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ABSTRACT: With the proliferation of multivariate calibra-
tion methods based on artificial neural networks, expressions
for the estimation of figures of merit such as sensitivity,
prediction uncertainty, and detection limit are urgently
needed. This would bring nonlinear multivariate calibration
methodologies to the same status as the linear counterparts in
terms of comparability. Currently only the average prediction
error or the ratio of performance to deviation for a test sample
set is employed to characterize and promote neural network
calibrations. It is clear that additional information is required.
We report for the first time expressions that easily allow one to
compute three relevant figures: (1) the sensitivity, which turns out to be sample-dependent, as expected, (2) the prediction
uncertainty, and (3) the detection limit. The approach resembles that employed for linear multivariate calibration, i.e., partial
least-squares regression, specifically adapted to neural network calibration scenarios. As usual, both simulated and real (near-
infrared) spectral data sets serve to illustrate the proposal.

Multivariate calibration based on first-order data, e.g., near-
infrared (NIR) spectra, is now ubiquitous in many

analytical areas, with partial least-squares (PLS) regression
being the most popular chemometric technique used for data
processing.1 Since PLS is based on a linear relationship between
signal and concentration, alternative methodologies have been
developed to handle nonlinearities, such as the use of
polynomial functions2 or kernel-PLS.3 More powerful and
flexible for nonlinear regression are artificial neural networks
(ANN) which have been widely applied in spectroscopic
calibration.4,5 Recently, some pending issues in ANN
calibration have been reviewed, such as (1) the presence of
local minima, (2) the risk of overfitting, and (3) the need of
very large sample sets for robust calibration.6 The present
report is devoted to solve an additional difficulty: the
characterization of ANN methods with reliable figures of merit.
Many applications of ANN to analytical systems have been

published,7−10 including calibration-related problems in areas as
diverse as fuels,11,12 foodstuff,13−15 pharmaceuticals,16,17 and
industrial products.18,19 In the specific case of NIR applications,
spectrometer manufacturers currently advertise ANN calibra-
tions as simple, robust, and accurate.20 However, usually the
average prediction error or the ratio of performance to
deviation (RPD)21−23 for a test set of samples have been
used to assess the accuracy in the case of nonlinear calibrations.
No reports are available on the useful analytical figures of merit
which characterize well-known models such as PLS.24 An
analogous development is urgently needed to put the statistical
indicators at the same level of those for linear analytical models.

This will allow one to report sensitivities, uncertainties in
prediction, and detection capabilities for ANN calibrations.
Uncertainty propagation is a powerful tool to estimate

analytical figures of merit, as has been shown in the past in the
framework of linear calibration.25 In the ANN field, it has been
employed to select the most appropriate variables for
modeling26 and to discuss the sensitivity of the network
parameters to the input data27−29 but not the sensitivity of a
particular ANN calibration methodology. In the present report,
uncertainty propagation is exploited to define, for the first time,
sensitivity, prediction uncertainty, and detection capabilities for
multivariate calibration using neural networks based on radial
basis functions (RBF).30 The estimated parameters are
illustrated with a set of simulated systems as well as with
experimental NIR analytical calibrations. The obtained values
are shown to be completely reasonable in view of the known
properties of the studied analytical systems.

■ EXPERIMENTAL SECTION

Tecator NIR Data. These data consist of near-infrared
absorbance spectra used to predict moisture, fat, and protein
values of chopped meat. They were recorded on a Tecator
Infratec Food and Feed Analyzer working in the wavelength
range 850−1050 nm. Each sample contains finely chopped pure
meat with different moisture, fat, and protein contents.31 The
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set is usually employed for evaluating the performance of
different multivariate calibration models, due to the presence of
high nonlinearities in the signal-property relationships. The
data were originally available at http://lib.stat.cmu.edu/
datasets/tecator but cannot be presently accessed; they are
available from the authors on request. They consist of 240 NIR
spectra measured at 100 wavelengths, with the corresponding
moisture, fat, and protein values. For multivariate calibration in
the present context, the set was randomly divided in 170
spectra for calibration and 70 for test.

■ THEORY
Figures of Merit. One convenient way of defining the

sensitivity in multivariate calibration is to add a small amount of
independently and identically distributed (iid) noise to the
multivariate signal of a generic test sample. This is conceptually
used as a probe to explore the propagation of uncertainty from
the test sample signal to the predicted analyte concentration.
The parameter SEN is numerically defined as the ratio of input
noise σx to output noise σy:

σ
σ

=SEN x

y (1)

In first-order PLS calibration, for example, the multivariate
model yields a vector of regression coefficients bPLS, which can
be used for analyte prediction through

= + ̅y yb xPLS
T

cal (2)

where x is the test sample spectrum and yc̅al is the mean
calibration concentration (mean-centering is assumed). From
eq 2, simple error propagation theory gives24

=
b

SEN
1

PLS (3)

where ∥ ∥ indicates the norm of the vector.
Interestingly, there is a simple equivalent to eq 3 in ANN

calibration of first-order data. A brief presentation is made here;
for a more detailed discussion see the Supporting Information.
The RBF network has A input neurons, N hidden neurons
connected to the input neurons, and a single output neuron,
which releases the predicted analyte concentration y. The
transfer functions from the input to the hidden layer are
Gaussian, while that to the output layer is linear, i.e., the output
is given by
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where w0 is a bias, wn is the weight for the nth hidden neuron,
σ(a) is the standard deviation for each Gaussian function, and
c(n,a) is an element of the matrix C of Gaussian centers (size N
× A). The inputs are the sample scores estimated from
principal component analysis (PCA), arranged into an A × 1
vector t, obtained by projection of the sample spectrum x (J ×
1) onto the space spanned by the PCA loadings (P)
considering A principal components:

=t P xT (5)

Uncertainty propagation proceeds by differentiation of eq 4,
assuming that noise only affects the test sample:
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Taking into account eq 5, the following two expressions can
be written:
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with the individual elements of a sample dependent bANN vector
given by
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Differentiating the transfer function f n in eq 4 and replacing
in eq 9:

∑ ∑
σ

σ

= −
−

−
∑ −

= =

=

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

b j w
t a c a p j a

t a c a

( )
2[ ( ) ( )] ( , )

exp
[ ( ) ( )]

n

N

n
a

A
n

n

a
A

n

n

ANN
1 1

2

1
2

2
(10)

The variance in concentration is the expectation value of dy ̂2,
i.e.,

̂ = = ΣE y E b x x b b b(d ) ( d d ) x
2

ANN
T T

ANN ANN
T

ANN (11)

where Σx is the error variance-covariance matrix for the spectral
data. In the event the noise structure is iid, Σx is diagonal with
all nonzero elements equal to the spectral variance, and
therefore

σ σ= by x ANN (12)

where σy and σx are the uncertainties in predicted concentration
and instrumental signal, respectively. From the latter equation,
the sensitivity parameter SEN can be computed as the ratio of
uncertainties (σx/σy):

= bSEN 1/ ANN (13)

In PLS, the vector of regression coefficients is unique for a
given calibration data set and allows one to predict the analyte
concentration through eq 2. In contrast, the neural network
vector bANN is not an analyte predictor and is specific for a
given test sample, meaning that each specimen is characterized
by a sensitivity value. ANN analytical protocols may thus report
the mean, minimum and maximum sensitivity. This is in
principle understandable, since the nonlinear relationship
between signal and concentration implies that the slope of
the latter relation depends on the analyte concentration and
hence on the sample under scrutiny.
It may be noticed that a specific form of bANN has been

derived for an RBF network, which is usual in nonlinear
spectral calibration. However, the developed scheme could in
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principle be adapted to other ANN types such as feed-forward
multilayer networks, with the main requirement that the
transfer functions be differentiable. Work is under way in this
direction.
Prediction uncertainty proceeds according to the well-known

three-term expression, which accounts for the propagation from
the errors in test sample signals, calibration signals, and
calibration concentrations:

σ σ= Σ + Σ +̂ h hb b b by x x
2

ANN
T

ANN ANN
T

ANN ycal
2

(14)

where h is the sample leverage and Σx is the calibration error
variance-covariance matrix, as detailed in ref 32. The leverages
can be calculated in a manner which is analogous to PCR or
PLS models, from the design vector for a sample (d) and the
calibration design matrix (D):

= −h d D D d( )T T 1
(15)

where the elements of d for each sample are given by f n, while
D is defined by the design vectors for the calibration samples.
Equation 14 applies to a general noise structure. However, in

the event the instrumental noise is iid, a much simpler
expression is obtained:

σ σ σ σ= + +̂
− −h hSEN SENy x x

2 2 2 2 2
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2
(16)

where σx is the (constant) uncertainty in instrumental noise.
Finally, the limit of detection (LOD) can be given by a

generalization of the already developed expressions for PLS
regression.33 For iid noise, the minimum and maximum LOD
values are
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where SEN0 is the sensitivity, and h0min and h0max are the
minimum and maximum leverage for a blank sample,
respectively. The latter two values are estimated as described
in ref 33 and represent the minimum and maximum leverages
for the calibration set of samples, once they are extrapolated to
the plane of zero analyte concentration. Details on these latter
parameters can be found in the Supporting Information.
Simulations. Three simulated nonlinear systems were

produced. In each of them, calibration models were built
having three sample components and considering eight
different degrees of spectral overlap and three signal noise
levels. The components were present at random concentrations
taken from the range 0−1 units in 100 calibration samples and
from the range 0.2−0.8 in 50 test samples. Unit-concentration
spectra of the components are shown in Figure 1, along with
four selected degrees of overlap in the working range of 200
wavelengths.
The following relationships between signal and analyte

concentration were considered: (1) quadratic, (2) sigmoidal,
and (3) logarithmic. The specific expressions employed to
generate the component signals were, respectively,

= yx s2n n n
2

(19)

=
+ − −y

x
s2

1 exp[ 5( 0.5)]n
n

n (20)

= − yx s ln( )n n n (21)

In eqs 19−21, xn is the sample signal for component n, sn the
signal for the pure component n, and yn the component
concentration. The selectivity for component 1 in each system
is computed as ∥(I − [s2|s3] [s2|s3]

+) s1∥, where [s2|s3] is a two-
column matrix built with s2 and s3, I is a unit matrix and the
superscript “+” indicates pseudoinverse. Calibration (xcal) and
test (xtest) signals for each sample were computed by summing
the individual xn signals for each pure component according to
the corresponding system.
In sum, a total of 14 400 different systems were produced,

including 50 test samples, 8 degrees of spectral overlapping, 3
noise levels, 3 different noise structures (iid, correlated pink and
proportional noise), and 4 different noise additions: (1) to test
sample signals (xtest), (2) to calibration signals (xcal), (3) to
calibration concentrations (yn), and (4) to all signals (xcal and
xtest) and concentrations (yn). Noise levels in concentration and
signals were combined to create three types of systems,
including low, middle, and high noise levels. The standard
deviations in the calibration concentrations were set to 0.1% of
the mean calibration concentration for low noise, 0.15% for
intermediate noise, and 0.2% for high noise. Corresponding
three levels of Gaussian iid noise and correlated pink noise were
added in such a way that the signal standard deviation were 1%,
2.5%, and 4% of the mean spectral intensity value for the
calibration samples. Finally, proportional noise was added with
a proportionality factor of 0.01, 0.02, and 0.03 with respect to
the signal at each sensor.
Calibration and prediction proceeded, in each case, by

training ANNs of the RBF type according to the procedure
described by Orr.34,35 The input data to the ANN are not the
raw signals but the scores obtained after principal component
analysis (PCA) of the calibration data matrices. The number of
hidden neurons was tuned by forward selection, with all
transfer functions of the Gaussian type. To minimize overfitting
during the training phase, generalized cross-validation was
chosen as the model selection criterion, as suggested by Orr.34

See the Supporting Information for further details.

Figure 1. Pure component spectra for simulation. The panels show
four selected overlapping situations of the eight studied ones, leading
to the following four selectivity values for analyte 1: (A) 0.92, (B) 0.64,
(C) 0.49, and (D) 0.34.
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Software. All simulations were carried out using MAT-
LAB.36 The Supporting Information provides an Appendix with
two short MATLAB codes, which can be used to estimate the
figures of merit in a typical RBF neural network calibration as
the one presently discussed.

■ RESULTS AND DISCUSSION
Simulated Systems. After the individual ANNs were

suitably trained, the bANN vector of eq 10 was computed for all
the calibration samples, yielding the corresponding analyte
sensitivities in the calibration set. The results are graphically
summarized in the plots shown in Figure 2 in the case of iid

addition. In the latter figures, the solid lines represent the
sensitivity for the pure analyte as a function of its
concentration, derived directly from the defining expressions
(eqs 19−21). For clarity, four cases were selected from the
eight different degrees of spectral overlap, namely, those leading
to the lowest selectivities to analyte 1.
For a system composed of analyte 1 as the only sample

component, it is easy to see that the sensitivity will vary with
the concentration because of the nonlinear nature of the signal-
concentration relationship described by eqs 19−21. For
example, in a quadratic system described by eq 19, the
sensitivity increases linearly with analyte concentration, because

the derivative of a second-degree polynomial is a linear
function. In multicomponent systems, on the other hand, it is
natural to expect that the sensitivities toward analyte 1 will not
only change with its concentration but also with the degree of
spectral overlap with additional sample components.
Figure 2 shows that the sensitivities closely follow the

expected shapes of the SEN function for the pure analyte (solid
lines). Interestingly, the values of SEN appear to be only
dependent on the concentration of the analyte of interest, even
when the latter is mixed with two additional components.
Moreover, the values of SEN are smaller than the pure analyte
sensitivity and decrease with increasing degree of spectral
overlap. Overall, in all three studied systems, the behavior of
the neural network sensitivity is consistent with the theoretical
expectations.
The average, minimum and maximum values of SEN for each

calibration set are collected in Table 1. All values are lower than

the corresponding minimum and maximum values of slope of
total signal vs concentration, computed for the pure analyte of
interest. The latter are, from eqs 19−21, 0.8 and 3.6 for the
quadratic system, 1.5 and 2.5 for the sigmoidal one, and 1.25
and 5 for the logarithmic. Furthermore, a reasonable trend to
lower sensitivities is observed on increasing the spectral overlap,
measured by the classical selectivity parameter among
component spectra. Table 1 also reports the minimum and
maximum limits of detection, computed with the aid of eqs 17
and (18. The reported values follow the same trend observed
for the sensitivities, i.e., detection limits increase when the
degree of spectral overlapping increases. Similar results to those
shown in Figure 2 and Table 1 were obtained for the remaining
simulated systems, i.e., for other overlapping degrees, levels,

Figure 2. Theoretical sensitivity as a function of analyte concentration
for selected simulated systems in the case of iid noise addition: (A)
quadratic, (B) sigmoidal, and (c) logarithmic. In all cases, the solid line
corresponds to the sensitivity for the pure analyte 1, and the circles to
analyte 1 in three-component systems with increasing degree of
spectral overlap. The sensitivity decreases in the direction of increasing
spectral overlap.

Table 1. Sensitivities and Detection Limits for Analyte 1 in
Selected Simulated Systemsa

selectivity for analyte 1b 0.92 0.64 0.49 0.34

Quadratic System
SENmin 0.8 0.7 0.5 0.4
SENmax 3.2 2.3 1.6 1.4
⟨SEN⟩ 1.9 1.3 1.0 0.7
LODmin 0.004 0.005 0.007 0.009
LODmax 0.006 0.007 0.009 0.01

Sigmoidal System
SENmin 1.4 1.1 0.7 0.5
SENmax 2.3 1.7 1.3 0.8
⟨SEN⟩ 1.9 1.4 1.1 0.7
LODmin 0.002 0.003 0.004 0.006
LODmax 0.003 0.004 0.006 0.008

Logarithmic System
SENmin 1.2 0.8 0.6 0.4
SENmax 4.7 3.4 2.8 1.6
⟨SEN⟩ 2.1 1.5 1.2 0.8
LODmin 0.0008 0.001 0.001 0.002
LODmax 0.001 0.002 0.002 0.003

aSENmin, SENmax, and ⟨SEN⟩ represent the minimum, maximum, and
average sensitivity across the test sample set. LODmin and LODmax are
the minimum and maximum detection limits. The results correspond
to selected degrees of spectral overlap, in the case of addition of iid
noise and for the lowest noise level. bComputed as described in the
Simulations section.
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and types of added noise. It is important to note that good
agreement has been found between the prediction uncertainties
estimated by noise addition and the values furnished by eq 14,
as can be confirmed in Figures S1−S3 of the Supporting
Information.
There is an interesting aspect of the set of bANN vectors.

Figure S4 of the Supporting Information compares the range
spanned by all calibration bANN vectors for the simulated
systems with the vector of regression coefficients obtained by
PLS calibration of the same data. The bPLS vector, which is at
the same time a predictor and SEN-estimator vector, rests
within the boundaries of the range spanned by all bANN vectors,
which are only SEN-estimators but not predictors. When PLS is
applied to a nonlinear system, the regression vector tries to
compensate for deviations of linearity with additional latent
variables. One may thus expect the single bPLS vector to be a
sort of average of all the possible bANN vectors for a nonlinear
system.
Experimental System. Regarding the determination of fat,

moisture, and protein in chopped meat samples using NIR
spectroscopy (Tecator data set); details on the composition of
the data set can be found in Table 2. Individual PLS models
(for comparison purposes) and RBF neural networks were
trained for each parameter. Table 2 shows the PLS figures of

merit estimated for the optimum number of latent variables,
established by leave-one-out cross-validation. Also shown are
the network architectures: the number of input neurons was
estimated as the number of principal components (PCs)
needed to explain at least 99% of the variance of the calibration
data, whereas the number of hidden neurons was tuned by
forward selection, as detailed for the simulated data sets. The
suitability of the selected number of input neurons can be
appreciated in a plot of the average prediction error as a
function of the number of PCs, noting that the error stabilizes
at the selected number of PCs for all three target properties
(see Figure S5 of the Supporting Information).
The results in terms of predictive ability are similar to those

recently reported using a variety of neural networks, and are
significantly better than those reached with PLS calibration
(Table 2).6 This is confirmed by the plot of predicted vs
nominal sample properties, shown in Figure S6 of the
Supporting Information, both for PLS and the present ANN
approach. The corresponding analytical figures of merit are
shown in Table 2. ANN sensitivities were calculated from the
bANN vectors for each sample in each system, as illustrated in
Figure 3. Table 2 confirms better sensitivity for ANN in
comparison with PLS, in line with the RMSEP results, although
the difference is less marked in the case of protein
determination.

To estimate the range of detection limits, the uncertainty in
instrumental signals (σy) was estimated as the spectral residue
of the PCA decomposition of the calibration data matrix. The
value of the uncertainty in concentration (σycal) may be known
from previous laboratory experience or from the uncertainty in
the reference analytical method. In the present case, since this
information was not available, a cross validation average error
was calculated for each property using the calibration set and
employed as an approximate estimator. With the latter values,
minimum and maximum limits of detection can be estimated,
as reported in Table 2 for all three calibrated parameters.
Following the same trend as the average prediction error and
sensitivities, the detection limits are in general smaller for ANN
calibration than for the PLS models (they are comparable in the
case of protein determination). The LOD results appear to be
reasonable in light of the average prediction errors for the test
sample set, i.e., LODmin values are on the order of the RMSEP
for each analyte (Table 2). In any case, the extrapolation to

Table 2. Characteristics of the Experimental Data Set and
Analytical Figures of Merit for PLS and ANN Calibrationsa

fat/% moisture/% protein/%

no. of calibration samples 170
no. of test samples 70
property range 32.8−76.6 0.9−58.5 8.8−23.2
mean calibration value 63.0 18.3 17.7
calibration standard
deviation

10.7 13.9 3.3

calibration minimum value 32.8 0.9 8.8
calibration maximum value 76.6 58.5 23.2
mean test value 62.5 18.9 18.0
test standard deviation 11.8 15.5 3.9
test minimum value 34.1 0.9 9.0
test maximum value 76.6 56.1 23.2
σycal 1.06 0.71 0.78
σx 6.4 × 10−5

PLS Calibration
no. of latent variablesb 11 11 10
RMSEP 2.4 2.8 0.76
REP% 3.8 15.3 4.3
SEN 0.00042 0.00041 0.0011
LODmin 3.8 1.6 1.3
LODmax 6.3 5.3 1.8

ANN Calibration
ANN architecture 15-54-1 15-46-1 15-47-1
RMSEP 0.71 0.59 0.64
REP% 1.1 3.2 3.6
SENmin 0.0016 0.0034 0.0016
SENmax 0.0041 0.0051 0.0035
⟨SEN⟩ 0.0021 0.0040 0.0018
LODmin 1.6 0.3 1.1
LODmax 3.8 2.3 2.7

aNetwork architecture given as input-hidden-output number of
neurons; RMSEP, root-mean-square error of prediction; REP%,
relative error of prediction with respect to the mean calibration
property value. bEstimated by leave-one-out cross-validation.

Figure 3. Sensitivity coefficients for artificial neural network in (A) fat
data set, (B) moisture data set, (C) protein data set, and (D) fat,
moisture, and protein together.
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zero analyte concentration implied by the LOD expressions
(eqs 17 and 18) is safer in the case of the moisture
determination, because low levels of the target property are
available in the calibration set (Table 2).

■ CONCLUSIONS
The current expansion and widespread use of artificial neural
networks to develop first order analytical calibrations demands
the development of reliable estimators of the figures of merit
that are normally used to characterize these calibrations. In
response to this need, a full battery of estimators is presented
for sensitivity, sample dependent prediction error, and limit of
detection. They are described and validated over simulated and
experimental data sets processed with radial basis function
neural networks. The developed expressions follow previous
developments in the context of other well-known analytical
calibration models and represent a link between linear and
nonlinear calibration worlds in terms of model validation. As a
consequence, the estimators provide analytical chemists with
additional tools to perform reliable comparisons between first-
order models as well as a deeper insight into neural network
mechanisms. Finally, the proposal sets a conceptual basis for
extending the estimators to other popular strategies dealing
with nonlinear data, such as back-propagation neural networks
and support vector machines.
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