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Abstract

We address a minimax optimal control problems with linear dynamics. Under

convexity assumptions, by using non-smooth optimization techniques, we de-

rive a set of optimality conditions for the continuous-time case. We define an

approximated discrete-time problem where analogous conditions hold. One of

them allows us to design an easily implementable descent method. We analyze

its convergence and we show some preliminary numerical results.
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1. Introduction

We consider an optimal control problem whith linear dynamics and fixed

initial state where the goal is to minimize a cost functional which is the essen-

tial supremum, over the time interval, of a function depending on the time, the

state and the control. Studied in the last decades by several authors ([1], [2], [3],5

[4], [5], [6], [7], [8] and [9]) these problems differs from those with an accumu-

lated cost criterium and arises naturally in many applications, as for instance,

minimization of the maximum trajectory deviation from what is desired ([10],

[11], [12]), or robust optimal control of uncertain systems ([13], [14]).
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Certainly, by adding an auxiliary variable the minimax control problem can10

be written as a classical control problem with state constraints, in this frame-

work, some authors ( [2], [4], [5]) obtained necessary conditions as Pontryagin

Maximum Principle [15]. Nevertheless, in this case the adjoint state involves

Radon measures, and therefore it is not easily implementable. It is also relevant

the dynamic programming approach ( [1], [6], [7], [8], [9]), which usually requires15

the discretization of the state space for computational implementations, leading

to large scale problems. Since in this work we consider fixed initial state, our

approach only requires time discretization, avoiding dimensionality drawbacks.

The main idea of this paper is to consider the minimax control problem

as a non-smooth optimization problem in a suitable space. We follow [16] but20

now we focus on the discrete-time approximation in order to develop a numer-

ical scheme. Under suitable assumptions we prove the existence of the cost

functional directional derivatives and we derive a set of first order optimality

conditions from which we design a descent method following the Armijo’s rule

([17]).25

2. Continuous-Time Problem

2.1. Main Assumptions

We consider the dynamical system ẏ(t) = g(t, y(t), u(t)) t ∈ [0, T ],

y(0) = x ∈ Rr,
(2.1)

where g : [0, T ] × Rr × Rm → Rr is a given function. In the notation above

yu(t) ∈ Rr denotes the state function and u(t) ∈ Rm the control. The optimal

control problem consists in minimizing the functional J : U 7→ IR defined as

J(u) := ess sup {f(yu(t)) : t ∈ [0, T ]} , (2.2)

over the set of controls

U = {u : [0, T ]→ U ⊂ Rm : u(·) measurable},
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where U is a compact and convex set and f : Rr → R is given.

Let us now fix the standing assumptions that we will consider in this paper:

(H1) g is linear and has the form:

g(t, y(t), u(t)) = A(t)y(t) +B(t)u(t) + C(t)

where A : [0, T ] → Rr×r, B : [0, T ] → Rr×m and C : [0, T ] → Rr are30

Lipschitz continuous functions.

(H2) f is convex, Lipschitz continuous and continuously differentiable.

Remark 2.1. Under the above assumptions, for any u ∈ U the state equation

(2.1) admits a unique solution yu. Also, the function J is well defined, and the

essential supremum is actually the maximum over [0, T ].35

2.2. Optimality Conditions

We consider the problem as a nonlinear optimization problem in L2[0, T ].

Note that if assumption (H1) holds and f is convex, then J is a convex function

of u. If in addition f is a Lipschitz continuous function, then J is Lipschitz con-

tinuous on U endowed with the L2[0, T ] norm. So the optimal control problem40

has solution, since we are minimizing a continuous and convex function over a

convex, closed and bounded set of L2[0, T ] (see [18]).

In order to obtain a necessary condition for u to be optimal, we would like

to compute the gradient or, at least, a directional derivative of J for u along an

admissible direction v. It is easy to see that because of the involved definition45

of J , it could not exist. Nevertheless, our assumptions on f guarantee the

directional differentiability of J .

In the reminder we will note J ′(u, v) the directional derivative of the func-

tion J in u over the direction v, and by differentiable we understand Fréchet

differentiable (see [19]). From now on, we suppose that assumptions (H1) and50

(H2) hold.

We denote by TU (u) the tangent cone to U at u ([19]).
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Proposition 2.1. Under the above assumptions, the function J is directionally

differentiable at any u ∈ U and the directional derivative in a direction v ∈ TU (u)

is given by

J ′(u; v) = sup
t∈Cu

〈∇f(yu(t)), zv(t)〉 , (2.3)

where Cu is the set of critical times

Cu = arg maxt∈[0,T ]f(yu(t)), (2.4)

and zv solves the following differential equation ż(t) = A(t)z(t) +B(t)v(t), t ∈ [0, T ]

z(0) = 0.
(2.5)

Proof. By the convexity and differentiability of f , from [19] we know that J is

directionally differentiable and for any direction v,

J ′(u, v) = sup
t∈Cu

Duf(yu(t))v.

Let φ be the application u 7→ yu, then Duf(yu(t))v = 〈∇f(yu(t)), φ′(u, v)〉, and

φ′(u, v) = zv,

where zv is the solution of (2.5).

By classical continuous optimization, we know that a necessary optimality

condition for u to be optimal is that every directional derivative is non-negative,

for every direction in TU (u) ([20]). This condition turns to be also sufficient in

the convex case. The last assertion is equivalent to

inf
v∈TU (u)

sup
t∈Cu

〈∇f(yu(t)), zv(t)〉 ≥ 0. (2.6)

Let us explicit the linear operator v 7→ zv. By the variation of constants

formula, the solution of (2.5) is given by

zv(t) =

∫ t

0

StsB(s)v(s)ds,
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where the matrix Sts is a solution of the system d
dtSts = A(t)Sts, t ∈ [s, T ]

Sss = I.
(2.7)

Now, the directional derivative can be written as

J ′(u; v) = sup
t∈Cu

〈
∇f(yu(t)),

∫ t

0

StsB(s)v(s)ds

〉
. (2.8)

Defining for each u ∈ U and t ∈ [0, T ], the element of L2[0, T ]

qu,t(s) := It(s)B
>(s)S>ts∇f(yu(t)), ∀s ∈ [0, T ],

where It(s) is equal to 1 if s ≤ t and 0 otherwise, we can rewrite (2.8) as

J ′(u; v) = sup
t∈Cu

〈qu,t, v〉 , (2.9)

where the last scalar product is in L2[0, T ].

Theorem 2.1. Let u ∈ U , then u is optimal if and only if

inf
v∈U−u

sup
t∈Cu

〈qu,t, v〉 = 0. (2.10)

Proof. If u is a minimizer of J , then infv∈TU (u) J
′(u; v) ≥ 0. By (2.9), the last

assertions is equivalent to

inf
v∈TU (u)

sup
t∈Cu

〈qu,t, v〉 ≥ 0. (2.11)

By (H1)-(H2), we can deduce that qu,t is bounded in L2[0, T ] independently

of t. Since U is convex, the infimum over TU (u) in (2.11) coincides with the

infimum over the set U − u. Since v = 0 is an admissible direction, we have

inf
v∈U−u

sup
t∈Cu

〈qu,t, v〉 = 0.

Conversely, the sufficiency is straightforward from the convexity and directional55

differentiability of J (see [20]).
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Condition (2.10) involves the computation of the set of critical times asso-

ciated to u. The dependence of this set with respect to the control can cause

some troubles in the aim of designing an algorithm based on that condition. In60

order to avoid this complication, we propose other necessary conditions where

the supremum is taken over the whole interval [0, T ].

In the reminder, we denote Uu := U − u the set of admissible directions.

Theorem 2.2. Condition (2.10) implies

inf
v∈Uu

sup
t∈[0,T ]

{f(yu(t))− J(u) + 〈qu,t, v〉} = 0. (2.12)

Also, condition (2.12) implies

inf
v∈Uu

sup
t∈[0,T ]

〈qu,t, v〉 = 0, (2.13)

and for any ρ > 0,

inf
v∈Uu

sup
t∈[0,T ]

{f(yu(t))− J(u) + 〈qu,t, v〉}+
ρ

2
‖v‖2 = 0. (2.14)

Proof. Note that v = 0 is an admissible direction, so

0 = inf
v∈Uu

sup
t∈Cu

〈qu,t, v〉 ≤ inf
v∈Uu

sup
t∈[0,T ]

〈qu,t, v〉 ≤ 0. (2.15)

Since f(yu(t)) ≤ J(u) for all t ∈ [0, T ], we obtain

inf
v∈Uu

sup
t∈[0,T ]

{f(yu(t))− J(u) + 〈qu,t, v〉} ≤ inf
v∈Uu

sup
t∈[0,T ]

〈qu,t, v〉 . (2.16)

By (2.15) and (2.16), the left hand side of (2.12) is non positive. On the

other hand, by the definition of Cu,65

sup
t∈Cu

〈qu,t, v〉 = sup
t∈Cu

{f(yu(t))− J(u) + 〈qu,t, v〉}

≤ sup
t∈[0,T ]

{f(yu(t))− J(u) + 〈qu,t, v〉} ,

so condition (2.10) gives the opposite inequality in (2.12).

By (2.16), clearly (2.12) implies (2.13). Also, using the fact that

f(yu(t))− J(u) + 〈qu,t, v〉 ≤ f(yu(t))− J(u) + 〈qu,t, v〉+
ρ

2
‖v‖2 ,

we deduce that (2.12) implies (2.14).
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3. The Discrete-Time Approximated Problem

In this section we approximate the continuous problem by a discrete-time

optimal control problem and we state optimality conditions which are suitable70

for designing an algorithm.

3.1. Description of the Discrete-Time Problem

We divide the interval [0, T ] into N subintervals with common length h =

T/N and we restrict the controls to be sectionally constant. So, the set of

discrete controls is

Uh = {u ∈ U : u is constant in [kh, (k + 1)h), k = 0, ..., N − 1}. (3.1)

A discrete policy u is identified as {un}N−1
n=0 , un ∈ U ⊂ Rm, so Uh can be

identified as UN ⊂ Rm×N .

Instead of dealing with the exact response of the system (2.1) to the controls

(3.1), we introduce an approximated discrete-time system. For u ∈ Uh we define

the response yu of the discrete-time system by the recursive formula yn+1
u = ynu + hg(tn, y

n
u , u

n), n = 0, ..., N − 1,

y0
u = x,

(3.2)

where g(tn, y
n
u , u

n) = A(tn)ynu + B(tn)un + C(tn). The discrete-time optimal

control problem consists in minimizing the functional Jh : Uh → R, given by

Jh(u) := max {f(ynu) : n = 0, ..., N}

over the set of controls Uh. Clearly, the minimization problem has a solution,75

since Jh is continuous over the compact set Uh.

3.2. Discrete Optimality Conditions

In the same fashion that in the continuous case we obtain:

Proposition 3.1. Given a discrete policy u = {un}N−1
n=0 , the functional Jh is

directionally differentiable at u and for any v ∈ TUh(u) we have

Jh
′
(u, v) = max

n∈Cu

〈∇f(ynu), znv 〉
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where Cu = arg max {f(ynu) : 0 ≤ n ≤ N} is the set of critical times, and zv

solves the following system of difference equations80

 zn+1 = anzn + bnvn n = 0, . . . , N − 1,

z0 = 0
(3.3)

with vn := v(tn), an := I + hA(tn) and bn := hB(tn).

The solution of (3.3) can be written as a function of v, in fact

znv =
n−1∑
j=0

Sn−1,jv
j (3.4)

where S satisfies Sn+1,j = an+1Sn,j , 0 ≤ j ≤ n and Sjj = bj , ∀j ≥ 0.

Analogously to the continuous case, if we define

qju,n :=


0 ∀j ≥ n,

S>n−1,j∇f(ynu) ∀j < n,

(3.5)

we can conclude

Jh
′
(u; v) = max

n∈Cu

n−1∑
j=0

〈
qju,n, v

j
〉

= max
n∈Cu

N−1∑
j=0

〈
qju,n, v

j
〉

= max
n∈Cu

〈qu,n, v〉 ,

where qu,n is the matrix with columns qju,n, v is identified with the matrix of

columns vj , and the last scalar product is defined as 〈qu,n, v〉 := tr(q>u,nv).85

A straightforward consequence of the previous remarks is the following theorem.

Theorem 3.1. Let u ∈ Uh and Uhu := Uh − u. Then u is an optimal control

for the discrete-time control problem if and only if

min
v∈Uh

u

max
n∈Cu

〈qu,n, v〉 = 0. (3.6)

We propose now an analogous version of the optimality condition (2.12)

which is not only necessary, but also sufficient.

Theorem 3.2. Condition (3.6) is equivalent to

min
v∈Uh

u

max
n=0,..,N

{
f(ynu)− Jh(u) + 〈qu,n, v〉

}
= 0. (3.7)
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Proof. Similarly to the proof of Theorem 2.2 we can prove (3.6) implies (3.7).

Assume that (3.7) holds. If we suppose that (3.6) does not hold, then there

exists a direction w ∈ Uhu such that maxn∈Cu
〈qu,n, w〉 < 0, and then for all

λ ∈ (0, 1),

max
n∈Cu

〈qu,n, λw〉 < 0. (3.8)

Since Uh is convex, λw is an admissible direction for any λ ∈ (0, 1).90

By (3.7), we have

max
n=0,..,N

{
f(yhu(tn))− Jh(u) + 〈qu,n, λw〉

}
≥ 0, ∀λ ∈ (0, 1).

By (3.8), necessarily we have

max
n/∈Cu

{
f(ynu)− Jh(u) + 〈qu,n, λw〉

}
≥ 0, ∀λ ∈ (0, 1),

taking λ ↓ 0 we obtain

max
n/∈Cu

{
f(ynu)− Jh(u)

}
≥ 0,

which is in contradiction with the definition of Cu.

Again, we add a quadratic term in order to obtain a strongly convex function

which has better numerical behavior.

Theorem 3.3. Let u ∈ Uh, then for any ρ > 0, condition (3.6) is equivalent to

min
v∈Uh

u

max
n=0,...,N

{
f(ynu)− Jh(u) + 〈qu,n, v〉

}
+
ρ

2
‖v‖2 = 0. (3.9)

Proof. Assume condition (3.6) holds. By the definition of Cu we have,

max
n∈Cu

〈qu,n, v〉 = max
n∈Cu

{
f(ynu)− Jh(u) + 〈qu,n, v〉

}
≤ max

n=0,...,N

{
f(ynu)− Jh(u) + 〈qu,n, v〉

}
+ ρ

2 ‖v‖
2
,

(3.10)

since v = 0 is an admissible direction, it is easy to see that (3.6) implies (3.9).

Now, we consider that (3.9) holds true. If we suppose that (3.6) does not

hold then, there exist w ∈ Uhu such that maxn∈Cu
〈qu,n, w〉 < 0. Let λ̄ ∈ (0, 1)

small enough such that for all λ ∈ (0, λ̄) we have

max
n∈Cu

〈qu,n, w〉+
ρ

2
λ ‖w‖2 < 0. (3.11)
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Thus, for all λ ∈ (0, λ̄) we obtain,

λ

(
max
n∈Cu

〈qu,n, w〉+
ρ

2
λ ‖w‖2

)
= max
n∈Cu

〈qu,n, λw〉+
ρ

2
‖λw‖2 < 0. (3.12)

Since Uh is convex, λw ∈ Uhu for any λ ∈ (0, λ̄). By (3.9), we obtain

max
n=0,..,N

{
f(ynu)− Jh(u) + 〈qu,n, λw〉

}
+
ρ

2
‖λw‖2 ≥ 0, ∀λ ∈ (0, λ̄)

so, by using (3.11) we can conclude as in the previous theorem.95

Remark 3.1 (Convergence of Value). In order to analyze the relationship be-

tween the continuous and the discrete problems, we define, respectively, the value

for the continuous-time problem and the value for the discrete-time problem as

V := inf
u∈U

J(u), V h := inf
u∈Uh

Jh(u).

It is proved in [9] that
∣∣V − V h∣∣ ≤ M

√
h, for some constant M > 0, and this

estimation is independent of the initial point x. Following the proof in [9], it is

easy to see that for a minimizer of the discrete problem ūh, we obtain

∣∣V − J(ūh)
∣∣ ≤M√h.

This implies that an optimal control for the discrete problem gives a good ap-

proximation of the value of the continuous problem.

4. Approximation Scheme

In this section we present an approximation scheme based on condition

(3.9). An admissible control satisfying this condition is optimal; otherwise,100

the minimizer in (3.9) gives a descent direction for the minimization of func-

tional Jh. Indeed, let θ : UN → R and η : UN → Rm×N (where we identify

Uh ≡ UN , Uhu ≡ UNu ) be given by

θ(u) := min
v∈UN

u

max
n=0,...,N

{
f(ynu)− Jh(u) + 〈qu,n, v〉

}
+
ρ

2
‖v‖2 , (4.1)

η(u) := arg min
v∈UN

u

max
n=0,...,N

{
f(ynu)− Jh(u) + 〈qu,n, v〉

}
+
ρ

2
‖v‖2 . (4.2)
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Then

Jh
′
(u; η(u)) = max

n∈Cu

〈qu,n, η(u)〉

≤ max
n=0,...,N

{
f(ynu)− Jh(u) + 〈qu,n, η(u)〉

}
+
ρ

2
‖η(u)‖2

= θ(u) < 0. (4.3)

First, we propose a conceptual descent algorithm, where it is assumed that105

all the computations can be done exactly and all the subproblems can be solved

without error, and we give a theoretical convergence result. Secondly, we con-

sider an implementable version of this algorithm, taking into account the inac-

curacies, and we prove that a natural stopping criterion can be satisfied in finite

time if the subproblems are solved with enough precision.110

Basically, Algorithm 4.1 computes at each step a descent direction solving

(3.9) and performs an Armijo line search. Using condition (3.9) has two main

advantages. On the one hand, the supremum is computed over the whole set

of times. The application u 7→ Cu is not always continuous as a set-valued

function, which is a drawback in the aim to obtain convergence properties.115

On the other hand, the quadratic term in (3.9) regularizes the operator to be

minimized, which turns to be strongly convex so it has unique solution. These

facts imply that the functions θ and η are continuous (see [17]).

Algorithm 4.1. (Conceptual Algorithm)

Step 1: Choose the parameters α, β ∈ (0, 1) and ρ > 0. Set k = 1 and choose120

the initial point u1 ∈ UN .

Step 2: Compute:

ynuk
, f(ynuk

), n = 0, ..., N,

Jh(uk) = max
n=0,..,N

f(ynuk
).

Step 3: Compute θ(uk) and η(uk) given by (4.1) and (4.2), respectively.

Step 4: If θ(uk) = 0, Stop (uk satisfies the optimality condition). Else, find

the maximum λk = βj , j ∈ N0, such that

Jh(uk + λk η(uk)) < Jh(uk) + αλk θ(uk).
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Step 5: Set uk+1 = uk + λk η(uk), k = k + 1 and restart Step 2.

In practice, only a finite number of arithmetical operations and functions

evaluations can be done (inexactly in most of the cases) and we can only achieve

approximate solutions of the problems (4.1) and (4.2). So the stopping criterion

in Step 4 of algorithm 4.1 is no longer meaningful and a natural replacement

is |θ(uk)| ≤ ε for some positive tolerance ε. Nevertheless, the nature of the

problems (4.1) and (4.2) allows to obtain very accurate solutions. Note that,

by introducing an auxiliary variable ξ ∈ R, we obtain the equivalent quadratic

program

min ρ
2 ‖v‖

2
+ ξ

s.t. v ∈ UNu , ξ ∈ R,

ξ ≥ f(ynu) + 〈qu,n, v〉 , n = 0, ..., N,

(4.4)

which can be solved efficiently by standard algorithms.

Algorithm 4.2. (Implementable Algorithm)125

Step 1: Choose the parameters α, β ∈ (0, 1), ρ > 0 and the tolerance ε > 0.

Set k = 1 and choose the initial point u1 ∈ UN .

Step 2: Compute:

ynuk
, f(ynuk

), n = 0, ..., N,

Jh(uk) = max
n=0,..,N

f(ynuk
).

Step 3: Obtain approximations θ̂(uk) and η̂(uk) of (4.1) and (4.2), respec-

tively, i.e.,

θ̂(uk) = max
n=0,...,N

{
f(ynuk

)− Jh(uk) + 〈quk,n, η̂(uk)〉
}

+
ρ

2
‖η̂(uk)‖2 ,

with

θ̂(uk) = θ(uk) + ekθ , η̂(uk) = η(uk) + ekη, (4.5)

where ekθ ∈ R and ekη ∈ RN are unknown errors.

Step 4: If |θ̂(uk)| < ε, Stop. Else, find the maximum λk = βj , j ∈ N0, such

that

Jh(uk + λk η̂(uk)) < Jh(uk) + αλk θ̂(uk).
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Step 5: Set uk+1 = uk + λk η̂(uk), k = k + 1 and restart Step 2.

Algorithm 4.2 is an inexact version of Algorithm 4.1 with a reachable stop-130

ping criterion. In this first approach, for simplicity we consider fixed parame-

ters, in particular the regularization parameter ρ, but a variable one could be

introduced without significant changes in the analysis. The importance of the

quadratic term involving ρ is to prove theoretical convergence results. Probably,

a second order analysis would give a more precise idea on how to choose ρ in135

order to improve the efficiency of the method, but this is out of the scope of the

present work.

4.1. Convergence Results

Theorem 4.1. Let {uk} be the sequence generated by the Algorithm 4.1. Then,

either {uk} finishes at a minimizer or it is infinite and every accumulation point140

of {uk} is optimal.

Proof. Suppose {uk} is infinite, so it has a subsequence {ukn} converging to

some point ū. The continuity of the functional Jh implies

Jh(ukn)→ Jh(ū).

Since {uk} is infinite, we know that θ(uk) < 0 for all k ∈ N and

Jh(uk+1) < Jh(uk) + αλk θ(uk), ∀k ∈ N. (4.6)

Therefore the sequence
{
Jh(uk)

}
k∈N is monotone decreasing so the whole se-

quence converges to Jh(ū), and by (4.6) and the fact that λkθ(uk) < 0 for all

k ∈ N, we obtain

lim
k→∞

λkθ(uk) = 0. (4.7)

By Theorem 3.3, to prove that ū is optimal is equivalent to prove that

θ(ū) = 0. If we suppose that θ(ū) < 0, then there exists λ̄ the maximum of the

form βj such that

Jh(ū+ λ̄η(ū)) < Jh(ū) + αλ̄θ(ū). (4.8)
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Since Jh, η and θ are continuous, there exists N0 ∈ N such that

Jh(ukn + λ̄η(ukn))− Jh(ukn)− αλ̄θ(ukn) < 0, ∀n ≥ N0.

We can conclude that λkn ≥ λ̄ for all n ≥ N0. Then by (4.7) we obtain

lim
n→∞

θ(ukn) = 0.

But, since θ is continuous, that implies θ(ū) = 0, which contradicts our assump-

tion. So, we can deduce that θ(ū) = 0, i.e. ū is optimal.

Remark 4.1. By the previous theorems, if S is the set of solutions, i.e.

S :=

{
ū ∈ Uh : Jh(ū) = inf

u∈Uh
Jh(u)

}
,

and {uk} is the sequence generated by the algorithm, then

d(uk,S)→ 0, (4.9)

where d is the Euclidean distance in RmN . In particular, if the set of solution is

a singleton, as for instance in the strictly convex case, then the whole sequences145

converges to the minimizer.

Theorem 4.2. Let {uk} be the sequence generated by the Algorithm 4.2 and

suppose that in every iteration the subproblems (4.1) and (4.2) are solved with

enough accuracy such that the errors verify

|ekθ | <
(1− α)ε

4
, ‖ekη‖ <

(1− α)ε

4L
, (4.10)

where L is the Lipschitz constant of Jh. Then, {uk} is finite, i.e., there exists

K ∈ N such that |θ̂(uK)| < ε and the algorithm stops.

Proof. Suppose that the sequence {uk} is infinite. Then,

θ̂(uk) ≤ −ε < 0 (4.11)

so η̂(uk) is a descent direction for all k ∈ N and the Armijo search in Step 4 of

algorithm 4.2 is well defined.150
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By the same argument used in the proof of Theorem 4.1, we have a subse-

quence {ukn} converging to some point ū and the whole sequence satisfies

Jh(uk)→ Jh(ū) and λkθ̂(uk)→ 0.

Hence, (4.11) implies

λk → 0. (4.12)

Also, from (4.10) and (4.11) we have that, for all k ∈ N, θ(uk) ≤ − 3
4ε, so

θ(ū) ≤ −3

4
ε < 0 (4.13)

and η(ū) is a descent direction. Thus, for ᾱ = 1+α
2 ∈ (0, 1), there exists λ̄ =

β j̄ > 0 such that

Jh(ū+ λ̄η(ū)) < Jh(ū) + ᾱλ̄θ(ū),

and the continuity of Jh, η and θ gives

Jh(ukn + λ̄η(ukn))− Jh(ukn)− ᾱλ̄θ(ukn) < 0, ∀n ≥ N0. (4.14)

By (4.14), (4.5), (4.10) and the Lipschitz continuity of Jh, we obtain

Jh(ukn + λ̄η̂(ukn))− Jh(ukn)− ᾱλ̄θ̂(ukn) ≤ λ̄
(
L‖ekη‖+ ᾱ|ekθ |

)
<

(1− α)λ̄ε

2
,

and by the definition of ᾱ and (4.11), we have

Jh(ukn + λ̄η̂(ukn))− Jh(ukn)− αλ̄θ̂(ukn) <
(1− α)λ̄ε

2
+ (ᾱ− α)λ̄θ̂(ukn) ≤ 0.

Therefore, λkn ≥ λ̄ for all n ≥ N0, which contradicts (4.12), so the sequence

{uk} must be finite.

5. Numerical Results

In this section, we illustrate the implementation of Algorithm 4.1 on a simple

academic example studied in [4]. Specifically, consider the problem

min
u

{
max
t∈[0,6]

{y1(t) + y2(t)}
}
,

subject to (ẏ1, ẏ2)> = (y2, u)>, (y1(0), y2(0))> = (2, 2)> and |u| ≤ 1.
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This problem admits infinitely many optimal controls, all of them satisfying155

u(t) ≡ −1 for t ∈ [0, 1), with optimal value 4.5, attained at t = 1 (see [4]). Our

scheme reproduced these results in the performed numerical trials. Algorithm

4.2 has been coded by using Scilab 5.4.1 (INRIA-ENPC, see www.scilab.org)

and ran on an Intel i7 2.67GHz with 8Gb of RAM. Each iteration comprises a

quadratic program (solved using quapro toolbox) and an Armijo line search.160

Table 1: Discrete value function and error

N h V h |V h − V | |θ(uk)| Iter. Time (s)

60 0.100000 4.550010 0.050010 9.85e-06 136 3.73

120 0.050000 4.525000 0.025000 3.42e-07 1 0.10

240 0.025000 4.512500 0.012500 1.71e-07 1 0.48

480 0.012500 4.506250 0.006250 8.56e-08 1 2.37

960 0.006250 4.503125 0.003125 4.28e-08 1 24.13

1920 0.003125 4.501563 0.001563 2.14e-08 1 235.25

Table 1 shows the results for 6 successive partitions of the interval [0, 6],

starting with N = 60 (so h = 0.1) and duplicating it in the following partitions.

The used stopping test was |θ(uk)| < εN , with εN = 60
N 10−5. We report on each

case the optimal value, the error and the value of |θ(uk)|, as well as the required

number of iterations and the computational time. The first trial (for N = 60)165

was initialized with an arbitrary constant and for the successive partitions the

initial control was the linear interpolation of the control given by the previous

trial. This choice significantly reduces the computational time, since the number

of iterations is large only for the first trial, where the quadratic programs to be

solved are small scale problems.170

Figure 1 illustrates the evolution of the algorithm by showing the graphics

of the function f on some iterations yuk
. We can see how its maximum descends

on successive iterations (because it is a descent method).

Figure 2 shows the obtained optimal control u and the function f . As

16



Figure 1: Iterations f

expected, the optimal control verifies u(t) = 1 for t ∈ [0, 1), and f attains a175

maximum in t = 1 with value near 4.5.

Figure 2: Optimal control u and function f

We point that in [4] the algorithm is based on an optimality condition derived

from Pontryagin Maximum Principle [15], whose implementation requires to

assume that the objective function has an isolated maximum. An advantage of

our approach is the avoidance of such assumptions.180
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