¼ 3, f1 ¼ 15, and f2 ¼ 30 Hz (Figure 1).
We note that a pure sinusoid is itself an IMF because it has zero
mean and is symmetric, so, ideally, any EMD should lead to only
three IMFs. In the example we apply various EMDs with cubic
spline interpolation and the two-threshold criterion for the sifting
loop, Nn ¼ 20 and ϵ0 ¼ 0.2 for the noise-assisted methods. For
the WASM scheme, we set α ¼ 1 and the fixed stopping criterion
with 10 iterations. Because the data contain no noise, the conven-
tional EMD decomposes the signal spontaneously in their three
tones without mode mixing or splitting (Figure 1a). Figure 1b
and 1c shows the CEEMD and ICEEMD results, respectively. De-
spite the fact that they show low-order spurious modes due to the
residual left by the added noise during the algorithm, the original
tones are well-isolated in the three last IMFs. Notice that the ICE-
EMD decreases by one the number of spurious modes of the
CEEMD and exhibits a smaller amount of noise residual due to
the more effective noise cancellation. The Hanning window length
calculated in WASM Nw is 335 (which is practically the number of
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samples entailed by one period of the lowest frequency sinusoid:
ð1∕f0Þ∕ðΔtÞ ≈ 333) focusing the algorithm for frequencies higher
than f0 and collecting the two higher frequency tones into its first
mode (Figure 1d). Because the concern of the WASM algorithm is
not mode decomposition, this result can be interpreted as the iso-
lation of the higher frequency tones from the sinusoid of frequency
f0. Application of WASM to ICEEMD shows a similar behavior,
and for this reason the corresponding results are not shown.
Next, we add uniform random noise to the signal of amplitude

0.3 maxðjsnjÞ (Figure 2). Because of the noise, the original EMD
now exhibits an evident mode mixing and splitting as shown in Fig-
ure 2a. As a consequence of the added noise, the isolation of the
three tones in separate modes using the EMD algorithm is less ef-
fective than the results obtained from the noise-
assisted approaches CEEMD and ICEEMD (Fig-
ure 2b and 2c, respectively). The WASM gives in
this case Nw ¼ 25 due to the more frequent zero
crossings of the added random noise; the result is
displayed in Figure 2d. In this case, the algorithm
is focused on frequencies higher than 40 Hz
(f ≈ ð1∕NwÞ∕ðΔtÞ), and as opposed to the stan-
dard EMD and ICEEMD algorithms, it traps
most of the random noise energy in the first
mode, leaving the three tones in the residual.
Figure 3 shows the denoised signals, their
differences with respect to the original noise-free
data and the corresponding amplitude spectra.
For simplicity, in all cases the denoising was car-
ried out by removing only the first IMF. Even
though the amplitude spectra do not clearly show
that the WASM works better at removing high-
frequency noise, the improvement can be appre-
ciated by inspecting the respective differences
shown on the second column of Figure 3.
As a measure of signal preservation we use the

quality factor (Chen and Sacchi, 2015)

Q ¼ 10 log
kS0k2F

kS0 − Sdk2F
; (6)

where S0 is the noise-free seismic data matrix of
N time samples and M traces, Sd is the denoised
result, and k · kF is the Frobenius norm, which is
the rms value of the matrix elements. When deal-
ing with a single trace, S0 ¼ s0n and Sd ¼ sdn. A
larger value of the factor Q indicates better
denoising performance. In this particular exam-
ple, the largest Q and the fastest result are attained when using
the WASM (Table 1).
A second example consists of a synthetic trace composed of three

Ricker wavelets of unit amplitude sampled at 2 ms with peak
frequencies of 30, 25, and 20 Hz, respectively (Figure 4, first
row). The trace is then contaminated with zero-mean uniform ran-
dom noise of amplitude 0.2 plus a coherent chirp of amplitude 0.8
with a linear frequency sweep that goes from 250 to 200 Hz within
the time window considered (Figure 4, second row). For simplicity,
all EMDs are performed under suboptimal conditions for the stop-
page criterion and the number of noise realizations to simulate the
computational requirements of processing seismic data and also to

obtain comparable computational performances and results. Thus,
we set again Nn ¼ 20 and a fixed number of 10 sifting iterations in
all cases. We recall that the WASM scheme runs with the fixed cri-
terion as default. In addition, we set α ¼ 4, which leads toNw ¼ 17.
Rows 3–5 of Figure 4 show the results of the EMD denoising

when using the EMD, ICEEMD, and WASM. Notice how the
denoising is less effective from left to right due to the frequency
content of the chirp. The results show comparable Q values for
EMD and ICEEMD and a better denoising by the WASM algorithm
(Table 2). The differences between the original noise-free synthetic
and the denoised result as well as the amplitude spectra of the
denoised signals clearly demonstrate the advantages of denoising
by means of the WASM scheme. Not only does this approach show

–1

 0

 1

Signal

–1

 0

 1

Signal plus noise

–1

 0

 1

EMD

–1

 0

 1

ICEEMD

–1

 0

 1

0 0.5 1

WASM

Time (s)

–1

 0

 1

Added noise

–1

 0

 1

Error of EMD

–1

 0

 1

Error of ICEEMD

–1

 0

 1

0 0.5 1

Error of WASM

Time (s)

 0

 1
Spectrum of signal

 0

 1
Spectrum of signal plus noise

 0

 1
Spectrum of EMD

 0

 1
Spectrum of ICEEMD

 0

 1

 3  15  30  80

Spectrum of WASM

Frequency (Hz)

Figure 3. Denoising of a three-tone sinusoidal, the corresponding errors, and amplitude
spectra. First row: noise-free signal. Second row: noisy signal. Rows 3–5: denoised sig-
nals after EMD, ICEEMD, and WASM, respectively. In all cases, the denoising was
carried out by removing the first IMF only.

Table 1. Quality factor Q and computational time required
in denoising the sinusoidal data of Figure 2 for different
algorithms. The CPU is a Intel Core i3 at 3.10 GHz with
3 GB of RAM.

Algorithm Q Time (s)

EMD 8.2 0.017

ICEEMD 9.7 0.887

WASM 13.5 0.0013

Denoising with WASM V407
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a lower residual and a better high-frequency noise attenuation, but
also it requires a lower computational cost than the standard meth-
ods (Table 2).
Figure 5 shows the average Q factor for the noise-free synthetic

trace of Figure 4 plus uniform random noise with amplitudes rang-
ing from zero to one in steps of 0.1 after 100 realizations per step. In
all cases, the denoising was carried out by removing the first IMF
only. The results indicate that a similar denoising to that of the stan-
dard EMDs algorithms can be expected from the WASM alter-
natives.
The previous examples demonstrate the performance of the vari-

ous EMDs implementations when applied on a trace-by-trace basis.
However, when processing 2D seismic data it is usually desired to
carry out the denoising by enhancing the lateral continuity of the
events. Bekara and van der Baan (2009), Chen and Ma (2014),

and Han and van der Baan (2015) show that the f-x EMD methods
can significantly improve the noise suppression of the classical f-x
deconvolution, specially when coherent noise is present. In its sim-
plest form, the f-x EMD consists of taking the 1D Fourier transform
of the t-x data on a selected time window, and applying the EMD to
the real and imaginary parts in the offset direction, one frequency at
a time. Finally, the first IMFs are removed and the data are trans-
formed back to the original domain to produce the filtered data (Be-
kara and van der Baan, 2009).
To analyze the results of processing 2D seismic data using the

proposed method, we implemented the f-x versions of the algo-
rithms and compared their performances against the classical f-x
deconvolution. For this purpose, we consider a portion of the post-
stack data set of the well-known 2DMarmousi model (Versteeg and
Grau, 1991; Figure 6, first row), and add band-limited Gaussian

random noise as well as erratic noise with differ-
ent S/Ns. The erratic noise is also generated as
random noise, but it is multiplied by a factor
of five at certain traces. We then denoise this
data set using f-x EMD, f-x WASM, and the
classic f-x deconvolution (Canales, 1984; Gulu-
nay, 1986).
The results are shown in Figure 6 for S∕N ¼ 7.

The quality factors are summarized in Table 3.
These results indicate that the signal preservation
of the f-x WASM is similar to the other f-x im-
plementations. Comparable amounts of random
noise are attenuated by the three methods, and
they all preserve the reflections quite well even
for those traces that contain the erratic noise.
In terms of computational cost, the WASM ap-
proach obtains the results in less time. For the
case depicted in Figure 6 (300 traces), f-x ICE-
EMD takes 33 s, f-x EMD takes 0.53 s, and f-x
WASM takes only 0.03 s. The WASM scheme is
18 times faster than the EMD implementation.
Note that in this example, and to obtain Q values
comparable with those for the WASM, we sub-
tracted two IMFs for f-x EMD and ICEEMD
methods. In addition, we set Nn ¼ 10 and Nw ¼
29 for ICEEMD and WASM, respectively.

Field data examples

We provide two examples to test the proposed
methods on field data: (1) a microseismic data set
containing high levels of different kinds of noises
and (2) a 2D seismic line that contains random

and coherent noise. In the first case, we apply the trace-by-trace
EMDs implementations, whereas in the second case we use the cor-
responding f-x EMDs approaches.
As is well-known, microseismic records are often contaminated

by random and coherent noise, such as ground roll, geophone re-
verberations due to tube waves and waves propagating in the well
casing (Tary and van der Baan, 2012), sensor-induced electrical
noise from incorrectly placed receivers and cabling (Maxwell,
2014), and background noise from human activities (Tselentis et al.,
2012). In addition, data sets are usually very large and the S/N
is very low. Thus, a fast and simple denoising algorithm may be
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Figure 4. Denoising of a synthetic trace containing three Ricker wavelets, the corre-
sponding errors, and amplitude spectra. First row: noise-free signal. Second row: noisy
signal. Rows 3–5: denoised signals after EMD, ICEEMD, and WASM, respectively. In
all cases, the denoising was carried out by removing the first IMF only.

Table 2. Quality factor Q and computational time required
in denoising the synthetic trace of Figure 4 for different
algorithms.

Algorithm Q Time (s)

EMD −0.9 0.0023

ICEEMD −0.6 0.357

WASM 8.2 0.0011
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necessary or mandatory for their processing, especially when real-
time decisions are to be made on the injection site.
The first panel of Figure 7 shows a small portion of a microseis-

mic data set (1C only) that was recently acquired in South America
during a downhole hydraulic fracturing monitoring survey. Note
that the data set exhibits random, erratic, and coherent noise that
masks the continuity of two microseismic events approximately
at 3.3 and 4.1 s. The second panel shows the denoised traces using

the WASM, whereas the third panel shows the corresponding
residual, in which the noise components have been mostly trapped.
In this example, we obtained a good noise attenuation by setting
α ¼ 3, which yields for the whole gather a value of hNwi ¼ 49.
For comparison, Figure 7 also shows the denoised traces and res-
idues that result from the standard EMD and ICEEMD implemen-
tations. In all cases, we used the fixed stoppage criterion method
and 10 sifting iterations. We observe that the amount of noise at-
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Figure 6. Marmousi data example. First row: por-
tion of the Marmousi poststack data set, added
noise and data plus noise. Second row: denoising
using f-x deconvolution, f-x EMD, and f-x
WASM. Third row: corresponding difference sec-
tions. The processed data set contains 300 traces,
but for simplicity we show one of every five traces.
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Figure 5. Mean quality factor Q after denoising
100 realizations of the synthetic trace of Figure 4
with random uniform noise of variable amplitude.
(a) EMD (gray circles) and WASM (black circles).
(b) ICEEMD (gray circles) and WASM in ICE-
EMD (black circles).
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tenuation is very similar in all cases. In the case of the standard
EMD and ICEEMD, and after a visual inspection of the denoised
data, we decided to remove the first two IMFs for optimum results.
The second field data example illustrates the denoising in the f-x

domain of the 2DAlaska North Slope Land Line 31–81 (Geological
Survey, 1981). This data set, shown in Figure 8, consists of 536
traces and 3000 time samples per trace with a sampling interval
of 2 ms. The WASM algorithm gives a denoised result similar
or better than the classical f-x deconvolution and the standard
f-x EMD. For the f-x deconvolution, an operator length of 20
traces is used for every frequency slice and for every window com-
prising 100 traces in the offset direction. Similar to Han and van der
Baan (2015), the algorithm is implemented between 0 Hz and 60%
of the Nyquist frequency, zeroing out the frequencies beyond
this limit.
Figure 9 shows an enlarged portion of the data, the denoised re-

sults, and the corresponding difference sections. We observe that
while the f-x deconvolution subtracts mostly random noise, the
EMD-based f-x approaches remove random and coherent noise
without harming signal integrity. Inspection from the results de-
picted in Figures 8 and 9 show that the standard f-x EMD and

the f-x WASM approaches provide very similar results, with the
WASM alternative suppressing more coherent noise. In contrast
to the f-x EMD, the f-x WASM algorithm obtains the results in
a fraction of the time. In effect, the f-x EMD takes approximately
19 s (removing two IMFs), whereas the f-xWASM takes 2.1 s with
a window length of 45 samples.

DISCUSSION

A brief analysis of the computational complexity of the algo-
rithms shows that the WASM approach is able to obtain the first
mode required for the denoising using a significantly smaller num-
ber of operations than the standard EMD technique. In effect,
the WASM algorithm avoids the step of cubic interpolation for
both envelopes to obtain the mean envelope for each sifting
iteration of the standard EMD. For a single cubic natural spline in-
terpolation, the computational complexity for a signal of length N is
OðN þ log2 NÞ:OðNÞ to generate the spline once andOðlog2 NÞ to
evaluate the spline at a single point using bisection (Press et al.,
1996). For a whole trace, this last step involves OðN log2 NÞ oper-
ations for each envelope. Then, for one sifting iteration, the com-
putational complexity involved in the calculation of the mean
envelope in EMD is OðN þ N log2 NÞ. For a window of length
Nw, the proposed moving WASM requires OðNwÞ evaluations to
obtain the mean envelope at a single point withNw ≪ N in the prac-
tical applications. For the N points and one sifting iteration, this
scheme requires OðNNwÞ calculations or OðN log2 NÞ, with the
aid of an FFT.
The mode mixing/splitting problem inherent to the standard

EMD method often demands more than one mode for properly
denoising the high-frequency noise content. The CEEMD and ICE-
EMD methods greatly reduce the mode mixing and splitting and
they also require more than one mode for the same task because
of the presence of spurious modes. Unlike those methods, the
WASM scheme is more efficient in terms of computational cost
and is able to attenuate the same or even better levels of noise en-
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Figure 7. Field data example 1: the first panel shows the raw microseismic data. The remaining panels show the denoising results and the
corresponding residuals using WASM, EMD, and ICEEMD, respectively.

Table 3. Quality factor Q versus S/N using f -x deconvolution,
f -x EMD, f -x ICEEMD, and f -x WASM for a portion of the
Marmousi data set.

S/N

Algorithm 10 7 5 2 1

f-x deconvolution 14.5 13.8 12.7 6.5 −0.4
f-x EMD 14.9 14.1 12.5 2.7 −8.5
f-x ICEEMD 15.3 14.6 12.9 3.3 −7.6
f-x WASM 15.5 15.1 14.3 8.7 −0.8

V410 Gómez and Velis

D
ow

nl
oa

de
d 

12
/2

1/
16

 to
 1

81
.2

2.
52

.1
40

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



ergy using a single mode, as demonstrated by the various synthetic
and field data examples.
Table 4 further shows the expected speedup when processing

a microseismic data set. The table depicts the computation times
after running 10 times the denoising algorithms using the cubic
and the WASM schemes associated with the
EMD and ICEEMD approaches on the whole
10 s long microseismic record, of which a 1.5 s
section was shown in Figure 7. In all cases the
alternative algorithm is faster by at least one or-
der of magnitude, being the relative decrease
in computational time more noticeably for the
ICEEMD algorithm, as expected. The WASM is
more than 30 times faster than the standard
EMD, whereas the WASM in ICEEMD is ap-
proximately 100 times faster than ICEEMD.
This significant drop in computational time then
allowed for the processing of the 3000 traces of
the whole data set in a reasonable time frame (of
seconds), which would have been of several mi-
nutes or hours, respectively, if the standard EMD
and ICEEMD implementations were used.
The results from the f-x denoising suggest

that the WASM alternative provides comparable
or better results than those of the other f-x em-
pirical implementations with less computational
effort. If a medium size seismic data volume of
approximately one million traces was to be proc-
essed, a simple estimate based on the measured
processing times required to process the Alaska
data set depicted in Figure 8 indicates that the
standard f-x approach would take approxi-
mately 10 h, whereas the f-x WASM approach
only 1 h on the standard PC we used for this
analysis (Intel® Core™ i3 at 3.10 GHz with
3 GB of RAM). This speedup of approximately
10 (in the Marmousi example, the speedup was
approximately 18) is a rough estimate because
the computation time strongly depends on the se-
lected parameters, especially the number of IMFs
removed in the standard EMDs implementations
(recall that the WASM algorithm always selects
one), or the number of sifting iterations.
As one would expect, when large volumes of

seismic data are considered, a full or partial de-
composition into several IMFs for each trace or
frequency slice seems unfeasible for mode in-
spection before denoising. The sequential char-
acter of the IMFs calculations of the EMDs
implies that this processing is not parallelizable
for a single trace. For noise attenuation of differ-
ent scales, the proposed WASM denoising can
bypass this limitation if different window lengths
are supplied (Gómez and Velis, 2015).
In this sense, the f-x WASM algorithm per-

mits selection of an adaptive window length for
each frequency slice. This offers the analyst the
option of controlling the smoothness of the final
result. When using one representative value for

all traces (as done in the second field data example), smoother re-
sults are obtained that are comparable with the removal of more than
one or two IMFs when using the standard f-x EMD and f-x ICE-
EMD approaches. This analysis is beyond the scope of this work.
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Figure 8. Field data example 2: the 2D Alaska field data set, in which the white box
indicates a section to be enlarged in Figure 9. Denoising using f-x deconvolution, f-x
EMD, and f-x WASM are shown.
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Figure 9. Field data example 2: first row: enlarged section from the Alaska data set and
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row: corresponding difference sections.
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CONCLUSIONS

The proposed WASM technique speeds up computation time to a
range that EMD-like denoising can be efficiently applied to large
volumes of data on a standard workstation. The bottleneck in all
previous EMD-based denoising implementations is in the polyno-
mial interpolation step used to find the mean local envelope. We
have simplified this costly step by a simple, yet elegant solution,
using WASM. This translates into reducing the computational com-
plexity of the original algorithm and keeping to a minimum the
number of user-defined parameters required to filter the data.
The WASM implementations inspired by the EMD and ICEEMD

sifting algorithms were successfully applied for suppressing coher-
ent, erratic, and random noise in synthetic and field data examples.
These include algorithms for trace-by-trace processing, which were
applied for denoising a microseismic data set containing noise of a
different nature, and to process seismic data in the f-x domain to
enhance the lateral continuity of the events, as in the case of the
classical f-x deconvolution. This implementation was applied to
denoise a Marmousi section containing random and erratic noise
and to the Alaska field data set that contained random and coherent
noise.
Denoised signals by means of WASM are equivalent and often

superior to those obtained by using the standard algorithms in terms
of signal preservation and denoising capabilities. In addition,
WASM led to speedups of one order of magnitude or more in some
cases, allowing processing of relatively large volumes of data on a
standard PC within a reasonable time frame in minutes, and with
minimum user intervention. We believe that WASM is a good com-
plement to the standard empirical decomposition techniques and
f-x deconvolution.
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