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Abstract 

BACKGROUND: Herbicide resistant weeds are a serious problem worldwide. 

Recently, two populations of Amaranthus palmeri with suspected cross-resistance to 

ALS-inhibiting herbicides (R1 and R2) were found by farmers in two locations from 

Argentina (Vicuña Mackenna and Totoras, respectively). We conducted studies to 

confirm and elucidate the mechanism of resistance. 

RESULTS: We performed in vivo dose-response assays, and confirmed both 

populations had a strong resistance to chlorimuron-ethyl, diclosulam and imazethapyr 

when compared to a susceptible population (S). In vitro ALS activity inhibition tests 

only indicated a considerable resistance to imazethapyr and chlorimuron-ethyl, 

indicating that other non-target mechanisms could be involved in diclosulam resistance. 

Subsequently, molecular analysis of als nucleotide sequences revealed three single 

base-pair mutations conferring substitutions in amino acids previously associated with 

resistance to ALS inhibitors, A122, W574, and S653 

CONCLUSION: This is the first report of als resistant alleles in Amaranthus palmeri 

from Argentina. The data support the involvement of a target-site mechanism of 

resistance to ALS inhibiting herbicides. 
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1. Introduction 

For centuries, growing plants as food and fiber source has been one of the major 

human efforts. At present, with a world population over 7.5 billion people, any threat to 

production systems directly impacts global sustainability. One of these threats, if not the 

main one, remains the infestation of crops by wild plants with powerful adaptive and 

propagative abilities.1 In the last four decades, herbicides were, by far, the main strategy 

used for weed control; largely replacing hand weeding and mechanical control tools.2 

Although herbicides contributed substantially to the high productivity of global 

agriculture, they did not result in the complete control of weeds. Instead, monoculture 

production systems and repeated use of herbicides with similar mechanism of action 

have led to herbicide resistance in weeds.3-6 Worldwide, there are currently 252 weed 

species with biotypes resistant to one or more herbicides, and resistance has evolved for 

23 of the 26 known herbicide sites of action.7 

Palmer amaranth (Amaranthus palmeri) is one of the approximately 60 Amaranthus 

species native to the Americas,8,9 and is the most troublesome for soybean (Glycine max 

L. Merr.), corn (Zea mays L.) and cotton (Gossypium hirsutum L.), all on the American 

continent.10-16 Amaranthus species are characterized by having an extended period of 

germination, rapid growth, and prolific seed production.17,18 However, Palmer amaranth 

is an annual dioecious broadleaf weed capable of growing 3 to 4 m tall,19 producing 

unbranched terminal seedheads up to 0.5 m in length20 and triggering seed production 

up to 600,000 seeds per female plant.21 Moreover, compared with redroot pigweed 

(Amaranthus retroflexus L.), common waterhemp (Amaranthus rudis S.), and tumble 

pigweed (Amaranthus albus L.), Palmer amaranth has shown the greatest values for 

plant volume, dry weight, and leaf area.22 Palmer amaranth has a long-term dormant 
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seed period, a large and aggressive growth, and a potential ability to acquire herbicide 

resistance by successfully outcrossing with other species from the same genus12. 

Consequently, this weed detrimentally affects crop growth and yield by effectively 

enhancing its competitiveness for resources like light, water, space, and nutrients.23 

The first report of herbicide resistance in Palmer amaranth came in 1989 in South 

Carolina, United States.24 Since then, the high selection pressure of modern farming 

systems has led to a rising emergence of resistance cases in this species, covering as 

much as six different mechanisms of action (5-enolpyruvylshikimate-3-phosphate 

synthase, EPSPS;acetolactate synthase, ALS; Photosystem II, 4-hydroxyphenylpyruvate 

dioxygenase, HPPD; microtubule inhibitors and protoporphyrinogen oxidase, PPO 

inhibitors) and biotypes developing multiple resistance to two or three of the 

mechanisms mentioned.7 In Argentina, mucronate amaranth (Amaranthus quitensis L.) 

is largely considered the most problematic weed of recent times, with no official reports 

of the presence of A. palmeri until 2013.13,25 Given the high tendency of A. palmeri to 

acquire resistance to several mechanisms of action, it is highly relevant to characterize 

the reported field resistances and intensify the studies regarding the molecular basis of 

them. This information will be useful in designing control strategies that allow farmers 

to prevent, understand and overcome this weed resistance problem without creating a 

similar one in the near future. Hence, the objectives of this work were to confirm the 

resistance of two suspected cross-resistant A. palmeri populations found in two 

Argentinian farms, and to characterize that resistance at the molecular level. 

2. Materials and Methods 
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2.1 Plant material/Seed collection 

Seeds of Palmer amaranth were collected in three farms, sampling at least 100 plants 

combined into a single composite sample per field. In two of these farms, it was known 

that A. palmeri had survived herbicide applications of Derby® (a.i: imazethapyr 10% 

w/v) from Gleba , and in the third farm the population was susceptible to this herbicide 

mode of action. 

The populations with suspected cross-resistance to ALS herbicides were named R1 

(from Vicuña Mackenna, 33º55´20.68” S, 64º35´33.37” W) and R2 (from Totoras, 32° 

34′ 59.88″ S, 61° 10′ 59.88″ W); and the susceptible population from Tucumán 

(27°17'45.36"S- 65°0'3.37"W) was referred as S.  

2.2 Chemical compounds  

For both in vitro and in vivo dose-response assays three herbicides were tested: Derby® 

(a.i: imazethapyr 10% w/v) from Gleba, VRILEC® (a.i: chlorimuron-ethyl 25% w/w) 

from Agrofina, and Spider® (a.i: diclosulam 84% w/w) from Dow AgroSciences. The 

active ingredients correspond to the ALS-inhibitor chemical families: imidazolinones 

(IMI), sulfonylureas (SU) and triazolopyrimidines (TP), respectively. 

2.3 In vivo dose-response assays 

To assess each herbicide effect, approximately 120 seedlings of the resistant and 

susceptible populations were grown in 9-cm plastic pots containing a mixture of soil, 

sand and perlite (70-20-10%, respectively), previously sterilized with methyl bromide. 

The experiment was conducted in a randomized complete block design with 5 

replications per dose, using 3 plants per replication. When plants reached 4 to 6 true 
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leaves, different doses of herbicides were sprayed, depending on the population in order 

to obtain a good curve fit for each case. The following doses were used: 0, 0.0625X, 

0.125X, 0.250X, 0.5X, 1X, 2X, 4X, 8X, 16X and 32X, with X=100 g ai/ha for 

imazethapyr, 50 g ai/ha for chlorimuron-ethyl, and 30 g ai/ha for diclosulam. These 

doses correspond to the recommended label rates. Herbicides were applied using a 

constant pressure backpack with flat fan nozzles at 206.84 kPa calibrated to deliver 75 L 

ha−1. Three weeks after treatment, number of survivors was recorded. Dry weight was 

recorded harvesting the above-ground plant tissue, placing it in a paper bag and drying 

it at 60 ºC for 48 h. Data was expressed as percentage of plant survival and biomass 

reduction relative to the untreated control.  

2.4 In vitro enzyme activity assays 

Fresh leaves of 21-days-germinated plants from 6 plants of both resistant and 

susceptible populations were used to extract proteins according to Poston et al.26 and 

enzyme activity was determined by measuring the amount of acetoin formed as a 

function of the doses of different herbicides tested, according to the modified method of 

Westerfeld.27 This method allows the formation of a pink complex in a medium that 

also contains creatine and α-naphthol. The intensity of the color was quantified by 

measuring absorbance at 490 nm. Herbicide concentrations used for enzyme activity 

testing were: 0; 0.25; 1; 5; 250 and 1000 μM for imazethapyr; 0; 0.025; 0.1; 0.25; 1; 5; 

25 and 250μM for chlorimuron-ethyl and diclosulam. Enzyme inhibition was computed 

as I50, which represents the herbicide concentration required to reduce the enzyme 

activity by 50%, compared to the untreated control. There were three replications per 

treatment per population, and experiments were conducted three times. 

2.5 Cloning and sequencing of als gene 
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Genomic DNA was extracted from fresh leaf tissue of ten plants of each population (S, 

R1 and R2) using Wizard Genomic Extraction Kit® (Promega Corp., Madison, WI), and 

genomic bulks were used as template for als gene amplification with primers designed 

from als sequences of related species published in available database.28,29 Complete als 

gene was amplified with primers X1 and X2 (see Table 1) using Q5® High-Fidelity 

DNA polymerase (New England Biolabs, inc.). Reactions consisted of ~100 ng DNA, 

500 nM primers, 1.5 mM MgCl2, 200 μM dNTPs, 1X buffer, 1 polymerase unit, and 

H2O to 50 μL. Cycle conditions were as follows: 98 ºC for 1 min, 35 cycles of 98 ºC for 

10 s, 57 ºC for 30 s, and 72 ºC for 1 min, 72 ºC for 7 min, and a 12 ºC hold. 

Amplification products were ligated to pGEM®-T easy vector (Life Technologies, 

Grand Island, NY, USA) as described in the technical manual. Chemically competent 

DH5α Escherichia coli cells were prepared and transformed according to Sambrook and 

Russell30 and transformants were selected for isolation on LB plus 100 μg 

mL−1ampicilin plates. Insert integration was checked carrying out a specific colony 

PCR, using primers X3 and X4 (see Table 1). Overnight cultures of positive colonies 

were used to make plasmid minipreparation, according to Wizard® Plus SV Minipreps 

DNA Purification System protocol (Promega Corp., Madison, WI). Eight positive-

recombinant DNA molecules from each population were sequenced (Marcogen Inc. 

Korea), employing T7 and SP6 primers for the pGEM-T vector backbone and X5, X6, 

and X7 primers designed to cover the entire als gene sequence (see Table 1). This 

cloning strategy allows the unambiguous determination of the complete sequence of 

individual als alleles. 

2.6 als sequences analysis 
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To manually generate complete R1, R2 and S als sequences, sequencing reads were 

aligned with reference als sequences from Amaranthus genus obtained from NCBI. 

Alignment was performed using MUSCLE algorithm from Unipro Ugene v1.11.2 

software.31 All sequences were translated and aligned, to search for aminoacid 

substitutions. 

2.7 Statistical analysis 

Dose-response curves were obtained by a non-linear log-logistic regression model using 

SigmaPlot (version 11.0, Systat Software, Inc., San Jose, CA, USA) according to the 

following equation: 

ݕ = ݉݅݊ + ݔܽ݉) −݉݅݊)1 + (	௫௕	)௔  

where y is the percent of dry weight or plant survival, x is the herbicide concentration 

(rate), min and max are the lower and the upper limits of the curve, respectively, a is the 

slope at the inflexion point, and b is the herbicide dose rate required to reduce dry 

weight by 50% (GR50) or to reduce the plant survival by 50% (LD50). 

A different nonlinear regression analysis was applied to fit ALS activity data to a 

sigmoidal three parametric logistic curve using SigmaPlot (version 11.0, Systat 

Software, Inc., San Jose, CA, USA) according to the following equation: 

ݕ = ܽ1 + ( ௫ூହ଴)௕ 

where y is the ALS activity, x is the herbicide concentration (rate), a is the upper 

response limit, b is the slope of the curve to relate effect of herbicide dose and 
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concentration and I50 is the herbicide concentration required to cause a 50% reduction in 

ALS enzyme activity.  

Data from the experiments were tested using one-way analysis of variance (ANOVA). 

Minimum significant differences were calculated by the Holm-Sidak Test (α = 0.05) 

using the Sigma Stat Package. The resistance factor (Rf) was calculated by dividing the 

determined GR50, LD50 or I50 value of the resistant populations by that of the susceptible 

population to quantify the level of resistance. 
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3. Results and Discussion 

3.1 In vivo dose-response assays 

In vivo dose-response assays showed that both resistant populations (R1 and R2) proved 

to be highly cross resistant to all ALS inhibitors tested (imazethapyr, chlorimuron-ethyl 

and diclosulam), as shown in Figs. 1 and 2. The resistance factors (Rf) were > 9.3 and > 

11 for GR50 and LD50, respectively (Table 2).  

Plant survival percentage at the recommended label rate (1X) was around 100% of the 

untreated control for all the herbicides (Fig. 2). Simultaneously, the remaining biomass 

of R plants at dose 1X ranged from 80 to 100% of the untreated control, except for 

imazethapyr curve in R2, which showed a remaining biomass value of ~45% at the 

recommended rate (Fig. 1). 

Although there is not a substantial difference between R1 and R2 plant survival curves, 

the biomass reduction effects were stronger for R2 than R1 for the three herbicides, as 

observed in Figs. 1 and 2. Thus, both variables provided complementary information to 

compare the resistance levels of R1 and R2. 

Interestingly, in the absence of herbicides, both populations displayed significantly 

higher biomass values compared to the susceptible population (200% and 155% for R1 

and R2, respectively).  

The results presented herein confirm that R1 and R2 populations of A. palmeri exhibit 

cross-resistance to three active ingredients belonging to different chemical families: 

imidazolinones (IMI), sulphonylureas (SU) and triazolopyrimidines (TP). 
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3.2 In vitro enzyme activity assays 

There were no significant differences in the levels of in vitro ALS activity between 

susceptible and resistant populations in the absence of herbicides. Specific activity of 

untreated controls ranged between 0.02–0.04 U mg-1, similarly to values obtained for 

other plant crude extracts.32,33 

Experiments were set up to include three replicates at different concentrations (up to 

seven data points) in order to have a good distribution within the curve fitting. Based on 

I50 values (Table 3), both R populations have ALS isoforms with increased resistance to 

the three herbicides tested, compared to the S population. According to Rf values these 

effects are considerably high for imazethapyr (Rf ranging from 30 to 40-fold), moderate 

for chlorimuron-ethyl (Rf ranging from 5 to 10-fold) and low, but still significant for 

diclosulam (around 2.5-fold).  

These results strongly support the hypothesis of a target-site resistance (TSR) 

mechanism in these A. palmeri resistant populations. 

3.3 Molecular insight into ALS resistance 

The study of the sequences of individual clones allowed a comparative analysis of the 

variability between R and S populations and within each population. All S population 

ALS sequences had a 100% amino acids identity between them, whereas for the R1 and 

R2 populations, several clones presented mutations causing amino acids substitutions. 

All substitutions found in the complete open reading frame are listed in Table 4 as well 

as the accession numbers of the complete sequences added to the NCBI database. 

We identified four and five allelic versions in R1 and R2 populations, respectively (see 

Table 4). Even though we have worked with genomic bulks, this represents a high 

number, considering that Amaranthus sp. are diploid plants that contain one copy of the 

als gene.34 However, strong selection pressure for resistance to ALS inhibitors, a variety 
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of amino acid changes that can confer resistance, and the outcrossing nature of A. 

palmeri all could contribute to the high number of polymorphisms we observed. 

In R1 population, the replacement of a tryptophan by a leucine at position 574 of the 

polypeptide chain was found in two clones. Due to the later adoption of TP herbicides, 

this substitution has been more frequently associated with resistance to SU and IMI in a 

great variety of weed species;36 but there are some reports that also associate such 

substitution with resistance to TP.37,38 Thus, the W574L substitution itself could explain 

the cross-resistance observed in R1 population.  

Tardif et al.39 found that W574L mutation appears to have several pleiotropic effects on 

the growth and development of Amaranthus powelli plants. However, the absence of a 

biomass reduction and/or differential ALS activity under non-selection pressure 

between R and S populations does not provide any clue of fitness cost in our study. 

Nevertheless, a much more complex methodological framework is necessary to 

unequivocally associate a fitness cost to the resistant trait, as it has been exhaustively 

reviewed by Vila-Aiub et al.40 

In R2 population, the previously reported substitution S653N was found in five clones. 

This mutation has been almost exclusively linked IMI resistance, conferring low 

resistance to SU in some cases.36,41 Interestingly, a new substitution that replaces an 

alanine by a serine at position 122 appeared in two clones. Although several 

replacements at this position (122) have been reported to confer resistance in plants, a 

serine has been found only in yeasts until now.42 Since none of the known substitutions 

present in R2 population justify the high level of resistance to diclosulam, a contribution 

of the new substitutions found and/or a non-target-site resistance (NTSR) mechanism, 

mainly to TP resistance, cannot be discarded in this population. 
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Although W574L triggers broad cross-resistance to all ALS-inhibiting herbicides 

families with higher magnitudes than S653N43, the higher Rf from in vivo assays in R1 

over R2 populations can not be wholly explained by W574L  itself, since R2 population 

seem to have a higher frequency of plants with a target-site mutation (see Table 4). 

Moreover, in vitro assays showed no significant differences between the two resistant 

populations, suggesting a likely contribution of a NTSR mechanism in R1 population. 

Three unreported substitutions, M601I (R1), P84H (R2) and A282D (R1 and R2) were 

found outside the five ALS conserved domains, which were previously associated to 

TSR44 (see Fig. 3). Although it is more likely that they represent a natural genetic 

variation, it remains to be elucidated if they contribute to the resistant phenotypes. 

These molecular results show, for the first time, the presence of TSR mechanism in A. 

palmeri Argentinian populations to ALS inhibitors.  

 

4. Conclusions 

We have confirmed the suspected cross-resistance to ALS-inhibiting herbicides in two 

populations of A. palmeri found in Argentina. This is the first report of TSR to ALS-

inhibiting herbicides for this species in this country. We have found two amino acids 

substitutions in acetolactate synthase from the resistant populations that were previously 

reported as responsible of TSR in plants: W574L (R1) and S653N (R2). Interestingly, 

the substitution A122S, only reported in yeasts up to now, has been found for the first 

time in plants (R2 population). The in vivo characterization of each purified 

homozygote progeny together with the heterologous expression of each als allele will 

be useful to evaluate the individual contribution of each substitution to the whole 

resistance phenotype. 
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Table 1. Primers used in polymerase chain reactions. 
Name Sequence (5’-3’) 
X1 CTTCAAGCTTCAACAATGG 
X2 CCTACAAAAAGCTTCTCCTCT 
X3 CCAGAAAAGGTTGCGATGTT 
X4 ATGCTTGGTAATGGATCGAG 
X5 GGCAACCTAGAAAGATACCC 
X6 CCTGAATGGCGTATTGCGGAGG 
X7 GGAGGGAGGAGTTGAATGAGCAG

Table 2. Dose-response parameters. GR50/LD50 units are g ai/ha. Resistance factors 
(Rf) were calculated using concentrations of inhibitors required to reduce dry weight 
or plant survival by 50%. For each herbicide, parameters with different letters indicate 
statistically significant differences. 
  Dry weight Plant survival 
Herbicide Population GR50    Rf LD50 Rf 
imazethapyr R1 2996 ± 206 a 788 2288  ± 135 a 211 
 R2 78.8 ± 25.9 b 21 1327 ± 50 b 123 
 S  3.8 ± 0.6 c  10.82 ± 2.82 c  
chlorimuron-ethyl R1 >800 >9.3 >800 >11 
 R2 >800 >9.3 >800 >11 
 S 86.2 ± 12.5  73 ± 17  
diclosulam R1 4397 ± 3214 a 600 >960 >78 

 R2 128 ± 39 b 17 >960 >78 
 S 7.32 ± 0.82 c  12.2 ± 1.5  
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Table 3. Parameters of ALS activity fit curves. I50 unit is μM. Resistance 
factors (Rf) were calculated using concentrations of inhibitors required to 
reduce ALS activity by 50% (I50). Resistance factors can only be 
compared within a chemical family. For each herbicide, I50 values with 
different letters indicate statistically significant differences. 
  Parameters 
Herbicide Population I50 Rf 
imazethapyr R1 17.50 ± 9.09 a 33.68 
 R2 21.98 ± 6.23 a 42.30 
 S 0.5196 ± 0.3418 b  
chlorimuron-ethyl R1 0.0098 ± 0.0020 a 6.53 
 R2 0.0145 ± 0.0054 a 9.67 
 S 0.0015 ± 0.0004 b  
diclosulam R1 0.0136 ± 0.0032 a 2.27 
 R2 0.0171 ± 0.0029 a 2.85 
 S 0.0060 ± 0.0006 b  
 

 
Table 4. Amino acid differences found in ALS open reading frame of resistant 
Amaranthus palmeri populations compared to the susceptible population. 
Previously reported substitutions are in bold. Amino acids are numbered 
according to A. thaliana ALS sequence, with the exception of A282D, which is 
numbered according to Amaranthus retroflexus ALS sequence, since it falls into 
an indel. 
Populati

on 
Allelic version 

(and frequency) 
ALS substitution Accession number 

S A (8/8) – KY781916 
R1 A (1/8) –  

B (5/8) A282D KY781917 
C (1/8) W574L KY781918 
D (1/8) W574L – M601I KY781919 

R2 
 

B (2/8) A282D  
E (2/8) A122S – A282D KY781920 
F (1/8) A282D – S653N KY781921 
G (1/8) P84H – A282D – S653N KY781922 
H (2/8) S653N KY781923 
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Figure captions 

 
Figure 1. In vivo dose-response (Dry biomass) curves with ALS-inhibiting 

herbicides in A. palmeri. Plants of R1, R2 and S populations were subjected to the 

application of different doses of imazethapyr (a), chlorimuron-ethyl (b) and diclosulam 

(c). Results are expressed as a percent of remaining biomass in comparison to untreated 

control groups. Arrows indicate doses applied to field. 
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Figure 2. In vivo dose-response (Plant survival) curves with ALS-inhibiting 

herbicides in A. palmeri. Plants of R1, R2 and S populations were subjected to the 

application of different doses of imazethapyr (a), chlorimuron-ethyl (b) and diclosulam 

(c). Results are expressed as a percent of plant survival in comparison to untreated 

control groups. Arrows indicate doses applied to field. 
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