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ABSTRACT 32 

Our objective was to determine the effects of a polyphenol-enriched cocoa extract (PCE) on myocardial 33 

postischemic alterations in normotensive (Wistar rats, W) and spontaneously hypertensive rats (SHR). 34 

Isolated hearts were submitted to 110 min of perfusion or 20-min stabilization, 30-min global ischemia 35 

and 60-min reperfusion (R). Other hearts were treated with PCE at the onset of R. Infarct size, the 36 

reduced glutathione (GSH) and the expression of phospho-Akt, P-GSK-3β and P-eNOS were assessed. In 37 

isolated mitochondria the Ca
2+

- mediated response of mitochondrial permeability transition pore (mPTP), 38 

membrane potential (∆ψm) and superoxide production were determined. PCE decreased infarct size, 39 

partly preserved GSH, increased the P-Akt, P-GSK-3β and P-eNOS contents, improved mPTP response 40 

to Ca2+, decreased the superoxide production and restored ∆ψm.  41 

These data show that PCE decreases the cardiac postischemic damage in W rats and SHR and suggest that 42 

Akt/GSK-3β/eNOS dependent pathways are involved. 43 

 44 

Key words: Wistar, SHR, infarct size, mitochondria, polyphenols 45 
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INTRODUCTION 47 

Cocoa and chocolate are two products derived from processing of cocoa beans. This complex multistage 48 

process begins with spontaneous fermentation driven in the postharvest period by different 49 

microorganisms derived from the environment 
1
. After fermentation cocoa beans are roasted, shelled, and 50 

ground. The main difference between cocoa and chocolate is the absence or existence of cocoa butter. In 51 

cocoa, butter is little or non-existent. In contrast, chocolate has butter. Therefore, cocoa is considered as a 52 

healthy drink because it has less sugar and fat and besides possesses an important amount of flavanols 
2
, 53 

being catechins and epicatechins the main 
3, 4

.  There are many evidences regarding the beneficial actions 54 

of chocolate and cocoa on immune functions, ageing, blood pressure regulation, atherosclerosis, insulin 55 

resistance, physical performance or cardiovascular diseases development. However, the molecular 56 

mechanisms remain under investigation and the subject of ongoing discussion 
5-9

.  57 

The ischemic heart disease is an important cause of death worldwide 
10

, being the high blood pressure an 58 

important risk factor. Although the reperfusion reduces the mortality, it introduces an additional injury. 59 

Thus, many studies demonstrate that drugs or strategies applied at the beginning of reperfusion are able to 60 

reduce infarct size 
11-14

. It has also been previously showed that hypertrophy consequent to chronically 61 

elevated blood pressure aggravates the reperfusion injury 
15, 16

. 62 

Mitochondrial integrity is critical in the maintenance of bioenergetics and Ca
2+

 homeostasis of the 63 

myocardium. Upon reperfusion the mitochondrial Ca
2+ 

overload leads to myocyte death by multiple 64 

mechanisms including oxidative injury and opening of the mitochondrial permeability transition pore 65 

(mPTP) 
10

.  Therefore, the inhibition of mPTP at the beginning of reperfusion may prevent cell death and 66 

thus reduce infarct size 
17-19

. 67 

Epidemiological evidences indicate that the consumption of flavonoids-rich foods or beverages decreases 68 

the incidence of cardiovascular disease 
20-22

. Different studies showed the benefits of cocoa on the 69 

prevention of CVD, the ability to modulate the blood pressure in hypertensive animals and the capacity to 70 

improve coronary circulation in healthy adults 
23-27

. Recently, Cienfuegos-Jovellanos et al. 
28

 developed a 71 

cocoa powder with the highest flavonoid monomer content. The antihypertensive effect exerted by that 72 

cocoa powder (PCE) has been previously demonstrated by the same authors 
29

. However, its action during 73 

ischemia-reperfusion is still unknown.  74 
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The purpose of this study was to examine the actions of ¨ex vivo¨ treatment with PCE, administered at the 75 

beginning of reperfusion, on infarct size and mitochondrial state in hearts from normotensive and 76 

spontaneously hypertensive rats submitted to ischemia-reperfusion. 77 

 78 

 79 

 80 

  81 
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MATERIAL AND METHODS 82 

Animals  83 

Male SHR and W rats were used. The animals were housed 4 per cage, with food and drinking water ¨ad 84 

libitum¨. The room ventilation rate was 4-6 changes per h, at temperature of 22 ± 2 °C and with a light 85 

cycle/dark of 12 h. All procedures followed during this investigation were approved by the Institutional 86 

Animal Care and Use Committee (IACUC) of the Faculty of Medicine, University of La Plata (P-05-87 

2014). 88 

Systolic blood pressure measurement 89 

Systolic blood pressure (SBP) was measured in alive and awake animals by a modified tail-cuff method 90 

30
. 91 

Polyphenol-Enriched Cocoa Extract (PCE) 92 

The preparation, characteristics and composition of PCE are described in a previous paper 
31

. Briefly, 93 

PCE was obtained from CocoanOX 
32

 and produced from unfermented, blanch-treated, and roasted cocoa 94 

beans. By HPLC, the total polyphenol content was 547 ± 4 mg/dry matter being the 50% represented by 95 

the total flavan-3-ol content followed by (-)-epicatechin (26%) and procyanidin B2 (15%). 96 

Isolated heart preparation 97 

Rats were anesthethized with ketamine-diazepam (80-5 mg/Kg). Arreflexia appearance with loss of 98 

corneal reflex and the flexor reflex of escape in the lower limbs were verified before heart isolation.  99 

Isolated hearts were perfused following the instructions previously detailed 
13

. 100 

Experimental protocols 101 

After 20-min stabilization, the following experimental protocols were performed: Non-ischemic control 102 

hearts (NIC; n = 5 for each rat strain): hearts were perfused for 90 min without any treatment. Ischemic 103 

control hearts (IC, n = 7 for each rat strain): hearts were subjected to 30 min of global ischemia followed 104 

by 60 min of reperfusion. PCE (n = 7 for each rat strain): hearts were treated during 10 min at the onset of 105 

reperfusion with PCE (30 µg/mL). Other hearts (n = 4 for each rat strain and for each protocol) were used 106 

for biochemical determinations and others (n = 4 for each protocol and for each rat strain) for 107 

mitochondria isolation. 108 

Infarct size determination 109 
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Infarct size was assessed by the triphenyltetrazolium chloride (TTC, Sigma-Aldrich, Munich, Germany) 110 

staining technique. At the end of reperfusion hearts were frozen, cut into six transverse slices and 111 

incubated in TTC. Infarct size was expressed as a percentage of total area (area at risk) 
33

.   112 

Lipid peroxidation  113 

A portion of left ventricle (LV) was homogenized and centrifuged at 3000 rpm.  In the supernatant, the 114 

concentration of thiobarbituric acid reactive substances (TBARS) was measured and expressed in 115 

nmol/mg of protein 
34

. 116 

Reduced glutathione (GSH) 117 

GSH content was determined in the supernatant using the Ellman´s reagent 
35

 and expressed as µg/mg of 118 

protein. 119 

Immunoblotting  120 

Other portion of LV was homogenized and cytosolic fraction was isolated by differential centrifugation. 121 

Briefly, supernatant proteins were resolved on SDS-PAGE, transferred to PVDF membrane, blocked and 122 

probed with antibodies against phosphorylated forms of GSK-3β-Ser9, Akt, eNOS-Ser1177, anti-MnSOD 123 

and anti-Cytochrome c. Protein bands were analyzed by a chemiluminescent system and total GSK-3β, 124 

Akt and eNOS content or GAPDH signal were used as a loading control 
13

. 125 

Isolation of mitochondria 126 

LV of other sets of control and treated hearts from W rats and SHR were used to mitochondria isolation 127 

following the method previously described 
13

. 128 

Ca
2+

- induced mPTP opening  129 

The isolated mitochondria were energized and induced to swell with the addition of CaCl2. If mPTP 130 

opens the mitochondria swells. These changes are observed as decreases of light scattering (LSD) at 520 131 

nm using a temperature-controlled Hitachi F4500 spectrofluorometer 
36

. LSD was assessed in samples 132 

without any treatment and in those treated with PCE 10 µg/ml. 133 

Mitochondrial membrane potential 134 

Mitochondrial potential (∆Ψm) was evaluated by measuring rhodamine-123 (RH-123) fluorescence 135 

quenching 
37

 and calculated following the instructions previously detailed 
38

.  136 

Measurements of O2
-.

  production 137 

Superoxide production was measured in intact mitochondria suspension with lucigenin-enhanced 138 

chemiluminiscence (CL) as previously described 
39

. The CL in arbitrary units (a.u.) was recorded with a 139 
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luminometer (Chameleon, Hidex, Tuku, Finland) for 10 sec each one with 1 min interval during 10 min in 140 

the presence or absence of succinate (6 mM/L) or PCE (10 µg/ml). Mitochondrial O2
-. 

production was 141 

expressed as a.u./min/mg protein.  142 

Statistical analysis 143 

Data were expressed as means ± SE. Differences between groups were assessed with a two-way analysis 144 

of variance (ANOVA) test and Newman-Keul’s was used as a post hoc test. A value of p < 0.05 was 145 

considered to be statistically significant. 146 

  147 
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RESULTS 148 

Mean data of systolic blood pressure (SBP) plus the values of body weight (BW, g), left ventricular 149 

weight (LVW, mg) and hypertrophic index (HI, calculated as LVW and BW ratio) of W rats and SHR are 150 

displayed in Table 1. SBP, LVW and HI were significantly higher in SHR than W rats, indicating the 151 

presence of hypertrophy associated to high pressure as one recognized characteristic of hypertensive 152 

animals.  153 

Infarct size 154 

Hearts from W rats and SHR without any treatment caused an infarct size of ~30% of the risk area. When 155 

PCE was added to the perfusate a significant reduction in infarct size was obtained (Fig. 1).  156 

TBARS and GSH  157 

The TBARS concentration- as an index of lipid peroxidation- of IC hearts was 0.75 ± 0.06 and 0.97 ± 158 

0.10 nmol/mg protein for W rats and SHR, respectively. These values were not significantly modified by 159 

PCE treatment (0.61 ± 0.08 and 0.70 ± 0.15 nmol/mg protein for W rats and SHR, respectively).  The 160 

GSH content in non-ischemic control hearts from SHR was lower than that detected in hearts from W 161 

rats. After ischemia-reperfusion, GSH levels decreased to a similar value in hearts from SHR and W rats. 162 

The treatment with PCE partially or fully preserved the GSH content in hearts from normotensive and 163 

hypertensive rats, respectively (Fig. 2). 164 

Expression of P-Akt, P-GSK-3β and P-eNOS 165 

At the end of reperfusion period, homogenates of PCE treated hearts from W rats and SHR showed a 166 

significant increase of the expression of phosphorylated forms of Akt, e-NOS and GSK-3β (Fig. 3).  167 

MnSOD and cytochrome c 168 

The loss of internal mitochondrial membrane impermeability leads to the release of mitochondrial matrix 169 

components, as MnSOD and cytochrome c, to cytosol. Thus, the expression of both substances increased 170 

in ischemic control hearts from W rats and SHR and decreased in PCE treated hearts from both rats 171 

strains (Fig. 4). 172 

Ca
2+

- induced mPTP opening (LSD) and mitochondrial membrane potential (∆∆∆∆Ψm) 173 

Figure 5 shows the typical traces (A panel) and mean values (B panel) of light scattering decrease (LSD) 174 

produced by the addition of 100 µmol/L Ca
2+

 to mitochondrial suspensions of untreated and treated hearts 175 

from W rats and SHR. LSD was significantly lesser  in non-ischemic hearts from SHR in comparison to 176 

those of W rats. After ischemia-reperfusion, the LSD decreased to a similar value for hearts from both 177 
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rats strains. The treatment with PCE improved the response of mitochondria to Ca
2+

 showing greater LSD 178 

values than ischemic hearts but lesser than those observed in non-ischemic hearts. Figure 6 shows the 179 

changes of ∆ψm in the three experimental protocols. The ∆ψm of mitochondria isolated from SHR hearts 180 

was significantly lesser than those of W rats. After ischemia-reperfusion the ∆ψm decreased in both rats 181 

strains. The treatment with PCE attenuated this depolarization reaching ∆ψm values not statistically 182 

different to those obtained in non-ischemic control hearts but maintaining the difference between W rats 183 

and SHR. 184 

Mitochondrial O2
-. 

 production 185 

As shown in Figure 7 the incubation of cardiac mitochondria with lucigenin elicited a basal O2
-. 

186 

production in W and SHR. This response appears to be due to the presence of endogenous substrates in 187 

the freshly isolated mitochondria. The addition of succinate significantly enhanced the O2
-.  

production in 188 

mitochondria from both rats strains and decreased after treatment with PCE.  189 

  190 
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DISCUSSION 191 

The present data showed that the ¨ex vivo¨ treatment at the onset of reperfusion with a polyphenol-192 

enriched cocoa extract (PCE) decreased the cell death and attenuated the mitochondrial injury produced 193 

by ischemia-reperfusion in hearts from normotensive and spontaneously hypertensive rats.  194 

Hypertension is an important cause of cardiovascular morbidity and mortality and it has been associated 195 

with impaired antioxidant defense and specially with disturbances in glutathione metabolism 
40, 41

. This 196 

was evident in our study since we found lesser GSH values in non-ischemic control hearts from SHR in 197 

comparison to W rats. The treatment with PCE partially or fully preserved the level of GSH in hearts 198 

from W rats and SHR, respectively. Additionally, a decreased O2
-. 

production in isolated mitochondria 199 

from PCE-treated hearts of both rats strains was showed. These results suggest that a reduced ROS 200 

production and/or higher scavenging could be taking place in cardiac tissue from normotensive and 201 

hypertensive animals when they were submitted to ischemia and reperfusion in presence of PCE.  202 

On the other hand, and in agreement with a recent paper published by us 
42

, the ∆Ψm of mitochondria 203 

isolated from SHR hearts was less electronegative than that detected in hearts from W rats. After ischemia 204 

and reperfusion, the mitochondria suffered depolarization, reaching a similar ∆Ψm in both rats strains. 205 

The treatment with PCE normalized ∆Ψm, maintaining the difference between W rats and SHR.  206 

The mitochondrial permeability transition pore (mPTP) plays a critical role in determination of cell death 207 

and is the focal point of the various protective mechanisms 43-45. The mPTP opening leads to matrix 208 

swelling and efflux of cyc and other proapoptotic factors 
46, 47

. Our data show that the Ca
2+

- mediated 209 

response of mitochondria isolated from non-ischemic control hearts of W rats was higher than those of 210 

SHR, diminished to a similar value when hearts were submitted to ischemia-reperfusion and was partially 211 

restored in PCE treated hearts. Therefore, the restoration of ∆Ψm and the Ca
2+

 response are indicators of 212 

an improvement of mitochondrial state mediated by PCE. In our conditions, we also detected an increase 213 

of MnSOD and cyc expression in ischemic control hearts from W rats and SHR which decreased after 214 

PCE treatment. All these data are evidence of the protective role of cocoa extract against mitochondria 215 

permeability and suggest that an attenuation of ROS production and a diminution of Ca
2+

 uptake by 216 

mitochondria could be the responsible mechanisms. 217 

A relevant piece of information is how processes occurring in the cytosol modulate mPTP opening. 218 

Which are the PCE targets?. GSK-3β phosphorylation is a step to which multiple protective signaling 219 

pathways converge ending to avoid the mPTP opening 
48

. In our experimental conditions, the treatment 220 
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with PCE increased the level of phospho-GSK-3β in both rats strains suggesting that the PCE-mediated 221 

cardioprotection is linked to GSK-3β-dependent mechanism. Among the kinases able to activate GSK-3β 222 

is the PI3K/Akt which has been involved in the beneficial actions during ischemia-reperfusion 
49

. We also 223 

observed a decrease of phospho- Akt level whereas opposite changes took place in PCE treated hearts.  224 

Several papers have demonstrated the protective role of NO during ischemia-reperfusion 
50, 51

. It is 225 

recognized that the balance of NO concentration depends of its production by increase of eNOS 226 

expression and/or activity and the O2
-.
 formation in which the eNOS uncoupling plays an important role 227 

52
.  In our experimental conditions, PCE increased the expression of phosphoSer1177-eNOS, which 228 

linked to the reduced O2
-.
  production could lead to a higher NO bioavailability in PCE-treated compared 229 

to untreated hearts. Therefore, the data present herein show, by the first time, that NO could be an 230 

important mediator of the infarct size limitation afforded by PCE.  231 

PCE contains four times more procyanidins and eight times more epicatechin and procyanidin B2 than 232 

conventional cocoa powder 
31

. There is accumulating evidence that (−)-epicatechin and its derivatives 233 

have significant role in prevention of CVD in humans 
53

. Potent antioxidant action, modulation of cell 234 

signalling, reduction of the blood pressure, and protection of mitochondria, are being proposed as possible 235 

mechanisms of beneficial effects of (−)-epicatechin 
54

. The ability of (−)-epicatechin to prevent oxidative 236 

stress by restoring NO bioavailability was has been also showed 
55

. Recently, it was demonstrated that 237 

(−)-epicatechin and procyanidin B2 improve mitochondrial functions detecting a decrease of cyc release 238 

56
. As these compounds are present in high proportion in PCE, it might be responsible for the beneficial 239 

effects detected in PCE-treated hearts. 240 

In summary, our findings show that the ¨ex vivo¨ treatment of PCE at the onset of reperfusion ameliorates 241 

the infarct size in hearts from W rats and SHR by attenuation of mPTP opening and suggest that 242 

Akt/eNOS and Akt/GSK-3β-dependent signaling pathways are involved. Thus, our data are providing 243 

arguments to establish the benefits of PCE against the mitochondrial impairment produced by ischemia-244 

reperfusion. A decrease of ROS production by mitochondria plus to the scavenging activity of the extract 245 

which leads to the preservation of GSH levels could be contributing to the cardioprotective action (Fig. 246 

8). 247 

Limitations 248 

In the current study we demonstrated, by the first time, in a model of heart ¨ex vivo¨ the beneficial action 249 

of a polyphenol-enriched cocoa extract against reperfusion injury. However, the complex composition of 250 
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the extract and the low intestinal absorption of its constituents determine that our findings could not be 251 

extrapolled directly to human. Furthermore, long-term trials will be needed to investigate the incidence of 252 

PCE addition to diet on clinical outcomes of patients suffering adverse cardiovascular events.  253 

 254 

ABBREVIATIONS 255 
 256 

Cyc: Cytochrome c 257 

eNOS: Endothelial nitric oxide synthase  258 

GAPDH: Glyceraldehyde 3-phosphate dehydrogenase  259 

GSK-3β: Glycogen synthase kinase-3 beta 260 

IC: Ischemic control hearts 261 

MnSOD: Manganese-dependent superoxide dismutase  262 

mPTP: Mitochondrial permeability transition pore 263 

∆Ψm: Mitochondrial potential 264 

NIC: Non-ischemic hearts 265 

W: Normotensive Wistar rats 266 

PCE: Polyphenol-enriched cocoa extract 267 

ROS: Radical oxygen species 268 

GSH: Reduced glutathione  269 

Akt: Serine/threonine-specific protein kinase 270 

SHR: Spontaneously hypertensive rats 271 

O2
-. 

: Superoxide anion 272 

TBARS: Thiobarbituric acid reactive substances  273 

TTC: Triphenyltetrazolium chloride 274 
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Legends 431 

Figure 1: A panel: Scheme of ischemic control (IC) and polyphenol-enriched cocoa extract (PCE) 432 

protocols and representative slices of hearts from normotensive (W) and spontaneously hypertensive rats 433 

(SHR) stained with TTC. B panel: Mean values of infarct size (IS), expressed as a percentage of risk area, 434 

in IC (n = 7) and PCE (n = 7) treated hearts from W rats (n = 14) and SHR (n = 14). Observe that the 435 

treatment with PCE decreased the IS detected in IC hearts of both rats strains. * p < 0.05 vs. IC 436 

Figure 2: Reduced glutathione content (GSH, µg/mg protein) in non-ischemic control (NIC, n = 4), 437 

ischemic control (IC, n = 4) and PCE (n = 4) treated hearts from normotensive (W, n = 12) and 438 

spontaneously hypertensive rats (SHR, n = 12). The GSH content diminished in IC and it was partially or 439 

fully preserved in W rats and SHR, respectively, in PCE treated hearts . φ p < 0.05 SHR vs. W; * p< 0.05 440 

vs. NIC; # p < 0.05 vs. IC. 441 

Figure 3: Representative immunoblots of total and phosphorylated forms and summary of densitometry 442 

data of phospho-Akt (A panel), phospho-eNOS (B panel) and phospho- GSK-3β (C panel) in non-443 

ischemic control (NIC, n = 4), ischemic control (IC, n = 4) and PCE (n = 4) treated hearts from W rats ( n 444 

= 12) and SHR (n = 12). The P-Akt/Akt, P-eNOS/eNOS and P-GSK-3β/ GSK-3β ratios diminished in IC 445 

and increased in PCE treated hearts of both rats strains. * p< 0.05 vs. NIC; # p< 0.05 vs. IC. 446 

Figure 4: Expression of MnSOD (A panel) and cytochrome c (cyc, B panel) in non-ischemic control 447 

(NIC, n = 4), ischemic control (IC, n = 4) and PCE (n = 4) treated hearts from W rats (n = 12) and SHR (n 448 

= 12). Note that a significant increase of MnSOD and cyc was detected in IC hearts from both rats strains 449 

which returned to basal values by PCE treatment. * p < 0.05 vs. NIC; # p < 0.05 vs. IC. 450 

Figure 5: A panel: Typical traces produced by 100 µM Ca2+ addition to samples of mitochondria from W 451 

rats and SHR hearts. B panel: Mean values of the light scattering decreases (LSD) after Ca
2+

 addition, 452 

expressed in arbitrary units (a.u.), in non-ischemic control (NIC, n = 4), ischemic control (IC, n = 4), and 453 

PCE (n = 4) treated hearts from W rats (n = 12) and SHR (n = 12). The response of isolated mitochondria 454 

to Ca2+ significantly diminished in IC hearts and partially recovered after PCE treatment in both rats 455 

strains. φ p < 0.05 SHR vs. W; * p < 0.05 vs. NIC; # p < 0.05 vs. IC. 456 

Figure 6: Mitochondrial membrane potential (∆Ψm, mV) measured in isolated mitochondria from 457 

normotensive (W, n = 12) and spontaneously hypertensive rats (SHR, n = 12) hearts of non-ischemic 458 

control (NIC, n = 4), ischemic control (IC, n = 4) and PCE treated group (n = 4). The depolarization 459 
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detected after ischemia and reperfusion was attenuated in PCE treated hearts.  φ p < 0.05 SHR vs. W; * p 460 

< 0.05 vs. NIC; # p < 0.05 vs. IC. 461 

Figure 7: A and C panels: Time course of O2
-. production of cardiac mitochondria isolated from W rats 462 

and SHR, in presence or absence (C, n = 3 for W and n= 3 for SHR) of succinate (S, n = 3 for each rat 463 

strain ) or S + PCE (n = 3 for each rat strain). The chemiluminiscence response was initiated by adding of 464 

lucigenin. B and D panels: Mean values of O2
-.  

production at 3 min in C, S and S + PCE mitochondrial 465 

suspensions of W rats and SHR. PCE decreased the O2
-.  production in both rats strains. * p < 0.05 vs.  C; 466 

# p < 0.05 vs. PCE.  467 

Figure 8: Scheme showing the signaling pathways that involve activation of kinases and enzyme leading 468 

to the polyphenol-enriched cocoa extract (PCE)-mediated cardioprotection highlighting the mitochondrial 469 

effects.   470 
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 471 

 472 

Table 1: Data of systolic blood pressure (SBP), body weight (BW), left ventricular 473 

weight (LVW) and hypertrophy index (IH) in W and SHR 474 

 475 

 W SHR 

SBP (mmHg) 125 ± 2 219 ± 3** 

BW (g) 309 ± 9 310 ± 8 

LVW (mg) 780 ± 40 1330 ± 60** 

HI 2.52 ± 0.12        4.17 ±0.18** 

 476 

**p < 0.01   n = 30 for each one  477 

 478 

479 
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FIGURE 1 480 
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FIGURE 3  484 
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FIGURE 5 487 
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FIGURE 6 489 
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FIGURE 7 491 
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FIGURE 8 493 

 494 

Page 29 of 29

ACS Paragon Plus Environment

Journal of Agricultural and Food Chemistry


