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Strong magnetic fields in nonlocal chiral quark models
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We study the behavior of strongly interacting matter under a uniform intense external magnetic field in
the context of nonlocal extensions of the Polyakov—Nambu—Jona-Lasinio model. A detailed description
of the formalism is presented, considering the cases of zero and finite temperature. In particular, we analyze
the effect of the magnetic field on the chiral restoration and deconfinement transitions, which are found to
occur at approximately the same critical temperatures. Our results show that these models offer a natural
framework to account for the phenomenon of inverse magnetic catalysis found in lattice QCD calculations.
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I. INTRODUCTION

The study of the behavior of strongly interacting matter
under intense external magnetic fields has gained increasing
interest in the last few years. In fact, this topic has important
applications e.g., in the description of compact objects like
magnetars [1], the analysis of heavy ion collisions at very
high energies [2], and the exploration of the first phases of
the Universe [3]. Since these studies require dealing with
QCD in nonperturbative regimes, present theoretical analy-
ses are based either in the predictions of effective models
or in the results obtained through lattice QCD (LQCD)
calculations. In particular, the features of QCD phase
transitions under external magnetic fields deserve significant
interest. Recent reviews on this subject can be found in
Refs. [4-6]. In view of the difficulty of theoretical calcu-
lations, most works concentrate on the case in which one has

a uniform and static external magnetic field B. At zero
temperature and chemical potential, both the results of low-
energy effective models of QCD and LQCD -calculations
indicate that the chiral quark condensate should behave as
an increasing function of B, which is usually known as
“magnetic catalysis.” On the contrary, close to the chiral
restoration temperature, LQCD calculations carried out with
realistic quark masses [7,8] show that light quark-antiquark
condensates behave as nonmonotonic functions of the
external magnetic field, and this leads to a decrease of the
transition temperature when the magnetic field is increased.
This effect is known as “inverse magnetic catalysis” (IMC).
In addition, LQCD calculations predict an entanglement
between the chiral restoration and deconfinement critical
temperatures [7]. These findings become a challenge to
model calculations. Indeed, most naive effective approaches
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to low-energy QCD (Nambu-Jona-Lasinio model, chiral
perturbation theory, MIT bag model, and quark-meson
models) predict that the chiral transition temperature should
grow with B; i.e., they do not find IMC. In view of this
discrepancy, in the last few years, some more sophisticated
low-energy effective models compatible with the IMC effect
have been proposed in the literature [9-30]. Possible
mechanisms that allow the reproduction of IMC include,
e.g., the introduction of adequate (B-dependent) regulariza-
tion prescriptions or explicit dependences of the effective
coupling constants on the external field. In particular, in the
framework of the Nambu—Jona-Lasinio (NJL) model, it has
been shown that IMC can be obtained by considering a
B-dependent four-fermion coupling [18,19]. On the other
hand, the problem of the entanglement between the decon-
finement and chiral restoration transitions has been studied
in the context of the Polyakov—Nambu—Jona-Lasinio (PNJL)
model, in which fermions are coupled to a background color
field, and the traced Polyakov loop @ is taken as order
parameter of the confinement/deconfinement transition. This
extension of the NJL model provides not only a description
of confinement but also allows one to obtain chiral restora-
tion critical temperatures compatible with those found in
LQCD. In this framework, the effect of an external magnetic
field has been studied in Ref. [31], where the authors
consider a Polyakov loop—dependent effective coupling
constant in order to avoid the splitting between chiral
restoration and deconfinement transitions. In this so-called
entangled PNJL model, however, no IMC effect is found
(see also Refs. [17,32]). Once again, as shown in Ref. [11],
in the context of the PNJL model, one can reproduce lattice
IMC results by considering a B-dependent four-fermion
coupling. Nevertheless, the results obtained in Ref. [11] lead
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to a relatively large splitting (230 MeV) between chiral
restoration and deconfinement temperatures.

In this work, we study the behavior of strongly interact-
ing matter under a uniform, static magnetic field in the
framework of nonlocal chiral quark models. This article is
an extension of a previous work in which it has been
noticed that these kind of models offer a natural mechanism
to understand the IMC effect [33]. Our aim is to present
here a more complete description of the formalism and also
to extend the model to incorporate the interaction with the
Polyakov loop. As in the case of the (local) NJL model, the
traced Polyakov loop can be taken as an order parameter of
confinement, allowing one to describe simultaneously the
chiral restoration and deconfinement transitions. We will
show that nonlocal models are able to describe, at the mean
field level, not only the IMC effect but also the entangle-
ment between both critical transition temperatures, in quite
reasonable agreement with LQCD results. The “nonlocal
PNJL” (nIPNJL) models considered here are a sort of
nonlocal extensions of the PNJL model that intend to
provide a more realistic effective approach to QCD. In fact,
nonlocality arises naturally in the context of successful
descriptions of low-energy quark dynamics [34,35], and it
has been shown [36] that nonlocal models can lead to a
momentum dependence in quark propagators that is con-
sistent with LQCD results. It is also found that in this
framework one obtains an adequate description of the
properties of light mesons at both zero and finite temper-
ature/density [36—47]. Moreover, nIPNJL models (in the
absence of interactions with external fields) provide a
description of the chiral restoration and deconfinement
transitions that is found to be in qualitative agreement with
LQCD calculations [47-51]. As in Ref. [33], we consider
here the case of nonlocal quark models with separable
interactions, using Ritus eigenfunctions [52] to address the
problem of including the interaction with the mag-
netic field.

The article is organized as follows. In Sec. II, we start by
introducing the formalism to account for the presence of a
constant magnetic field within the framework of a nonlocal
NJL-like model at zero temperature. Afterward, we show how
to extend this formalism to a finite temperature system, taking
also into account the coupling to the Polyakov loop. In
Sec. III, we quote our numerical results, discussing in detail
the behavior of the different relevant quantities as functions of
the magnetic field and/or temperature. In Sec. IV, we present
our conclusions. Finally, in Appendixes A-D, we give some
technical details concerning the derivation of various expres-
sions quoted in the main text.

II. THEORETICAL FORMALISM

A. Nonlocal NJL-like model in the presence
of magnetic fields

Let us start by stating the Euclidean action for our
nonlocal NJL-like two-flavor quark model,
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Here, m, is the current quark mass, which is assumed
to be equal for u and d quarks. The currents j,(x) are
given by

o) = [ s+ 5)rw(x-3). @

where I', = (1, iy57), and the function G(z) is a nonlocal
form factor that characterizes the effective interaction.
We introduce now in the effective action (1) a coupling
to an external electromagnetic gauge field A,. For a
local theory, this can be done by performing the replace-
ment

9, > D, =0,-i0A,(x), (3)

where Q = diag(q,. qy), with ¢, = 2¢/3, g, = —e/3, is
the electromagnetic quark charge operator. In the case of
the nonlocal model under consideration, the inclusion of
gauge interactions implies a change not only in the
kinetic terms of the Lagrangian but also in the nonlocal
currents in Eq. (2). One has

w(x—2/2) > W(x,x - z/2)y(x — z/2), (4)

and a related change holds for w(x 4 z/2) [36,38,46].
Here, the function W(s, 1) is defined by

W(s, 1) = Pexp {—i / tdrﬂQAﬂ(r)} (5)

where r runs over an arbitrary path connecting s with 7.
Regarding the choice of this path, it is worth taking into
account that none of the procedures used to “gauge”
theories that include nonlocal interactions leads to a
unique determination of the corresponding conserved
current [53]. The ambiguity, which in our case shows up
through the path choice for the line integral in Eq. (5),
is indeed present in any method used for the construc-
tion of a conserved current from a nonlocal action. Its
origin can be understood by noticing that the condition
of current conservation, which requires its divergence to
vanish, only fixes the longitudinal part of the current,
the transverse part remaining undetermined. This prob-
lem is well known in nuclear physics; longitudinal
components of exchange currents can be related to
phenomenological nucleon-nucleon forces, while trans-
verse currents require a specific model for the under-
lying meson exchanges [54].

Based on considerations of invariance and of simplicity,
the straight line path originally proposed in Ref. [55] has
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been chosen basically everywhere in the literature. Here,
we will also follow this choice, parametrizing the path in

Eq. (5) by
ry =8, +At, —s,), (6)

with A running from O to 1. In the present context, this has
to be considered as a part of our model specification. In
fact, although for some particular observables the depend-
ence on the path has been investigated and found to be quite
weak (see, e.g., Refs. [41,46]), a thorough analysis of this
issue is still lacking.

To proceed, it is convenient to bosonize the fermionic
theory, introducing scalar and pseudoscalar fields o(x) and
7(x) and integrating out the fermion fields. The bosonized
action can be written as [36,46]

1
Soon = ~Indet D,y + 2. / dxlo(x)o(x) + 7(x) - 7(x),

(7)
with

Dx.x’ = 5(4) (X - xl)(_ip + mC) + g(x - xl)yO
X W(x, %)yolo(x) + iyst- Z(X)W(x,x),  (8)

where ¥ = (x4 x’)/2 for the neutral mesons. We will
consider the particular case of a constant and homog-
enous magnetic field oriented along the 3-axis. To
perform the analytical calculations, we will use the
Landau gauge, in which one has A, = Bx,5,,. With this
gauge choice, the function W(s, t) in Eq. (5) is given by

Ws.t) = exp |5 0B(s + 1)t =s2)| . (9)

Next, we assume that the field ¢ has a nontrivial
translational invariant mean field value &, while the
mean field values of pseudoscalar fields z; are zero. It
should be stressed at this point that the assumption
stating that ¢ is independent of x does not imply that the
resulting quark propagator will be translational invari-
ant. In fact, as discussed below, one can show that such
an invariance is broken by the appearance of the so-
called Schwinger phase. Our assumption just states that
the deviations from translational invariance driven by
the magnetic field are not affected by the dynamics of
the theory. In this way, within the mean field approxi-
mation (MFA), we get

D =

diag(DYFA DYEAT), (10)
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where

DY = 69 (x = X)(IV + m,)
+6G(x — x') exp [iDf(x, x")]. (11)

Here, we have introduced the operator Il = —i@— ¢ Bx172,
and a direct product to an identity matrix in color space
is understood. Notice that the second term on the rhs
breaks translational invariance through the Schwinger phase
@/ (x,x'), defined by

p(x.x) = (q,B/2)(x) + X)) (2 —x3).  (12)
which arises from the product WW(x, X)W(%, x’). In this way,
the MFA bosonized action per unit volume can be written as

MFA —2
Sbos _ Nc

V@ 26 v@ )

trlnDMFAf, (13)
—ud

where in the second term of the rhs the traces over color
and flavor have been taken. To proceed to take the remaining
traces over Dirac and coordinate spaces, it is convenient

to perform the Ritus transform of DXIEAJ [52]. This is
defined by

MFA MFA,
DYEA /d“xd“x’[E ODYAEL(v),  (14)
where E; (x) and E; (x), with p = (k, p,. p3. p4), are Ritus
functions, the definitions and properties of which are given in
Appendix A. The index k is an integer that will label
the Landau energy levels. Using the properties of Ritus
functions, we readily obtain

DI = 8,5 Py S/( S\ 2KlayBlyz + py vy +m I)

+5Y GL A (15)
A=

where &, v is a shorthand notation for (27)*3.8(p, — pb)
8(ps — p5)6(py — py), and we have introduced the
definitions s, = sign(q/B), p; = (P3.p4)s 7| = (73.74),
A* = diag(1,0,1,0), A~ = diag(0.1,0,1), and P, =
(1 = 89)Z + SxoA*. The functions G_ 7 are given by

Gy = / d*xd*x'E;,(x)G(x — x') exp i ; (x,X')| E, ('),

(16)

the explicit form of E;,;(x) being given in Eq. (A4). As is
discussed in Appendix B, after some calculation, one can
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show that G’f’f_, is, in fact, diagonal in p, p’. One gets

Gi) = 5- -/gkpl where

4x 42
nf k, PL 2 2
= — —1 A
I = 14 B] (-1) / )’ 9(p1 + pj)
x exp(—p1 /|qsB|)Ly,(2p% /|qsBl). (17)

Here, we have used the definitions k, =k —1/245,/2

and p, = (py, p2), while g(p?) is the Fourier transform of
G(x) and L,,(x) are Laguerre polynomials, with the usual
convention L_;(x) = 0. Defining now

Af ot
Mk’};,“ = (1 - 5k1,_1)mc —+ ng,j;vu’ (18)
we end up with Dlyﬂff” = 5_ _ID/]:p‘ where
Dy = Pry (_Sf 2klqBlra + py '7||) + D M, A
A==+

(19)

Then, using Eq. (A16) and writing explicitly the trace
over coordinate space, we have

: d? p
MFA,f _ ||
trin DM, g

x / m%m[ »()In(DL, )E, ()], (20)

where tr, stands for the trace over Dirac space. Using the
cyclic property of the trace together with Eq. (A9), this
expression reduces to

PHYSICAL REVIEW D 96, 114012 (2017)

SMFA =2 B d2
bos _ O _ N, Z |9¢B| PII2
v4  2G 2z (27)

f=u,d

X [In (pﬁ + Méfpf) Zln Akpl] (22)

where A, = +(=) for s, = +1(=1), and A‘,ip" is defined by

f -/ )?
Ak N <2k|qu| =+ P“ + Mk p"Mk,p”)
+.f —.f
+ Pj (Mk 2 Mk,p"> . (23)

Here, it is seen that the functions M, 1{ | play the role of

constituent quark masses in the presence of the external
magnetic field. The vacuum expectation value 6 can now be
found by minimizing the effective action in Eq. (22). This
leads to the gap equation

o |51fB| dpn A A
¢ =N Z Z kpugk w4
f=ud
where we have defined
Aj:’f
Ay, Py
+.f N vas 2(pgES F.f
Mk oy (2klqsB| +pj+M; My HPi(Mic, =M )
7 .
Ak-l’u

(25)

Given the form of the two-point function (19), one can
also obtain the MFA quark propagators. Details of this
calculation are given in Appendix C. In coordinate space,
one gets

B d
DM =y, 1B > [ GpeolPis, 2L, )
i 27 f P GMFAf _ (DMFA.fy_1
ay T
21 4
. d'p
:exp[zd)f(x,x’)]/(2ﬂ)4 eS8 (py.py).
Since the matrix between the parentheses is not diagonal in
Dirac space, it is convenient to use at this stage the identity (26)
trlnA = IndetA. After calculating the determinant and
replacing in Eq. (13), we finally obtain where
~ ) A
S (pr.py) = 2exp(=pi/lasB) Y [ 1% (Ak.J;” B py- 7||>Lk1(2pj_/|QfB|)
k=0 1=
.
+2(—1)k<ck{7u b j;l’u }’||>P¢ yiLj l(zpi/‘QfBl)} (27)
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Here, we have introduced the definitions

~tf S F.f LS
Bip, = CkJ’u =My Dicyy (28)
2 —f gt
~tf 2k’qu| + p” + Mk.p“Mk,p“ (29)
kpy — ! ’
k.py
Mif _M:F-f
At f  kpy k.py
bf - ta—tn, 0
kpy

whereas L} (x) are generalized Laguerre polynomials, with

L', = 0. Notice that the functions Aij;” defined in Eq. (25)

satisfy

A = M5 Cc, + PiDi, (1)
As we have anticipated above, the quark propagators can be
written as a product of an exponential of the Schwinger
phase times a translational invariant function. It should be
noticed that, as discussed in detail in Appendix D, this form
for the quark propagators (and the two-point functions) is
also obtained within the Schwinger-Dyson (SD) formalism
using a general ansatz as the one proposed in Refs. [56-58]
[see Eq. (D11)]. Moreover, as shown in Appendix D, in that
framework, one also arrives at the gap equation quoted in
Eq. (24).

Given the quark propagators, the quark condensate for
each flavor can be easily calculated as

(Grqp) = =N trp [SE/,I)I;A'I‘]- (32)

Alternatively, they can be obtained by taking the derivatives
of SMFA with respect to the current quark masses. The
associated explicit expressions, extended to the case of
finite temperature, will be given in the next subsection.

B. Extension to finite temperature

We extend now the analysis of the model introduced in
the previous section to a system at finite temperature. This
is done by using the standard Matsubara formalism. In
order to account for confinement effects, we also include
the coupling of fermions to the Polyakov loop (PL),
assuming that quarks move on a constant color background
field ¢ = igd,0GaA’/2, where G are the SU(3) color
gauge fields. We work in the so-called Polyakov gauge,
in which the matrix ¢ is given a diagonal representation
¢ = ¢33 + gdg, taking the traced Polyakov loop @ =
%Tr exp(i¢p/T) as an order parameter of the confinement/
deconfinement transition. Since—owing to the charge
conjugation properties of the QCD Lagrangian [59]—the
mean field traced Polyakov loop is expected to be a real
quantity, and ¢5 and ¢g are assumed to be real valued [60],

PHYSICAL REVIEW D 96, 114012 (2017)

one has ¢y =0, ® = [l + 2cos(¢p3/T)]/3. Finally, we
include in the Lagrangian a term that accounts for effective
gauge field self-interactions, through a Polyakov-loop
potential U (®, T). The resulting scheme is usually denoted
as the nlPNJL model [44,45,48,61,62].

Concerning the PL potential, its functional form is
usually based on properties of pure gauge QCD. In this
work, we will mostly focus on a potential given by a
polynomial function based on a Ginzburg-Landau ansatz
[63,64], namely

U by(T) by

ol ((I), T) l’)3
p YT4 _ 3 (D2 _ ?(1)3 + Zq)4’ (33)

where

by(T) = ag + ay (%) +a <%>2 +as <%>3 (34)

The parameters a; and b; can be fitted to pure gauge
lattice QCD results imposing the presence of a first-order
phase transition at T, which is a further parameter of the
model. In the absence of dynamical quarks, from lattice
calculations, one expects a deconfinement temperature
Ty =270 MeV. However, it has been argued that in the
presence of light dynamical quarks this temperature scale
should be adequately reduced to about 210 and 190 MeV
for the cases of two and three flavors, respectively, with an
uncertainty of about 30 MeV [65]. The numerical values for
the parameters, taken from Ref. [63], are

apg = 675,
as = —744,

a; = —1.95,
by = 0.75,

a, = 2.625,
by =15. (35)

It should be noticed that alternative forms for the PL
potential have been proposed in the literature. For example,
an ansatz based on the logarithmic expression of the Haar
measure associated with the SU(3) color group integration
is considered in Ref. [60], where its explicit form and
parameters can be found. Moreover, in Ref. [66], the
authors propose a so-called improved PL potential, in
which the full QCD potential Uy, is related to that
corresponding to the pure Yang-Mills theory, Uyy, by

uglue(q)v tglue) _ Z/{YM [(I), tYM(tglue)]
T4 Tym

, (36)
where

T — Tglue
[YM([glue) - 0'57tglue - 057 <W) . (37)

The dependence of the Yang-Mills potential on the
Polyakov loop @ and the temperature 7'y is taken from
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an ansatz such as that in Eq. (33), while for T 4
preferred value of 210 MeV is obtained [66]. In our
calculations, we will also consider these alternatives
choices for the PL potential to get an estimation of the
possible qualitative impact on our results.

In this way, the grand canonical thermodynamic poten-
tial of the system under the external magnetic field is found
to be given by

lq B\ dP Af 2
QMFA_ -7 Z Z / . n(l’nﬁﬁMofp];m- )
n=—0o0 Cf
+Zln< - )} HUD.T), (38)
freereg

where x; = m;

), ap =2 — 89, and 6']];7 = (2k|g¢B| + p* + m?)'/2. In addition, ¢'(—1,x/)

PHYSICAL REVIEW D 96, 114012 (2017)

where we have defined p),. = (p3,(2n+ 1)aT + ¢,).
The sums over color and flavor indices run over ¢ = r,
g, b and f = u, d, respectively, while the color background
fields are ¢, = —¢p, = ¢3, ¢, = 0. As usual in nonlocal
models, it is seen that QMFA turns out to be divergent, and
thus it has to be regularized. We use a prescription similar
to that considered, e.g., in Ref. [37], namely

QMFA reg

MFA
B,T Q

th% + eree reg (39)

Notice that here the “free” potential keeps the interaction
with the magnetic field and the PL; i.e., only & is set to zero.
For this free piece, the Matsubara sum can be performed
analytically, leading to

[ ~1,x7) + :f-%< 2.-A7.1nx7} }E:'qu|j{: L/" In{1+exp[—(e], +i¢.)/T]}.

(40)

= df(zoxp)fdz.y,

where {(z, x¢) is the Hurwitz zeta function. Owing to the presence of the background field, one has now a set of two coupled

“gap equations,”

aQ%/H;A.reg
P O’

9

a QMFA,reg

B.T B
5o =0. (41)

Given Q%{I;A’”g , the magnetic field—dependent quark condensate for each flavor can be calculated by taking the derivative
with respect to the corresponding current quark mass. This leads to

reg

<51f51f>3 T =

_|qsBIT d .
qf Z/ p3 =0 n=—o0 (ZAQ:}IZW -

In2x

_Nm} {m M)

471,'2 Xf )Cf

Finally, to make contact with the LQCD results quoted in
Ref. [8], we define the quantity

zmc = Te; - re;
Spr == a5y — @il + 1. (43)

where S is a phenomenological scale fixed as S =
(135 x 86)!/2 MeV. The subindex f can be omitted for
B =0, owing to 1sosp1n symmetry We also introduce the
definitions AZBT_Z ZO o 2pr= (T4 +Z8)/2
and AZp; = (AZY, +AZ %7)/2, which correspond to
the subtracted normalized flavor condensate, the normal-
ized flavor average condensate, and the subtracted normal-
ized flavor average condensate, respectively.

2m, >
pﬁm_ + 2k|q;B| + m?

R R S Y [ L —
2forl <1 2 >lnxf]+ ™ Z:;;ak/%e’ 1+ exp[(ef, + i)/ T]

(42)

III. NUMERICAL RESULTS

To obtain numerical predictions for the behavior of the
above-defined quantities as functions of the temperature
and the external magnetic field, it is necessary to specify
the particular shape of the nonlocal form factor g(p?). We
consider here two often-used forms, namely a Gaussian
function,

9(p?) = exp(—p?/A?), (44)

and a “5-Lorentzian” function,

(45)
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TABLE 1. Model parameters for Gaussian and 5-Lorentzian M{JZ = (1 =5 _1)m,
form factors leading to some representative values of the chiral P “
d (1-1gsB|/A*)"
condensate. f exp(—p2/A2) (46)
o (14 lq B/ AT PP
(—(q@)00)"" ‘
(MeV) Form factor m,. (MeV) GA> A (MeV) . .
Given the nonlocal form factor, one has to determine

220 G 7.4 29.06 604 the values of the parameters m., G and A. Here, we
L5 7.4 10.34 790 . . . . .

230 G 6. p 5 3' 66 678 will consider different parameter sets, obtained by requiring
LS 6.5 9'700 857 that the model leads to the empirical values of the pion

240 G 5:8 20:65 752 mass and decay constant, as well as some chosen value
L5 58 9.267 926 of the quark condensate (g¢q),;. We will consider in

Notice that in these form factors we introduce an energy
scale A, which acts as an effective momentum cutoff. This
has to be taken as an additional parameter of the model. The
functions g(p?) are normalized to ¢(0) =1, which is
equivalent to the condition [d*zG(z) =1 for the form
factors in coordinate space. In any case, this condition can
be relaxed by redefining the coupling constant G in the
Lagrangian. In the particular case of the Gaussian function,
one has the advantage that the integral in Eq. (17) can be
performed analytically. One gets

12— F—&+—++
1.0

0.8 1

0.4 1

0.2

Gaussian “

particular the phenomenologically acceptable values
(—(2q)p5)"? = 220, 230, and 240 MeV. The correspond-
ing parameter sets for the Gaussian and 5-Lorentzian form
factors are quoted in Table I. The analytical expressions
used to calculate the values of the pion mass and decay
constant within the nonlocal NJL model can be found,
e.g., in Ref. [38].

Let us start by discussing our results for zero temper-
ature. In the upper panels of Fig. 1, we show the model
predictions for AEB,O as a function of eB for various model
parametrizations, while in the lower panels, we show the
corresponding results for Xf ) — Zéo. LQCD data from

< T T T T T T T T T —H

5-Lorentzian -

00 pre””

1.0 T T T T T T T T

Gaussian

0.8- e

S 06 .
om L
28 04 e

0.2 S

5-Lorentzian

0.0 -

T T
0.0 0.2 0.4 0.6

eB [GeV’]

0.8

1.0

T T
0.4 0.6

eB [GeV’]

0.0 0.8 1.0

FIG. 1. Normalized condensates as functions of the magnetic field at 7 = 0. Upper panel: subtracted flavor average; lower panel:
flavor difference [see Eq. (43) and the text below]. Solid (black), dashed (red), and dotted (blue) curves correspond to parametrizations

reg

leading to (—(gq)g5)"/3 = 220, 230, and 240 MeV, respectively. Full square symbols indicate LQCD results taken from Ref. [8].
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Ref. [8] are also displayed in both cases for com-
parison. Solid, dashed, and dotted curves correspond to
(=(@r4,)50)""* = 220, 230, and 240 MeV, respectively.
It can be seen that the predictions for AXp, are very
similar for all considered parametrizations, showing a
very good agreement with LQCD results. In the case of
24 o — X4 o, although the overall agreement with LQCD
calculations is still good, we find some dependence on the
parametrization. As shown in the figure, for both form

PHYSICAL REVIEW D 96, 114012 (2017)

factor shapes, the parameter sets leading to a condensate of
(—(@ras)05)"® =230 MeV seem to be preferred.

We turn now to our numerical results for a system at
finite temperature. In the upper panels of Fig. 2, we show
the behavior of the averaged chiral condensate X5 ;- and the
traced Polyakov loop @ as functions of the temperature, for
three representative values of the external magnetic field B,
namely B = 0, 0.6, and 1 GeV?. The curves correspond to
parameter sets leading to (—(g¢)q5)"/*> = 230 MeV and a

Gaussian 5-Lorentzian
— T — 1
‘\\ eB=0 Teel eB=0
2.0 \ —-- eB=0.6GeV’{ 2.0 . —-—- eB=0.6 GeV’
‘o ---eB=1GeV’ N ---eB=1GeV’

16 Frmrmime __j._‘\\ is
\'\. /
!

T

1.2 4

z:B,T

[MeV ]

10.054 !

0.10 T T T T T T T T

FIG. 2. Upper panels: normalized flavor average condensate and traced Polyakov loop as functions of the temperature, for three
representative values of eB. Lower panels: behavior of the corresponding chiral and PL susceptibilities as functions of the temperature.
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TABLE 1II. Critical temperatures for B =0 and various
parametrizations.

5-Lorentzian

220 230 240

Gaussian

230

(‘(‘I‘?){)ef’;)l/‘3 (MeV) 220 240

Chiral 7. MeV)  182.1 179.1 177.4 177.0 177.0 177.8
Deconfinement 182.1 178.0 175.8 174.8 174.7 175.5
T. MeV)

polynomial Polyakov-loop potential with 7, = 210 MeV.
Given a value of B, it is seen from the figure that for the
cases of both Gaussian and 5-Lorentzian form factors the
chiral restoration and deconfinement transitions proceed as
smooth crossovers, at approximately the same critical
temperatures. For definiteness, we take these temperatures
from the maxima of the chiral and PL susceptibilities,
which we define as the derivatives yo, = —0|((itu)55 +
(dd)§%)/2]/0T and ye = O®/OT, respectively. Our
results for the behavior of the susceptibilities as functions
of the temperature, for B = 0, 0.6, and 1 GeV2, are shown
in the lower panels of Fig. 2.

The chiral restoration and deconfinement critical temper-
atures obtained in the absence of external magnetic field for
different parametrizations are quoted in Table II. It is seen
that in all cases the splitting between both critical temper-
atures is below 5 MeV, which is consistent with the results
obtained in lattice QCD. From Table II, it is also seen that
the values of critical temperatures do not vary significantly

PHYSICAL REVIEW D 96, 114012 (2017)

with the parametrization (recalling that in all cases the
parameters have been fixed to reproduce the empirical
values of the pion mass and decay constant). On the other
hand, the critical temperatures in Table II are found to be
somewhat higher than those obtained from LQCD, which
lie around 160 MeV [67,68]. In fact, the value of 7', and the
steepness of the transition depend on the form of the
Polyakov-loop potential. It is found that the logarithmic
PL potential [60] leads in general to steep transitions
(which can be even of first order for certain values of
the parameters), whereas the “improved” PL potentials [see
Egs. (36) and (37)] lead to a smoother behavior that shows a
better agreement with LQCD results [47]. In particular, for
an “improved polynomial” PL potential, one can get T =
160 to 165 MeV, depending on the parametrization. It is
worth noticing that in the absence of the interaction with
the Polyakov loop the values of T, drop down to about
130 MeV [33].

Let us discuss the effect of the magnetic field on the
phase transition features. From Fig. 2, it is seen that the
splitting between the chiral restoration and deconfinement
critical temperatures remains very small in the presence
of the external field (in fact, a detailed analysis shows that
the splitting gets reduced for larger values of eB). In
addition, it is seen that the nonlocal NJL models show
inverse magnetic catalysis. Indeed, contrary to what hap-
pens, e.g., in the standard local NJL model [4-6], in our
models, the chiral restoration critical temperature becomes
lower as the external magnetic field is increased. This is

T T T T T T T T
<gq>"?=- (230 MeV)®

00
1 Gaussian

0.8

1.2 1

T_

0.4 -

T

T T T T T T T T T

2 7| <da>pe=-(230 MeVy’
T=0

5-Lorentzian

ARE -
-0.4 5 .

] T=170

-0.8 . _

T=170 1 | ]

1.2 4 .

————— ——
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
eB [GeV?] eB [GeV?]

FIG. 3.

Subtracted normalized flavor average condensate as a function of eB for different representative temperatures. Left and

right panels correspond to Gaussian and 5-Lorentzian form factors, respectively, with (—(Qq)[f(g))l/ 3 =230 MeV and polynomial PL

potential. Temperature values are given in MeV.

114012-9



D. GOMEZ DUMM et al.
1.1
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1.1

Gaussian 5-Lorentzian
—~ 1.0 - 1.0 -
IS
o
5
= .
0.9 . 5 0.9 . ' S g
== <qQ >y, = (240 MeV) == <qq>,, = (240 MeV) ~
- = <dq>50 = (230 MeVy’ - = <dq>y = (230 Mevy’
<qq >2 = (220 MeV)* <0q>5e = (220 MeV)’
0.8 T T T T 0.8 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
eB [GeV’] eB [GeV’]

FIG. 4. Normalized critical temperatures as functions of eB for various model parametrizations. For comparison, LQCD results of
Ref. [8] are indicated by the gray band. Left and right panels correspond to Gaussian and 5-Lorentzian form factors, respectively.

related to the fact that the condensates do not show in
general a monotonic increase with B for a fixed value of the
temperature. The situation is illustrated in Fig. 3, where we
show the behavior of the averaged difference AZp; as a
function of eB, for T = 0 and for values of the temperature
in the critical region. The curves correspond to models
with Gaussian (left) and Lorentzian (right) form factors,
(—(@q)s5)"* = 230 MeV, polynomial PL potential. For
these parametrizations, the critical temperatures for B = 0
are slightly below 180 MeV (see Table II). While for 7 = 0
the value of AX;, shows a monotonic growth with the
external magnetic field, it is seen that when the temper-
atures get closer to the critical values the curves have a
maximum and then start to decrease for increasing B. This
is the typical behavior associated to IMC and observed
from lattice QCD results; see, e.g., Fig. 2 of Ref. [8].
Qualitatively similar results are found for the other para-
metrizations in Table I. Finally, in Fig. 4, we plot our results
for the chiral restoration critical temperatures 7.(B),
normalized to the corresponding values at vanishing
external magnetic field. The figure includes the curves
for nonlocal NJL models with Gaussian (left) and
5-Lorentzian (right) form factors and different parameter
sets (see the caption). The gray bands in both panels show
the results obtained in LQCD, taken from Ref. [8]. For
comparison, for the Gaussian form factor, we have plotted
with thin lines the results for the improved polynomial.
Thick lines for both Gaussian and S5-Lorentzian form
factors correspond to the polynomial PL potential in
Eq. (33). Results for the logarithmic PL potential have
been omitted, since (as stated above) the transitions are
found to be too steep in comparison with LQCD results.
From the figure, it is clearly seen that the inverse magnetic
catalysis effect is observed for all considered parametriza-
tions. In addition, for a given form factor, the effect is
found to be stronger for parameter sets leading to a lower
absolute value of the chiral quark condensates. As a general

conclusion, it can be stated that the behavior of the critical
temperatures with the external magnetic field is compatible
with LQCD results, for phenomenologically adequate
values of the chiral condensate.

To shed some light on the mechanism that leads to
the IMC effect in our model, it is worth noticing that the
nonlocal form factor turns out to be a function of the
external magnetic field. This can be clearly seen from
Eq. (17). In addition, it is important to take into account that
in nonlocal NJL-like models the form factors play the role
of some finite-range gluon-mediated effective interaction.
Thus, the magnetic field dependence of the form factor can
be understood as originated by the backreaction of the sea
quarks on the gluon fields. It is interesting to consider the
effective mass for the particular case of a Gaussian form
factor, given by Eq. (46). It can be seen that in this case the
components of the momentum that are parallel and trans-
verse to the magnetic field become disentangled. While
for the 3,4 components the original exponential form
exp (—p?/A?) is maintained, the 1,2 (transverse) part leads
to a factor given by a ratio of polynomials in |g,B|/A?,
which goes to zero for large B. In this way, for any value of
k, the strength of the effective coupling decreases as B
increases. This is analogous to what happens with the
B-dependent coupling constants considered, e.g., in
Refs. [11,19], and thus the IMC effect can be understood
on these grounds.

IV. SUMMARY AND CONCLUSIONS

We have studied the behavior of strongly interacting
matter under a uniform static external magnetic field in
the context of a nonlocal chiral quark model. In this
approach, which can be viewed as an extension of the
Polyakov—Nambu—Jona-Lasinio model, the effective cou-
plings between quark-antiquark currents include nonlocal
form factors that regularize ultraviolet divergences in
quark loop integrals and lead to a momentum-dependent
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effective mass in quark propagators. We have worked out
the formalism introducing Ritus transforms of Dirac fields,
which allow us to obtain closed analytical expressions for
the gap equations, the chiral quark condensate, and the
quark propagator. In addition, we have shown that these
expressions can also be obtained in the framework of a
Schwinger-Dyson approach.

We have considered the case of Gaussian and Lorentzian
form factors, choosing some sets of model parameters that
allow us to reproduce the empirical values of the pion mass
and decay constants. At zero temperature, with these
parametrizations, we have calculated the behavior of the
subtracted flavor average condensate AXy, and the nor-
malized condensate difference X, — >4 , as functions of
the external magnetic field B. Our results show the
expected effect of magnetic catalysis (condensates behave
as growing functions of B), the curves being in quantitative
agreement with lattice QCD calculations with slight
dependence on the parametrization.

Finally, we have extended the calculations to finite
temperature systems, including the couplings of fermions
to the Polyakov loop. We have defined chiral and PL
susceptibilities in order to study the chiral restoration and
deconfinement transitions, which turn out to proceed as
smooth crossovers for the polynomial PL potential con-
sidered. From our numerical calculations, on one hand it is
seen that, for all considered values of B, both transitions
take place at approximately the same temperature, in
agreement with LQCD predictions. On the other hand, it
is found that for temperatures close to the transition region
the subtracted flavor average condensate AX 5.7 becomes a
nonmonotonic function of B, which eventually leads to the
phenomenon of inverse magnetic catalysis, i.e., a decrease
of the critical temperature when the magnetic field gets
increased. This feature is also in qualitative agreement with
LQCD expectations. Moreover, for some parametrizations,
we find a remarkably good quantitative agreement with
the results from LQCD calculations for the behavior of
the normalized critical temperatures with B (see Fig. 4).
The values of the critical temperature at 7 = 0, which show
some dependence on the parametrization and the PL
potential, lie also within the range estimated by LQCD
results.

It is interesting to compare the nonlocal models with
approaches in which IMC is obtained by considering
some ad hoc dependence of the effective couplings on B
and/or 7. The naturalness of the IMC behavior in our
framework can be understood by noticing that for a given
Landau level the associated nonlocal form factor turns out
to be a function of the external magnetic field, according
to the convolution in Eq. (17). Since the form factors can
be identified with some gluon-mediated effective inter-
action, the dependence on the magnetic field can be seen
as originated by the backreaction of the quarks on the
gluon fields.
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APPENDIX A: RITUS EIGENFUNCTIONS
AND RITUS TRANSFORMS

In this Appendix, we provide the explicit form of the
Ritus eigenfunctions [52] and discuss some of the their
properties. These functions satisfy the eigenvalue equation

IPE, (x) = €;E,(x), (Al)
where, in accordance with the definition in the main
text, I[1 = —i) — qgBx,y,. Here, p = (k, p,, p3, p4) repre-
sents the set of quantum numbers needed to label the
eigenstates, the eigenvalues of which are given by
¢; = —(2k|gB| + p3 + p3). Working in Euclidean space
and choosing the Weyl representation for the Dirac
matrices,

SO A
V= 5 0) Y4 =1y =1 7 0)

one has

(A3)

where A+ = diag(1,0, 1,0), A~ = diag(0, 1,0, 1), and

Ep

where p = s1/2/|qB|(gBx, — p,), with s = sign(¢B).
The integer index k; is related to the quantum number k by

2(x) = Nkzgi(P2x2+P3X3+P4x4)ij (), (A4)

ke =k—==+=, (A5)

N[ =
N |«

while N,, = (4z|¢gB|)"/*/+/n!. In Eq. (A4), we have intro-
duced the cylindrical parabolic functions defined by

D,(x) = 2727 /*H,,(x/V2), (A6)
where H,(x) are the Hermite polynomials, with the
standard convention H_; (x) = 0. In fact, strictly speaking,
for k = 0, the Ritus eigenfunction [E;(x) should be defined
as a 2 x 2 matrix
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(47T|qB | ) 1/4 oi(p2xo+p3x3+paxs) e—ﬂ2/4]]

E(O-,Pz,ﬂ3»l74) (x) = (2x2)»

(A7)

where T(5,7) is the identity matrix in the subspace where
E;,(x) is nonzero. On the other hand, it is easily seen that
the matrices A* satisfy

ATAE = AT ATAT =0,
Aih =y, AT, Ai?n = }’||Ai» (A8)
where | = (y1,7,) and Y= (r3.74)-

As expected, along the direction of the magnetic field,
the function Ej(x) preserves the form of the energy
eigenfunction of a free particle, being labeled by a
continuous index p; that corresponds to the momentum

component parallel to B. This is also the situation in the
direction of the imaginary time. On the other hand, the
quantum numbers corresponding to the plane x;x, depend
on the gauge used to describe the vector potential A,,.
We have chosen the Landau gauge, for which the states
associated with the x; direction are quantized and labeled
by the integer index k. Along the x, direction, the
eigenfunction has the form of that of a free particle, with
the particularity that the eigenvalues do not depend on p,,
and hence the states are degenerated. This last property
leads to the useful relation

/ dp2
2w

where we have defined Ej; = yO[EI-,yO and Ppy =
(1 =849)Z + S19A*. The operators Py ., are projectors;
ie., they satisfy Pp, = (P )% It is also seen that
Pk.s[Efa = [EﬁPk,S = IEi)-

The Ritus functions [E;(x) satisfy orthonormality and
completeness relations, namely

£ (B (1) = [ T2 ES(WEs(x) = [aBIPL.
(A9)

I[Ep(x)[_El—,(x’) o=y, (ALl

p

where the following shorthand notations have been
introduced:

dpa dps dps
2z 27 2m’

5,0 =2 (A12)

)45kk’5(192 - Pz)é(l?,% - P/3)5(P4 - Pﬁ;)~

Tl

Ps
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In addition, they satisfy the important identity

E; (x) = Ep(x) (-Sv 2k|gBly, + py '}’||)’ (A13)

where py = (ps3, pa).
Given the Ritus functions, one can define the Ritus
transform of some arbitrary Dirac function y(x). One has

vp= [ EE . iy = [ dE ),

(A14)

together with the inverse transforms

v =Y Ewws w0 = Y

P p

(A15)

In the same way, the Ritus transform O
operator O, s satisfies

» of an arbitrary

O

= / dxd'YEy ()0, Ex(¥).  (Al6)

(A17)

APPENDIX B: DETAILS OF THE
EVALUATION OF Gj,{,

We start from the relation in Eq. (16),
Gy = / d*xd*x 3, (x)G(x —x') exp (i@ (x.x')| Ej, (),

(B1)

where @ (x,x') = (q/B/2)(x, —x5)(x; +x7), and the
functions E;,(x) are given in Eq. (A4). To work out
this expression, we introduce the Fourier transform

of G(x),
g(t?) = /d4xe_i"xg(x), (B2)

and perform the change of variables x =z 4+ y/2,
X' = z—y/2. In this way, we get

d*t
Gy = [ Saeate) [ atsaty /2

x exp(it - y) exp(iq;By,z)E,y,(z —y/2).  (B3)
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Given the explicit form of the functions E;;(x), the
integrals over z», 23, 24 and ys3, y4 can be easily performed.
We obtain

Gy, = (2m)8(p2 — p4)d(ps — p)d(ps — pé)l“i’_{/,,,u,

(B4)
where
F/hf _ dzti 2 2 dz: d2
ey = NeNg, [ Gzt +py) [ dadiy,
X exp(—ip,y,) exp(it, -y )
X GXP(iCIfozzl)Dkx (P)Dk; ), (B5)
with tJ_ = (tl,tz) and
2 larB(z+0/2) = po)
P =S T 7drP\21 T )1 - P2
/ |CIfB| !
, 2
p=sy |—[‘IfB(Z1 -y1/2) = pal. (B6)

q¢B|

We recall here that s, = sign(q,B), while k; is related to k
by Eq. (A5). We note now that the integration over y,
introduces a factor 276(q Bz, — p, + t,), which allows us
to easily perform the integral over t,. Taking into account
the explicit form of p and p’, we get

1
(22K ke V1) V/2

Ii,k,(r) =

Next, we carry out a translation into the complex plane v,
namely yw — yw' =y —ircos¢. Since the integrand in
Eq. (B10) is an analytic function, making use of Cauchy’s
theorem, one can show that the integration path can be
taken along the Imy’ = 0 axis. Thus, we obtain

: Azn dg /_: dyrexp(—y*/2)

I/l
(22Kt Kk, 1k 1)

k’k,(r) =

Hy, {irexp (—igp) + l,//:| Hy [—irexp (i¢) — l/’] '

V2 V2

(B11)

Next, we use the relation H,(—x) = (—=1)"H,(x) and the
identity (see Eq. (7.377) of Ref. [69])

/ " dxe " H, (x+ y)H, (x + 2)

(o8]

=2"/amlZ" "Ly (<2yz),  nzm,  (BI2)

21 )
[T | dwexp[—(w—ircos¢>2/2]Hkﬁ<
0 —00
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S
Fi,k’.p”
_ ! lasBl , , 5
- [2ﬂ2k4+k;kl|k;y]l/2/dydndll/g|: 2 (7 +n )"’P”

2 2
. + + —~
><e><13(m//)e><p<—’7 21// >Hk,1 <"\/§W)Hk; <%>

where we have used the expression of D, in terms of
Hermite polynomials, Eq. (A6), and for convenience we
have introduced the dimensionless variables

2, 2 (g:Bz + po)
Y= 1> n=s qrbzy T P2),
|q/B] / |q /B /
|QfB|
V=1 3 Vi

Making a new change of variables to polar coordinates r, ¢
in the yn plane, we get

(B8)

s © 9B
rd’l“{‘“m:A drrg< ! r+ pj ) exp(=r?/2)I (1),

2
(B9)
where
rsing +y rsing —y
T) Hy <T> . (B10)

|
where L¢(x) are generalized Laguerre polynomials. Fi-
nally, using

/ 7 dpexplim) = 26,0, (B13)
0

we obtain
I (r) = 2m(=1)5 Ly (r)Sge (B14)

Replacing Eq. (B14) in Eq. (B9), and taking into account
Eq. (B4), after a new change of variables r — |p,| =

rv/4¢B|/2, we end up with

(B15)

where gi”{," is given in Eq. (17).
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APPENDIX C: MEAN FIELD
QUARK PROPAGATOR

In this Appendix, we outline the derivation of the «# and d
quark propagators within the MFA. We start from the two-

point function in Ritus space DIYI} 7/ which, as discussed in

the main text, is diagonal in Landau/momentum indices p.
The mean field quark propagators in this space, for quark
flavors f = u, d, are then given by

MFA FA.f\ ! 2 -1
p.p' f= (Dil\fﬁ’ f) :51_”1_’/(,D/£,1’H) ’ (C1)

p.p

with D/

k.py
only in Dirac space, it can be easily inverted. Defining

S/Cp" (D,’: ” )~!, one finds that S{m

given by Eq. (19). Since this operator is nondiagonal

can be written as

eiPI-Ax Z " [5/1/1’ (A%u

AN =%

1 X [ d’p
_EZ/@@”

pAf 2 ALf
_Bk,p”p” y”)A +Sf 2ka(1_6ﬂ/1/)<Ck,p"

PHYSICAL REVIEW D 96, 114012 (2017)

o ALS
Sk-fl’u - Z [Akvl’u

Al‘f
= B, Pi i

+5p4/2kB, (ckp" DY py - y”)yz}A, (C2)

where we have defined B, = |q/B|, and the functions
A w0 Dyt are given in Egs. (28)~(31). Notice that in
the particular case k =0 (i.e., k; =0 or —1) the Dirac
space is reduced to a two-dimensional one; therefore, only

the coefficients Ak{al and Biél with k; =0 need to be

considered.
To find the expression for the propagator in coordinate
space, we have to perform the Ritus antitransform of

Sl;f?'f . One has

~ILf ¥
=Dy P '}’||>7’2A }7

(C3)
where we have defined Ax; = (Axs, Ax,), with Ax; = x; — x/, and the integrals /** are given by
/ dp2 ipy(xp—x
I = NNy, 2. ¢ P2(2=5)Dy (p) Dy, (P), (C4)

with pU) = s,,/2/ Bf[Qfo(l/) - pa] =

Considering the explicit expressions for Ny,
P2 = q» + spBy(x) + x})/2, one has

2 By2™h 2 “
"= 0 expli®/(x, x’)] exp(—B Axi/4)

\ /ZBf[xgl) — (s7/Bs)pa]. Let us analyze separately the integrals /** and I*7.
and Dy (x)

[see Eq. (A6)] and performing the translation

dq, exp(ig,Ax;)

—00

x exp(=q3/B,)Hy, (

\/ BfAX] qu2 H V4 Bfol
2 “\U 2

(Cs)

Sffh)
NG VB

where @ (x, x) is the already defined Schwinger phase. Now, it is possible to carry out a translation in the complex plane to

a new variable @ = (g, —

iB;Ax,/2)ss/\/By. Since the integrand is an analytic function in the whole plane, the integral

can be calculated along the Imw = 0 axis. One gets in this way

—k;
M Bf 2

V7 k!
x Hy, [w—

[iD/(x, x")] exp(—BfoL/4) /oo

VB (Ax, —is;Axy) /2} Hy, [a) + /By (Ax, + is;Axy) /2},

dw exp(—w?)

—00

(Co)

where Ax; = (Ax;, Ax,). The integral in Eq. (C6) can be evaluated using the relation in Eq. (B12), which leads to

1" = By expli®(x, x')] exp[—B;Ax% /4|L; (B;AXG /2).

(€7)
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Next, let us consider the integral
KO(m.y,) = / d*p e exp(=p1 /By)L,(2p3/By). (C8)
where p| = (Pupz), yi = (J’b)’z)- One has
KO(m,y, )= /)oo d|PL||PL|eXP(—Pi/Bf)Lm(zPi/Bf) AM dfe'lP 1|01 cosOty2sin0)
— 20 [ dlp.lIplexs(-pt /B, L (203 B0 )

= 7B (=1)" exp(—=By? /4)L,u(BsY? /2), (C9)

where J(x) is a Bessel function. The last equality in Eq. (C9) has been obtained using the following general relation, which
involves generalized Laguerre polynomials and Bessel functions:

/00 dxx* e PP Ly (ax?) ], (xy) = (2p)~"! A vy /W)y a_yz (C10)
0 I p) 7 "4p(a=p))

From Egs. (C7), (C8), and (C9), we end up with

d&p, .
(Z—zr)Lz e+ 8% exp(=p1 /Br)Ly, (2p1/By).

(C11)

I = %exp[id)f(x, (=1 KO (k;, Ax,) = 4z expli®(x, x')](—1)k /

A similar procedure can be carried out for the calculation of the integrals /=T . Performing the same changes of variables
as in the previous case, we obtain

i+ _ By 2~ (ke th)/2 : / _ 2 C\ketk [ —?
expli®/(x, x')] exp(—=B;Ax7 /4)(—1) dwe

T VaVk(k-1)! oo

\/B \/B
X Hk+ |:6() F Tf (Axl + iSfA)Cz):| Hk_ |:(l) + Tf (AX] + iSf'A.Xz):|
B, . . B Ax? BAx?
= B\ /2—]J;sf expli®/(x, x')](£Ax; — iAx,) exp (— f4 l) L}(_1< 12 l), (C12)

where we have used once again the relation in Eq. (B12) to evaluate the integral over w. Notice that for k = 0 one has
I~ = I"* = 0 automatically from the definition in Eq. (C4), since either k, = —1 or k_ = —1, and D_,(p")) = 0. Now,
let us consider the integrals

K (myi) = [ @popierorexs(-pt/B,)Lh (201 /By). (c13)

where j = 1, 2. Using Eq. (C10) with v = 1, it is easy to show that

. y o0
Kﬁ'l)(m,h) = ZmﬁA d|p|piexp(=p1/By)L;,(2p1/Bs) 1 (IpLllyL])

z . m
— 2B (=1)"y; exp(~Bpyd /4L (B3 /2), (C14)

from which we get
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(=D*
\/2kB;
(-D)* [d

/2kB;

2
I=F = (—i) = s exp[i®/(x, x')]
i .

= —i87zs ; expli®(x, x')]

PHYSICAL REVIEW D 96, 114012 (2017)

[F KV (k=1,8x) + ik (k= 1,Ax))]

2
p iAx - :
(zﬂ)ée APL(Fpy +ipy)exp(—pt /By)LL_,(2p%/Bs).  (Cl15)

The results in Egs. (C11) and (C15) can be put together as

Iiﬁ’ — 4”(_l-)k4+k/1/ <

/2kB;

x [(k; = ky)py = isyps)]

(notice that an analogous expression has been obtained in
Ref. [57]). Replacing into Eq. (C3), and noting that
—i(£p, +ipy)y,A* = p, -y A%, we finally arrive at

SV = explidy (x, x')] / 2 [)?4 =8 (py, py),s
: T

(C17)
where §/(p |, p)) is given by Eq. (27).

APPENDIX D: DERIVATION OF
THE GAP EQUATION USING THE
SCHWINGER-DYSON FORMALISM

In this Appendix, we derive the gap equation using the
SD formalism discussed, e.g., in Refs. [56—58]. We start by
considering an interaction term of the form

1

int __ 4 4 4 4
SE = —2/d xld .X'Zd X3d x4K},l’y2’y3’y4(xl,xz,x3,x4)

Xy, (X0 )y, ()W, (x3)wr,, (X4), (DI1)
where y; stands for a set of Dirac and internal indexes (i.e.,
color and flavor). The corresponding SD equation for the
two-point function in the Hartree approximation is

+ / d*x3d* 4K gy, (6, X 23, %0) (S ),

(D2)

©)is the free two-point function and S, , is the
XX »

effective quark propagator.

The explicit form of the interaction kernel
K, 1, yip. (X1, X2, X3, x4) for the case we are interested in
can be read off from Eq. (2). Taking into account that, due
to the nonlocal character of the interaction, the coupling

where D

ly—ky |  |ka= 2
L a2 (2P By)

2 |k2_k/1" . sz .
> exp[zd)f(x,x’)]/lze’A"i"’l exp(—p}/By)

(27)
(C16)

with a gauge field requires the replacement in Eq. (4), for
our nonlocal model in the presence of an external field,
we have

K}’w’zwhw (xl ) X2, X3, X4)
= GG(x; — x2)G(x3 — x4)8W (%15 — X34)
X (yoW(x1, X12)rolL WV (X12. %2)),, 4,

X (yoW(x3, X34) 70T W (X34, x4)>y3,y4’ (D3)

where X;; = (x; +x;)/2. Replacing this expression in the
SD equation above, and considering the particular case of a
constant magnetic field along the 3-axis, in the Landau
gauge, we have

D!, = DY + GG(x - ¥) explid; (x, x')]

x N, / d*yd*y'G(y —y")8W (x — 3)

x Y trp{explidp(y,y)IS] .
f'=ud

(D4)

where ¥ = (x +x)/2,5 = (y +')/2, and @, (x, x’) is the
Schwinger phase introduced in Eq. (12). We have assumed
that, due to parity conservation, only Iy = 1 is relevant at
this level. Thus, the solution of the SD equation has to be
diagonal in flavor space, allowing us to write the two-point
function (and the corresponding propagator) as in Eq. (10).
Note that in Eq. (D4) the symbol trj, stands for the trace in
Dirac space, since the traces in color and flavor spaces have
already been taken.

To proceed, we use the well-known fact (see,
e.g., Ref. [57]) that the two-point function of a free
fermion in an external magnetic field is given (in
Euclidean space) by

4

D = explido! (x, )] / ap

e me). (D)
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Replacing this relation into Eq. (D4), we see that the rhs of
the resulting equation can be written as the product of a
Schwinger phase factor times a translational invariant
function (i.e., a function that depends only on x — x/).
Thus, this has to be the form of D‘)fc " A suitable ansatz for
the Dirac structure of a two-point function of this type has
been given in Ref. [57]. Using our notation and conven-
tions, its Ritus transform reads

S Af Af
Dk’pl\ o Z |:Aks17|\ + Bk,p”p” ’ 7”

A, A,
- Sf 2ka (Ck.{iu + Dk;]f)" p” . ]/”)}/2:| A'l. (D6)

The Ritus transform of the associated propagator can
be obtained by inverting this 4 x 4 matrix. It can be
expressed as

fo AL pAf
Sep = Z[A’Wn ~Bep i

N NS y)
+s; 2/¢Bf(cmI - DY py -y”)yz}A . (D7)
where
F.f 2pFf
AEf Akvl’uAl * p||Bk,P|\ Ay
kpy — A s
B;'fA qu-fA
prf — _kpi 1T Agp B2
kpy A ’
F.f 2 LS
~tf Ck-PuAl = plle»Pqu
kpy ™ A ’
+.f +.f
AES Dk’PHAl + C’ﬂPqu D8
kpy — T A ’ ( )
with the definitions
_ At pS 2p+.f p=.f
A= Ak’l’uAk»Pn * PiBip Bip,
+.f S 2t S
+2kB, (ck’p“ ol +ny Dk’pu>,
_ S peS _ phf =S
A2 = A p Bipy ~ Bep e,
+.f nt+.f —f n—.f
+2kBy (Ck’l’uDk-Pu = Cepy Dk»PH)’
A= A2+ plAd. (DY)

The particular value kK = 0 should be considered separately. In
this case, the above relations for Ai‘_{,” and Bi‘_{,” simplify to

PHYSICAL REVIEW D 96, 114012 (2017)

Af Af
AR = AOJ’H B — BOJ’H
O.pp ™ 44f 2 2phf 27 0.py — 4 4f 2 2pif 27
AO’PH + pllBO-Pu AO-PH + pllBO’Pu

(D10)

while C‘ﬁ’j)" and ﬁf)’_{)” are multiplied by zero in Eq. (D7) and

need not be defined.

Following the same steps as those sketched in
Appendix C, it can be shown that the two-point function
and the quark propagator in coordinate space can be
written as

. d*p .o

Df’x, = exp[i®/(x,x)] / 2n)° eip(x ")Df(pj_,p”),
. d*p .

Sﬁ,x, = exp[z<I>f(x, x')] / (22)° el x X>Sf(pJ_,p||).

(D11)

The functions D/ (p p)) and S (p,, p|) are given by
~ A, A,
Df(PJJPH) = Z[ap{-pu + bp{»pul’ll ol
=t
A, A,
+ (Cpf,p” + dpf,p”l?n '7’||>PL : h} A%,
. A i
S (pip) =3 [al’{’l’u = byl i
=
A, 4,
+ (_Cpf-P|| + dp{.pupll : yll)l)J_ : 71_} Alv
(D12)

are related to A*/

. Af
where the functions a,,f,p",... Ky

through

o . Ai’f
PL.P| o -p% /B 1)k 2 P
(bl’f )—2(3 Pl f;( 1) ALki(sz-/Bf)<B/1.f ),

PP k.py
af o cr
Covri ) _ 2B, k=171 2 ko
(di‘f >—4e i ’Z(_l) Ly (2p1/By) it )
yam Al k=1 k.py
(D13)
and similar relations hold for the functions &%/ , , A%/
) ARy 4 k.py’

etc., in the expression of the propagator. Note that using the
orthogonality of generalized Laguerre polynomials (see,
e.g., Eq. (3) of Sec. 7.414 in Ref. [69]),

™) r 1
/ dxx“e‘xLZ(x)L%(x)zwénm, Re(a) >0,

0 n!
(D14)
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these relations can be inverted to give

AR 4 d?
() =5 Glpeontsng

k.py
(df,{ D) )
X o ,
pr_ P
Ci’f 4 k=1 p 2
Py m(=1) &’pL 5, _p
(o7 ) = [ EBmenmnontny

k.py
Af
y Cpip
d/l,f ’
PP

We can now go back to the SD equation, Eq. (D4). Using
Egs. (D5) and (D11), we have

(D15)

D'(p,.py) = P+ m.+GN.g(p*)

v g(‘]zﬁfD[Sf/(fu, qp)]-

L

(D16)

Taking into account the explicit form of D£ and :9,’: given by
Eq. (D12), it is seen that the functions entering D/ (pL.py)
should satisfy
2 A 2.
2)’ be-Pu CP{ Py =1 dpf»l’u =0,
(D17)

A, _
al’f»l’u =m.+ Gg(p

PHYSICAL REVIEW D 96, 114012 (2017)

where, in order to make contact with the results in the main
text, we have defined

d*q
2 Aﬂf
aQi q-

(D18)

=2

Given the results in Eq. (D17), we can easily obtain the
expressions for the functions entering the Ritus transform
of the two-point function. Using Eq. (D15), we get

A, — A, A,
Ak,{)” = (l - 5k4,—1>mc + ngj;n’ Bk.{?” = (1 - 5/(,1.—1)’
Af _
cif =1, D = (D19)

where the definition of gi‘J;l is that given in Eq. (17). As we

see, Ak{%
Eq. (18). Replacing these results in Eq. (D6), we recover
kpy given in Eq. (19). On the other

hand, using the relations in Egs. (D13) and (17), we can
write Eq. (D18) as

G _ lasB| & JZPII A
5_ chz Z 2 kPungn

coincides with the expression for M Kp, given in

the expression for D/

(D20)

Finally, replacing Egs. (D19) into Egs. (D8), it is seen that

the expression for Ai‘_{,” coincides with that given in

Eq. (25). This completes the derivation of the gap equation,
Eq. (24), within the framework of the SD formalism
developed, e.g., in Refs. [56-58].
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