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Summary

Tuberculous pleurisy is a naturally occurring site of Mycobacterium tubercu-
losis (Mtb) infection. Herein, we describe the expression of activation, natural
killer (NK) and cell migration markers, as well as effector functions from gdT
cells in peripheral blood (PB) and pleural effusion (PE) from tuberculosis
patients (TB). We observed a decreased percentage of circulating gdT from TB
patients and differential expression of NK as well as of chemokine receptors
on PB and PE. Two subsets of gdT cells were differentiated by the CD3/gdT cell
receptor (gdTCR) complex. The gdTCRlow subset had a higher CD3 to TCR
ratio and was enriched in Vd2+ cells, whereas most Vd1+ cells belonged to the
gdTCRhigh subset. In PB from TB, most gdTCRhigh were CD45RA+CCR7- and
gdTCRlow were CD45RA+/-CCR7+CXCR3+. In the pleural space the proportion
of CD45RA-CCR7+CXCR3+ cells was higher. Neither spontaneous nor Mtb-
induced interferon (IFN)-g production was observed in PB-gdT cells from TB;
however, PE-gdT cells showed a strong response. Both PB- and PE-gd T cells
expressed surface CD107a upon stimulation with Mtb. Notably, PE-gdTCRlow

cells were the most potent effector cells. Thus, gdT cells from PB would acquire
a further activated phenotype within the site of Mtb infection and exert full
effector functions. As gdT cells produce IFN-g within the pleural space, they
would be expected to play a beneficial role in tuberculous pleurisy by helping
to maintain a T helper type 1 profile.
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Introduction

Although the vast majority of mature T lymphocytes
express a heterodimeric ab T cell receptor (TCR), a small
subset (1–5%) of circulating human T cells carries the
alternative gdTCR [1,2]. The main differences between ab
and gdT cells concern the diversity of the TCR germline
repertoire and antigens recognized by the respective TCR
molecules [3]. It has been shown recently that, similar to
CD4 and CD8 ab T cells, Vg9Vd2 T cells, the major subset
in human peripheral blood, are heterogeneous and com-
prise distinct populations that can be distinguished on the
basis of surface marker expression and effector functions
[4–6]. Vd1 chain expressing gdT cells are a minor subset in
blood (10–30% of peripheral gdT cells) [7] that can be acti-
vated and expanded in response to lipid extracts of Gram-
negative bacteria and polyprenylphosphates [8]. gdT cells
display an important number of effector functions leading
to proliferation, release of T helper type 1 (Th1) cytokines
and cytotoxic activity against pathogen-infected macro-

phages [9–11]. gdT cells recognize non-peptide phosphory-
lated metabolites of isoprenoid biosynthesis, (E)-4-
hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP)
being the most potent antigen described. HMBPP is pro-
duced by most eubacteria, including Mycobacterium tuber-
culosis (Mtb) [12]. Prenyl pyrophosphate antigens do not
require antigen uptake, processing or intracellular loading
for presentation, but are dependent upon cell-to-cell
contact. In this context, recent findings suggest strongly the
existence of an antigen-presenting molecule different from
the currently known major histocompatibility complex
(MHC)/CD1 molecules [13,14]. gdT cells are activated in
response to Mtb [15,16], and an expansion during myco-
bacterial infection has been observed in experimental
models as well as in secondary challenges with either bacilli
Calmette–Guérin (BCG) or virulent Mtb [10,17]. Further-
more, gdT cells from BCG-vaccinated individuals expand
upon restimulation with mycobacterial antigens and
display a memory-like phenotype [18]. However, studies
investigating gdT cell function in peripheral blood (PB)
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and lungs of patients with TB have provided contradictory
results [7,19–21].

Tuberculous pleuritis is a common manifestation of extra-
pulmonary tuberculosis (TB) and results in an increased
pleural vascular permeability that leads to the accumulation
of protein-enriched fluid and the recruitment of specific
inflammatory leucocytes into the pleural space leading to the
clearance of mycobacteria from this cavity [22–24]. Ex-vivo
and in vitro studies have demonstrated that CD4+ cells,
together with a marked Th1 environment, are predominant
in TB pleural effusion (TB-PE) [25–27]. Other cells present
in TB-PE [23,26] may also contribute to mount a protective
immune response against Mtb. An abundance of immuno-
competent cells in the PE enables the study of locally accu-
mulated effector cells, of their cytokine production and of
their preferential homing. Considering that tuberculous
pleurisy is a naturally occurring site of Mtb infection, in this
study we have investigated the expression of activation,
natural killer (NK) and cell migration-associated markers,
and the effector functions from gdT cells in PB and PE from
TB patients. Herein, we have demonstrated that gdT cells
comprise two distinct subsets that present marked differ-
ences in activation state and effector functions in both PB
and PE.

Materials and methods

Patients

Thirty-four patients (28 men, six women, aged between 17
and 63 years) with newly diagnosed tuberculous pleuritis
were identified at the Servicio de Tisioneumonología, Hos-
pital F. J Muñiz (Buenos Aires, Argentina). Informed consent
was obtained from patients according to the Ethics
Committee. Patients were evaluated by history and physical
examination, complete blood cell count, electrolyte, chest
X-ray, human immunodeficiency virus (HIV) and tubercu-
lin skin test status. PE and PB were obtained during diag-
nostic thoracentesis before initiation of chemotherapy.
Exclusion criteria included a positive test for HIV or the
presence of concurrent infectious diseases. Effusions were
classified as exudates if they fulfilled at least one of the Light
et al. criteria [28]. TB-PE were defined as exudates with a
positive Ziehl–Nielsen stain or Lowenstein–Jensen culture of
PE or pleural biopsy specimens.

Thoracentesis and mononuclear cells

PE was obtained as described previously [29]. Biochemical
analysis, bacterial cultures and cytological examinations
were performed on all PE samples at the Central Laboratory
of Muñiz Hospital. PE and PB samples were dispensed into
tubes containing heparin and were collected from patients
on the same day as thoracentesis. PB from healthy subjects
(HS) (n = 10; age range 20–55 years) were also evaluated. All

HS had received BCG vaccination in childhood and their
tuberculin-test status was unknown. Peripheral blood
mononuclear cells (PBMC) and PE mononuclear cells
(PEMC) were isolated by Ficoll-Hypaque and suspended in
RPMI-1640 tissue culture medium (Gibco Laboratories,
New York, NY, USA) containing gentamicin (85 mg/ml) and
10% heat-inactivated fetal calf serum (Gibco Laboratories;
complete medium). Purity and viability were tested using
trypan blue exclusion. PBMC and PEMC (1 ¥ 106 cells/ml)
were cultured in Falcon 2063 tubes (Becton Dickinson,
Lincoln, NJ, USA) for 24 h at 37°C in a humidified 5% CO2

atmosphere, in complete medium with or without Mtb.

Antigen

The gamma-irradiated Mtb H37Rv strain used in this study
was provided by J. Belisle (Colorado State University, Denver,
CO, USA). Mycobacteria were suspended in phosphate-
buffered saline (PBS) free of pyrogen, sonicated and adjusted
at a concentration of ª1 ¥ 108 bacteria/ml [optical density
(OD)600 = 1].

Immunofluorescence analysis

Expression of surface markers on gdT lymphocytes. The fol-
lowing anti-human monoclonal antibodies (mAb) were
used: Cy5PE-CD3, fluorescein isothiocyanate (FITC)-
and phycoerythrin (PE)-CD56, FITC-CD16, FITC-CD94,
PE-human leucocyte antigen D-related (HLA-DR), FITC-
CD62L, FITC-CD45RO, FITC-CD45RA (e-Bioscience, San
Diego, CA, USA), PE-NKG2A and PE-NKG2D (R&D
Systems, Minneapolis, MN, USA), FITC- and PE-CD69
(Ancell, Bayport, MN, USA), FITC (e-Bioscience) or
PE-pan-gdTCR (BD-Pharmingen, San Diego, CA, USA),
PE-CCR7, PE-CXCR3, PE-CD27, PE-Vd2TCR (BD-
Pharmingen) and FITC-Vd1TCR (Pierce-Endogen, Thermo
Scientific, Rockford, IL, USA). Labelled isotype-matched
antibodies were also tested. PBMC and PEMC were incu-
bated with the corresponding mAbs for 30 min at 4°C, cells
were washed, fixed with 0·5% paraformaldehyde (PFA), sus-
pended in Isoflow™ (BD-Pharmingen) and analysed in a
fluorescence activated cell sorter (FACScan) cytometer using
Cellquest (BD-Pharmingen) and FSC Express (De Novo
Software, Los Angeles, CA, USA) software; 30 000–50 000
events in the lymphocyte gate were acquired. Analysis gates
were set on lymphocytes according to forward- and side-
scatter properties. Results are expressed as the percentage of
positive cells.

Intracytoplasmatic detection of interferon (IFN)-g

Briefly, PBMC and PEMC (1 ¥ 106 cells/ml) were stimulated
with or without Mtb for 24 h (ratio of cells to bacteria: 1:2).
Brefeldin A (5 mg/ml, Sigma, St Louis, MO, USA) was added
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for the final 4 h to block cytokine secretion prior to surface
staining of CD3 and gdTCR. Thereafter, cells were fixed and
permeabilized according to the manufacturer’s instructions
(Perm2; BD-Pharmingen). FITC- or PE-anti-IFN-g (Caltag,
Burlingame, CA, USA) was added and incubated for 30 min
at room temperature. Cells were washed and analysed
by flow cytometry; 30 000–50 000 events were acquired.
Results are expressed as a percentage of positive cells on
CD3+gdTCR+ cells and as median fluorescence intensity
(MFI).

Detection of perforin in gdT cells

PBMC and PEMC were stained with Cy5PE-CD3 and PE-
gdTCR mAb. Thereafter, cells were fixed and permeabilized
as described above, and stained with FITC-anti-perforin
(Ancell, Bayport, MN, USA). Positive cells were analysed by
acquiring 30 000–50 000 events; results are expressed as per-
centage of positive cells and as MFI.

Detection of CD107a on gdT cells

Because degranulation of antigen-responding T cells is asso-
ciated with acquisition of cell surface CD107a, PBMC and
PEMC (1 ¥ 106 cells/ml) were incubated with or without
Mtb for 18 h, and FITC-CD107a mAB (BD-Pharmingen)
was added to the culture during the last 4 h; thereafter, cells
were washed once and surface-stained with PE-Cy5-anti-
CD3 and PE-anti- gdTCR; 20 000 events were acquired on
CD3+gdTCR+ lymphocytes and results are expressed as a per-
centage of CD107a+ cells.

Statistics

Comparisons of paired PB and PE samples and of different
treatments were carried out using the paired Wilcoxon test
or the unpaired Mann–Whitney test (non-parametric). A
value of P < 0·05 was assumed as significant. For evaluation
of correlations between surface markers, the non-parametric
two-tailed Spearman’s rank correlation test was used.

Results

Patient characteristics

A total of 34 subjects with tuberculous pleurisy were enrolled
in this study. All study participants had newly diagnosed
moderate to large pleural effusions. Among them, 11 also
had pulmonary disease with positive sputum smears. In
addition, PB from 10 healthy donors (HS) was evaluated.
Table 1 summarizes selected clinical and laboratory data
profiles of TB patients. We found a lower absolute number of
lymphocytes (HS = 2175 � 520 cells/mm3, TB = 1512 � 564
cells/mm3; P < 0·05) and gdT cells (HS = 102·2 � 7·6 cells/
mm3, TB = 64 � 59 cells/mm3; P = 0·0017) in PB of TB than
in HS. As shown in Table 1, high adenosine deaminase
(ADA) was found in PE, which is in accordance with its
aetiology [30]. Compared to PB, PE presented higher CD3+

and lower gdT lymphocyte percentages; none the less, no
significant differences were observed in absolute numbers.

Characterization of gdT cells in peripheral blood and
pleural effusion mononuclear cells from TB patients

It is well known that gdT cells express several NK receptors
[31] and that their activity is regulated by both positive
and inhibitory signals transduced by cell surface receptors
including the C-type lectin family, immunoglobulin (Ig)
superfamily and natural cytotoxicity receptors [32–34]. To
characterize the activation state as well as NK and chemok-
ine receptor expression, PE-gdT from TB and PB-gdT from
TB and HS were analysed by flow cytometry. The percentage
of CD69+ gdT cells was higher in PB from TB compared to
that of HS and was even greater in PE-gdT (Fig. 1a).
Although no differences were detected in the proportion of
HLA-DR+ cells between PB from HS and TB, it was signifi-
cantly higher in PE-gdT cells. PB-gdT from HS showed lower
percentages of CD56 and CD16 and higher percentages of
NKG2D and NKG2A than TB-PB. Also, a lower proportion
of gdT cells expressing CD56, CD16, NKG2D and CD94
molecules was observed in PE than PB from TB. However,

Table 1. Clinical, cytological and laboratory data profile from tuberculous pleurisy patients.

Parameter Peripheral blood Pleural effusion P-value

Age (years) 29 (17–63)

Gender 29M/5F

AFB 21+/13-
PPD 19+/15-
ADA – 100 � 21

Cell count, cells/mm3 7012 � 1639 2029 � 1291 P < 0·0001

Ly, % (range) 21 � 8 (5–36) 70 � 12 (44–87) P < 0·0001

Ly count, cells/mm3 1512 � 564 1746 � 1021 n.s.

gdT Ly, % (range) 4·5 � 3·6 (0·6–14·6) 3·0 � 1·8 (0·4–6·8) P < 0·05

gdT Ly, cells/mm3 64 � 59 46 � 44 n.s.

AFB, acid-fast bacillus in sputum or culture; PPD, purified protein derivative skin test; ADA, adenosine deaminase; Ly, lymphocyte; n.s., not

significant.
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the percentage of NKG2A+ gdT cells was higher in PE
(Fig. 1b).

Because lymphocyte migration, including gdT cells,
depends upon the combined action of adhesion molecules
[35] and chemokines and their receptors [36], we evaluated

the expression of molecules involved in extravasation
(CD62L), migration into lymph nodes (CCR7) and associa-
tion with a type-1 response (CXCR3). No differences were
observed in the frequency of CCR7-, CXCR3- and CD62L-
expressing cells between PB-gdT cells from HS and TB.
Despite this, a higher percentage of these markers was
detected in PE-gdT cells, and this was particularly pro-
nounced for CXCR3 (Fig. 1c).

Naive T cells can be differentiated from those that are
activated or have previously encountered antigens (effector/
memory cells) by several surface markers, CD45RA and
CD45RO being employed widely [5]. gdT cells from PB-TB
showed a higher CD45RA percentage than PB-HS with the
same proportion in CD45RO+ cells. In addition, lower
CD45RA+ and higher CD45RO+ percentages were obtained
in PE-gdT cells than in its PB counterpart (Fig. 1d). Having
observed the high CD45RA percentage in PB-gdT cells, we
wondered whether CD3+gd- cells would show the same
CD45RA/RO pattern of expression; a higher proportion of
CD45RA+ cells was detected in PB-TB than in PB-HS,
whereas this percentage was lower in PE (Fig. 1d). The latter
was due to the enrichment in CD4+ cells (72 � 2·5% of
PEMC) that express mainly PE CD45RO (81·3 � 2·0%).
Interestingly, regarding the CD45RA/RO expression pattern,
gdT cells in PB from TB and HS as well as in PE were similar
to conventional CD8+ T cells (data not shown).

Because CD45RA alone is not sufficient to identify naive
cells, CD27 and CD11a were employed as additional markers
and these cells were identified by CD45RA+/CD27bright/
CD11adull expression [4,5]. To rule out that CD45RA+ cells
were naive, CD27 was employed as a second marker.
Although in TB patients 40 � 2% of PB and 68 � 3% of
PE-gdT cells were CD27+, its expression was very low (MFI:
PB = 66 � 5; PE = 95 � 30) compared to that of CD3+gd-

cells (MFI: PB = 250 � 100; PE = 150 � 60; n = 5), suggest-
ing that CD45RA+ gdT cells did not fit the naive phenotype.

Two populations of gdT cells are differentiated by
CD3/gdTCR complex expression

According to TCR and CD3 expression we were able to dif-
ferentiate gdTCRhigh and gdTCRlow subpopulations in PB
from 25 of 38 (66%) TB patients and 14 of 24 (58%) HS
(Fig. 2a). gdTCRlow was the prevailing subset in PB and PE,
and no differences in the gdTCRhigh/gdTCRlow ratio were
observed in either HS or TB samples (Fig. 2b). Furthermore,
a significant correlation between CD3 and TCR was achieved
only when high and low subpopulations were considered as
two independent groups both in PB and in PE (Fig. 2c), and
no correlation was found when high and low gdT were taken
as a single population (PB: r = 0·1611, P = 0·4627; PE:
r = -0·0270, P = 0·9005). When V gene usage was analysed in
gdTCRhigh and gdTCRlow subsets, we found that most Vd1+

corresponded to gdTCRhigh and Vd2+ cells were largely repre-
sented in the gdTCRlow subset in PB from both HS and TB as

30

20

10

0

CD69

CD56 CD16 CD94NKG2D NKG2A

HLA-DR

TB

TB
PBPBPE

**

***

**

**

**

**

*

†

‡
*

**

***

*

*

*

*

*

*

**

**

*

(a)

(b)

(c)

(d)

%
γδ

T

*

TB

PB PB PE PB PB PE

100

80

60

40

20

0

%
γδ

T

70
60
50
40
30
20
10
0

%
γδ

T
%

γδ
T

PB PB

TB

CCR7 CXCR3 CD62L

PE

90
80
70
60
50
40
30
20
10
0

TB
PBPBPE

TB
PBPBPE

TB
PBPBPE

TB
PBPBPE

PB PB

TB

CD45RA

PE PB PB

TB

CD45RO

PE

PB PB

TB

PE PB PB

TB

PE

%
γδ

–
C

D
3

+

90
80
70
60
50
40
30
20
10
0

PB PB

TB

CD45RA

PE PB PB

TB

CD45RO

PE
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blood from tuberculosis (TB) patients and healthy controls. Peripheral
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and TB patients (unfilled bars) and pleural effusion mononuclear cells

(PE) from TB patients (black bars) were tested for surface expression
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activation molecules (a), CD56, CD16, NKG2D, NKG2A and CD94
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migration-associated receptors (c) by flow cytometry in the CD3+gdT

cell receptor (TCR)+ gate. CD45RA and CD45RO markers were

evaluated in CD3+gdTCR+ (gdT) and gdTCR- (gd-CD3+) T cells (d).

Results are expressed as percentage (%) (mean � standard error of
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well as in PE (Fig. 2d). Despite this asymmetrical distribu-
tion, almost half the gdTCRhigh cells expressed the Vd2 chain
(data not shown). Therefore, our results suggest that gdT
cells can be divided into two subsets according to the TCR
complex, with gdTCRlow having a higher CD3/TCR ratio.

Phenotypical differences of gdTCRhigh and gdTCRlow

subsets from PB and PE cells in TB patients

Considering the gdTCRhigh and gdTCRlow subsets identified in
PB and PE, we wanted to determine whether there were
differences in the CD45RA and CD45RO markers. As shown
in Fig. 3a and b, in PB almost all gdTCRhigh expressed
CD45RA, whereas in gdTCRlow both CD45RA/RO isoforms
were expressed similarly. gdTCRlow from PE showed the
highest proportion of CD45RO and, although a high per-
centage of CD45RA was detected in gdTCRhigh, CD45RO
was also expressed (Fig. 3c). Furthermore, most circulating
Vd1 were CD45RO-negative, while in contrast Vd2 were
CD45RO-positive, in accordance with previous reports (data
not shown) [5]. According to these markers, in those TB and
HS in whom two subpopulations of gd T cells were not
observed, these belonged to the gdTCRlow subset.

Additional markers were assessed to define further the
phenotype of these subsets. As shown in Fig. 4a, the percent-

ages of CCR7+ and CXCR3+ were higher in PB-gdTCRlow

compared to those in PB-gdTCRhigh, whereas no differences
were detected in CD62L, CD69, HLA-DR, CD16 and CD94
(data not shown). Although the percentages of CCR7,
CXCR3, CD62L and CD69 were slightly higher in
PE-gdTCRlow, they did not reach statistical significance
(Fig. 4b). Additionally, the proportion of HLA-DR+ cells did
not differ between both subsets, and CD16, CD56 and CD94
were significantly lower in PE-gdTCRlow (data not shown).

Effector functions of gdTCRhigh and gdTCRlow subsets
from PB and PE cells

In order to determine whether the memory phenotype of
gdT cells correlates with their effector functions, markers of
cytotoxic activity, such as perforin and lysosomal-associated
membrane protein 1 (LAMP-1/CD107a), as well as IFN-g
production, were evaluated. As shown in Fig. 5a, the percent-
age of perforin-positive cells found in PB-gdT was reduced
in PE-gdT, as it also was in MFI (PB = 485 � 200;
PE = 390 � 210, n = 9, P < 0·01). Among perforin-positive
cells, PB-gdTCRhigh expressed a higher percentage than
PB-gdTCRlow and these frequencies were decreased in both
subsets from PE (Fig. 5b). Spontaneous degranulation
assessed by CD107a was observed in 6 � 2% of ex vivo

Fig. 2. CD3/gdT cell receptor (TCR) complex

expression differentiates two populations of gdT

cells. According to their CD3 and gdTCR

expression, two gdT cell populations from

peripheral blood (PB) and pleural effusion (PE)

mononuclear cells were defined by flow

cytometry: gdTCRhigh (HIGH) and gdTCRlow

(LOW). (a) A representative dot-plot from a

tuberculosis (TB) patient is shown. (b) Results

are expressed as percentage of gdTCRhigh and

gdTCRlow subsets among total gdT cells

(mean � standard error of the mean).

Statistical differences: high versus low, *P < 0·05.

(c) Correlation between CD3 and gdTCR

median fluorescence intensity (MFI) in

gdTCRhigh and gdTCRlow from PB ( PB-high

and (� PB-low) and PE (� PE-high and

(�PE-low). Two-tailed Spearman’s rank

correlation test. PB-high: r = 0·8091, P < 0·005;

PB-low: r = 0·6165, P < 0·05; PE-high:

r = 0·6154, P < 0·05; PE-low: r = 0·8671,

P < 0·001. (d) Vd2+ and Vd1+ were distributed

asymmetrically in gdTCRhigh and gdTCRlow

subsets (n = 6).
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PB-gdT and 12 � 5% of PE-gdT cells, and these percentages
did not increase in untreated cells during in vitro culture, the
percentage of CD107a+ from PE being significantly higher
than that from PB-gdT cells (P < 0·05; Fig. 5c). Upon stimu-
lation with Mtb, the percentage of CD107a+-gdT cells was
increased in PB and PE, with a stronger response in the latter
being slightly higher, although not statistically significant, in
gdTCRlow in both PB and PE. Mtb induced degranulation in
all subsets but differences between high and low subsets were
found only in PE (Fig. 5d).
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IFN-g is a key cytokine in the immune response against
Mtb, and gd T cells have been proposed as an early source for
this cytokine; therefore, we evaluated IFN-g production.
While PB-gdT cells from healthy donors produced IFN-g
upon stimulation with Mtb [control = 2·9 � 0·5%, Mtb =
8·3 � 1·5%, mean � standard error of the mean (s.e.m.),
n = 10, P < 0·05], PB-gdT cells from TB patients showed
impaired IFN-g production (Fig. 6a), in accordance with
previous reports [37]. PE-gdT cells showed high percentages
of both spontaneous and Mtb-induced IFN-g production
(Fig. 6a). Remarkably, these IFN-g-producing cells belonged
mainly to the gdTCRlow subset (Fig. 6b). In addition, while
28 � 5% of Vd2+ cells were IFN-g+ with a ª2·0-fold increase
in expression (FITC-IFN-g+ MFI � s.e.m.; control = 47 �

17, Mtb = 98 � 14), 9 � 4% of vd1+ cells were IFN-g+

without a significant increment in MFI (PE-IFN-g+ MFI �

s.e.m.; control = 129 � 39, Mtb = 158 � 48, n = 3).

Discussion

In this study we have shown phenotypical and functional
differences in circulating and recruited pleural fluid gdT cells
from TB patients. Contradictory results have been reported
in circulating gdT cell numbers, being increased or remain-
ing constant during active TB disease [20,21,38,39], and

their loss has been associated with the involvement of the
CD95/CD95ligand apoptotic pathway [19,38,40]. In this
study, we also found a lower percentage of gdT cells in PE
than in its PB counterpart, but the decrease was not reflected
in absolute numbers; this could be due to T cell enrichment
in the pleural space. We have also shown that circulating gdT
cells from TB patients have an activated phenotype, as
reported previously [39]. The different proportions of NK
and chemokine receptor-expressing cells between PB and
PE, as well as the high percentage of CD69 and MHC class II
markers in PE that we observed, may be ascribed to the
microenvironment of the pleural effusion where cytokines/
chemokines and antigens can modulate their expression
[24,25].

Differences in the expression of CD16 [41], perforin [42]
and MHC class II [43] have been employed to identify
subpopulations of gdT cells and in this study we have dem-
onstrated that CD3/TCR complex expression can also dis-
criminate two subpopulations. CD3 expression was higher in
gdTCRlow than in gdTCRhigh, the former subset being the most
representative in PB and PE. It has been proposed that after
antigen encounter gdTCR is down-regulated to turn cells
hyporesponsive [41] but, in our hands, what distinguishes
high and low subsets appears to be a different CD3/gdTCR
ratio. Although gdTCRlow and gdTCRhigh were enriched in
Vd2 and Vd1 cells, respectively, we were not able to assign
any gene usage to each subset because only a partial overlap
was found. In line with this differential distribution most
Vd1 cells were CD45RO-negative, resembling gdTCRhigh cells,
whereas most Vd2 cells were CD45RO-positive, resembling
the gdTCRlow subset.

Inflammatory and chemotactic mediators released by leu-
cocytes or stromal cells are likely to represent a predominant
mechanism, whereby the recruitment of cells is regulated
tightly, to reach the site of Mtb infection. In particular,
pleural mesothelial cells are responsible in part for initiating
the inflammatory response by recruiting mononuclear cells
from the vascular compartment into the pleural space
through chemokine receptors and their ligands [44]. A weak
CCR7 expression in ex-vivo gdT cells from healthy individu-
als has been found, the majority being CD45RO+ cells [45],
and stimulation with heat-killed extracts of Mtb down-
modulates CCR5 expression on gdT cells [45]. gdTCR trig-
gering induces early and transient CCR7 up-regulation,
regarded as a marker of early activation in these cells,
together with high CXCR3 expression [46]. We have also
observed consistently a weak CCR7 and CXCR3 expression
in ex vivo PB-gdT cells from TB and HS, although the major-
ity were CD45RA+ cells. In this context, it has been proposed
that the CD45RA+ marker can be lost upon antigen stimu-
lation and reacquired afterwards in the absence of TCR trig-
gering or homeostatic cytokines [47,48].

gdTCRhigh from PB-TB displayed a CD45RA+CCR7-

CXCR3-CD27low phenotype but carried the largest amount
of perforin; therefore they are not naive cells. In contrast,
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gdTCRlow from PB-TB showed a higher percentage of CCR7+

and CXCR3+ as well as decreased CD45RA+ cells, suggesting
that they are activated and ready for extravasation. Also,
PB-gdTCRlow carried lesser amounts of perforin and higher
spontaneous CD107a expression, but upon Mtb stimulation
neither gdTCRhigh nor gdTCRlow from PB produced IFN-g.
Although PB-gdT cell anergy has been reported in TB and
HIV patients [37], the absence of co-stimulatory signals
along with the presence of systemic inhibitors in the periph-
ery could also be the cause of their hyporesponsiveness.

Within the pleural space, ex vivo gdTCRhigh and gdTCRlow

cells showed the highest proportion of CXCR3 and CCR7
receptors, suggesting that they would be able to migrate to
other sites of microbial infection as well as draining reactive
lymph nodes. In line with this, a high proportion of CXCR3+

cells has been reported in gdT and CD4+ cells [24], which
coincides with the high levels found in the tuberculous
pleural fluid of IFN-g-inducible ligands IP-10 and MIG
[49,50]. In addition, both subsets showed decreased perforin
content, suggesting that they have already exerted their cyto-
toxic effector function. Additionally, spontaneous IFN-g
production by high and low subsets was detected with a
trend towards increased CD107a surface expression.
Remarkably, upon Mtb stimulation, effector functions of
both IFN-g production and degranulation were exerted
mainly by PE-gdTCRlow. This may be due in part to Vd2
enrichment within gdTCRlow, which are known to respond to
Mtb antigens [8,40]. Activation of Vg9Vd2 T cells is regu-
lated by NK receptors such as the heterodimer CD94/
NKG2A, that strongly inhibits the killing of MHC class I
targets, and the NKG2D receptor that enhances gdT cell
response by engagement to MHC class-I-related chains
(MIC)A ligand [33,51]. It has been shown that in the absence
of antigen, NKG2D+ gdT cells do not lyse MICA+ targets;
however, in the presence of non-peptide antigens, MICA+

targets are susceptible to lysis by gdT cells [33]. Bacterial
infections up-regulate MICA expression on antigen-
presenting cells (APC) enhancing TCR-dependent activation
of gdT cells [33]. Accordingly, we have observed recently
enhanced MICA but not HLA-class I expression on APC
from PE [29], and in this study we have shown that NKG2D
was expressed in the majority of gdT cells. Hence, MICA/
NKG2D interaction may be involved in enhancing effector
functions within PE-gdT cells [33]; however, the involve-
ment of other innate receptors cannot be ruled out [52].
Consistent with the high effector functions of PE-gdTCRlow

cells, this subset is mainly CD45RO+. Thus, CD45RA might
be lost in those cells infiltrating the site of infection where
Mtb antigens are present, resulting in the phenotype
observed in PE.

Our results suggest strongly that at the site of infection,
recruited gdT cells from PB acquire a further activated phe-
notype displaying effector functions. As gdT cells within the
pleural space produce IFN-g, they would be expected to play
a beneficial role in tuberculous pleurisy by helping to main-

tain a Th1 profile necessary for the resolution of infection.
Whether high and low gdTCR belong to divergent lineages or
correspond to the same subset with different activation
status remains to be established.
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