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1  Introduction

The full configuration interaction (FCI) wave function, usu-
ally expressed in terms of N-electron Slater determinants, 
corresponds to the exact solution of the Schrödinger equa-
tion of an N-electron system for a given one-electron basis 
set. However, its determination comes at a prohibitive com-
putational cost, except for systems with few electrons and 
for small basis sets. This drawback is overcome by using 
approximate methods. The FCI wave function expansion 
includes all possible N-electron determinants that can be 
obtained from an orthonormal set of orbitals. Hence, the 
energy associated with the FCI wave function is inde-
pendent of the actual chosen orthonormal basis. Truncated 
configuration interaction (CI) methods mitigate the pro-
hibitive computational cost of FCI methods by restricting 

Abstract  The coefficients of full configuration interaction 
wave functions (FCI) for N-electron systems expanded in 
N-electron Slater determinants depend on the orthonormal 
one-particle basis chosen although the total energy remains 
invariant . Some bases result in more compact wave func-
tions, i.e. result in fewer determinants with significant 
expansion coefficients. In this work, the Shannon entropy, 
as a measure of information content, is evaluated for such 
wave functions to examine whether there is a relationship 
between the FCI Shannon entropy of a given basis and 
the performance of that basis in truncated CI approaches. 
The results obtained for a set of randomly picked bases are 
compared to those obtained using the traditional canonical 
molecular orbitals, natural orbitals, seniority minimising 
orbitals and a basis that derives from direct minimisation of 
the Shannon entropy. FCI calculations for selected atomic 
and molecular systems clearly reflect the influence of the 
chosen basis. However, it is found that there is no direct 
relationship between the entropy computed for each basis 
and truncated CI energies.
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the number of N-electron determinants based on some 
predetermined criteria [1, 2]. The best-known CI methods 
include determinants up to a certain degree of excitation 
from a reference determinant. By usually strongly reduc-
ing the number of determinants the computational cost 
becomes much more affordable, although by no longer 
considering the complete space of determinants the energy 
depends on the number of Slater determinants retained and 
the orthonormal orbital basis used. Moreover, the coeffi-
cients of the N-electron determinants that express the wave 
functions are basis-set dependent, even in the FCI method. 
A wave function is considered more compact when fewer 
determinants have coefficients significantly different from 
zero. Hence, it is of interest to see whether expanding the 
CI wave functions in basis sets that render the FCI wave 
function more compact would result in lower energies in 
approximate truncated CI wave function. It has long been 
recognised that much of FCI space consists of deadwood, 
i.e. configurations that contribute almost nothing to the 
wave function [1]. This observation inspired work to exam-
ine ways to mask off small coefficients in the wave func-
tion against a predefined energy threshold, all in the quest 
of finding an optimally sparse wave function [3, 4]. In the 
present work, we establish a basis in which the FCI wave 
function becomes as sparse as possible, i.e. containing as 
many near-zero coefficients as possible but without alter-
ing the FCI energy. The hypothesis is that the basis that 
results in the most compact FCI wave function may be a 
good starting point for CI approaches by giving consist-
ently low energies at the truncated levels. It has been com-
monly accepted that the natural orbitals (NO) [5], which 
diagonalise the first-order reduced density matrix [6–8], 
lead to faster expansions than those provided by the canon-
ical Hartree–Fock molecular orbitals (CMO) [9–11]. How-
ever, there is no guarantee that the truncated CI energies 
arising from the FCI NO basis set are always lower than 
those obtained from the CMO basis ones. Other types of 
molecular orbitals have also been proposed, searching for 
CI expansions with faster convergence than those formu-
lated in terms of natural orbitals. In the present paper we 
examine the performance of a new basis set that maximises 
the compactness using entropy considerations. This sets the 
proposed methods apart from using more localised basis 
sets [12–15].

We have previously reported results on the compact-
ness of CI and FCI wave functions and their correspond-
ing energies using seniority-number minimising orbitals 
[16–19]. The seniority number of an N-electron determi-
nant is the number of singly occupied orbitals (or unpaired 
electrons) in that determinant [20, 21]. The extension of 
this concept to N-electron wave functions gives unpaired 
electron number averages for N-electron states [22, 23] as 
the expectation value of the seniority-number operator [16, 

24]. Because these expectation values are dependent on the 
basis set utilised to express the wave functions, we have 
determined orbital sets minimising those expectation val-
ues; these resulting orbital sets have been denoted as Mmin 
sets [16]. Our studies have shown that the wave functions 
expressed in the Mmin orbitals are more compact than those 
based on the CMO and NO basis sets. This more com-
pact nature has been confirmed using the Shannon entropy 
indices as compactness criterion for expansions of wave 
functions expressed in the CMO, NO, and Mmin basis sets 
[25]. However, to our knowledge no study has been made 
to establish whether there is any connection between the 
compactness of a FCI wave function and the performance 
of the underlying basis in truncated CI approaches. Our 
hypothesis is that a basis that results in a more compact 
FCI wave function is more biased towards a single deter-
minant and that using this single determinant as a reference 
would result in lower energies at truncated CI levels. From 
there, any structure in this basis set could be examined to 
establish whether one could a priori design better orbital 
bases for truncated CI. In order to answer this, we describe 
a new method to specifically minimise the Shannon entropy 
index and compare the results obtained with those arising 
from using other basis sets. We also randomly generate a 
large number of orthonormal bases to examine any trend 
between truncated CI energies and compactness of the FCI 
wave function with those bases.

2 � Theoretical aspects

We express the electronic wave function of an N-electron 
system according to

in which S and Sz are the spin quantum numbers of an 
N-electron spin-adapted wave function |Ψ (N , S, Sz) > . 
|Λ(N , Sz) > stands for an N-electron Slater determinant, 
and CS

Λ is its expansion coefficient. If the summation in Eq. 
(1) contains all the Slater determinants |Λ(N , Sz) > that can 
be constructed with the chosen molecular spin-orbital basis 
set, expansion (1) corresponds to the FCI wave function. 
As stated above, limited configuration interaction methods 
arise from approximating expansion (1), in which some 
N-electron Slater determinants are neglected according to 
predetermined criteria, such as the excitation degree of the 
determinants with respect to a reference determinant [2] or 
their seniority-number values [16, 24]. An example of the 
latter criterion is the double-occupied configuration inter-
action (DOCI) method, in which the |Ψ (N , S, Sz) > wave 
function is expanded in terms of all seniority-zero determi-
nants [26].

(1)
|Ψ (N , S, Sz) > =

∑

Λ(N ,Sz)

C
S
Λ|Λ(N , Sz) >
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The spin-free version of the N-electron seniority-number 
operator, Ω̂, is given as [16]

where i represents the orbitals of a finite orthonor-
mal basis set, N̂ is the electron number operator, and 
Ê
ii
ii
=

∑
σ1,σ2

a
†
iσ1
a
†
iσ2
aiσ2 aiσ1 is the second-order replace-

ment operator [27–30] corresponding to the double 
occupation of the orbital i. a†

iσ1
 and aiσ1 are the usual 

creation and annihilation operators of the spin-orbital 
iσ1 , respectively, and σ1 and σ2 the spin functions. The 
expectation value of the seniority-number operator 
�Ω̂�Ψ = �Ψ (N , S, Sz)|Ω̂|Ψ (N , S, Sz)� is then a weighted 
sum of the seniority numbers of all determinants involved 
in expansion (1) [16]. In previous work, we have performed 
unitary transformations of the molecular orbital set to mini-
mise �Ω̂�Ψ [16–18, 31], giving rise to the so-called Mmin 
basis set. This has been done using a specific adaptation of 
the procedure reported by Subotnik et al. [32].

The invariance of the FCI energy with respect to the 
orthonormal basis is no longer maintained in the case of 
limited CI methods. The CS

Λ expansion coefficients in Eq. 
(1) depend on the basis set used in both limited CI and FCI 
procedures. Hence, it is useful to search for molecular basis 
sets in which the expansion (1) turns out to be more com-
pact also making limited CI series converge more rapidly to 
the FCI wave functions. This obviously hinges on the pres-
ence of an underlying (yet hidden) structure as truncated CI 
schemes rely on connected one-electron excitations.

One of the quantitative procedures to measure the com-
pactness of a given N-electron wave function expressed by 
Eq. (1) is the informational content (IC) index, defined as

This and other related indices, which arise from the Shan-
non information entropy theory [33, 34], have been previ-
ously satisfactorily used as a measure of the compactness 
of a given wave function expressed in several molecular 
basis sets. These indices have been used both in the tradi-
tional excitation-based CI scheme [35] and in the seniority-
number-based one [25]. As mentioned in the Introduction, 
one of the basis sets sought is that which minimises the IC 
value for a given N-electron wave function. This scheme 
associates minimal entropy values with maximal compact-
ness of wave functions. Since it is assumed that the wave 
function |Ψ (N , S, Sz) > is normalised to unity and the coef-
ficients lie in the range 0 ≤ |CS

Λ| ≤ 1, the entropic index 
satisfies IC ≥ 0. Consequently, compact wave functions, 
which require as few as possible but consequently high |CS

Λ| 
values, provide low values for IC. The idea behing the use 
of entropic indices is based on the supposed link between 

(2)Ω̂ = N̂ −
∑

i

Ê
ii
ii

(3)
IC = −

∑

Λ(Sz)

|CS
Λ|

2 log2 |C
S
Λ|

2, |CS
Λ| ≥ 0

correlation energy and entropy [36–40]. This idea underlies 
several recent studies, including that by Delle Site that also 
uses Shannon entropic indices albeit directly on the elec-
tron density [41–43].

For minimising the IC index, we have used the simu-
lated annealing (SA) technique [44, 45]. This has proven 
to be a very efficient method to find the global minimum 
of a function possessing many local minima [31]. The SA 
method consists in emulating a physical process in which a 
solid system is gradually cooled and frozen in a minimum 
energy configuration. In the present work, sequences of 
elementary Jacobi rotations [46] between pairs of orbitals 
are performed over a randomly chosen angle. The rotation 
angles are drawn from the normal distribution around zero 
and limited to a determined interval. Each rotation provides 
a new IC value. The actual rotation is effectively retained 
when this value is lower than the previous one; otherwise, 
a uniform random intermediate parameter is calculated 
and according to its magnitude the proposed rotation is 
accepted or rejected. This procedure allows one to escape 
from local minima. Full technical details of the method can 
be found in Ref. [31]. In the IC minimisation set-up, we 
have both used a scheme where only rotations among orbit-
als of the same symmetry are considered IC(sym) and one 
where the symmetry may be broken IC(nonsym).

In practice, obtaining a IC value from FCI is not an effi-
cient approach. However, the present paper first establishes 
whether a good correlation exists between limited CI ener-
gies and IC. In case a meaningful correlation is found, new 
approaches will be sought to obtain low entropy bases, e.g. 
by using IC optimised bases from limited CI calculations.

3 � Computational details

We have chosen several two-electron systems as well as 
the beryllium atom, the lithium dimer, and neutral and 
ionic hydrides of the second-row elements as prototype of 
systems with four, six, eight and ten electrons, for which 
the FCI calculations are computationally affordable. In all 
cases, we have considered the singlet ground state wave 
functions of these systems, which have been expressed in 
all the above-mentioned orthonormal orbital bases obtained 
from the STO-3G atomic basis set, except for the two-
electron systems where larger basis sets have been used. 
The use of a minimal basis set allows FCI calculations, 
including the optimisation of IC. Although larger basis 
sets are required to account more thoroughly for dynamic 
correlation, in this proof of principle test failure to find a 
good correlation between limited CI energies and IC values 
would indicate that no good correlation can be expected for 
larger basis sets. The molecular systems have been studied 
at both equilibrium (Re) and symmetrically stretched (Rst)  
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geometries. The equilibrium distances for the molecules 
H2 , HeH+, LiH, Li2, BH, BeH2, BH3, CH4, NH3, H2O and 
FH are those reported in Ref. [47]. For BeH+ we have 
used the internuclear distance from Refs. [48, 49], while in 
BeH+

2  the geometry was optimised at CI single and double 
excitation level using the CMO basis set, with the GAUSS-
IAN code [50]. The one- and two-electron integrals to build 
the FCI N-electron Hamiltonian matrix, as well as the CMO 
sets, have been obtained from a modified version of the PSI 
4 package [51]. Our own codes have been used to calculate 
the NO, Mmin, IC(sym) and IC(nonsym) minimising orbital 
sets as well as a large number of randomly chosen sets, and 
to perform the required basis-set transformations. The ran-
dom basis sets were generated by applying unitary matrix 
transformations on the molecular orbital basis sets. These 
matrices were built from the eigenvectors of Hermitian 
matrices. As it was observed that completely random Her-
mitian matrices resulted systematically in larger values for 
IC, we included also matrices that are expected to lead to 
lower IC values. This was done by stepwise building matri-
ces with an increasing number of orbitals participating in 
the Jacobi rotations while keeping other orbitals fixed.

4 � Results and discussion

To allow proper comparison among the different ortho-
normal basis sets, we first report the IC values obtained for 
CMO, NO, Mmin and IC minimising sets in both the symme-
try and nonsymmetry conserving approaches. Table 1 gath-
ers the IC values for the two-electron atomic and molecular 
systems. Table  2 reports the results corresponding to that 

index for the four- and six-electron systems, while Table 3 
collects those values for the eight- and ten-electron ones.

Tables  1, 2 and 3 clearly illustrate the fact that indeed 
the IC index value depends on the orthonormal basis cho-
sen for the expansion (1). In case of two-electron systems, 
Table 1 shows that the values obtained using the NO and 
Mmin bases coincide. This is because a FCI wave func-
tion for this type of systems must be expanded in terms of 
Slater determinants of seniority numbers Ω = 0 (with only 
doubly occupied orbitals) and Ω = 2 (with nonrepeated 
orbitals). However, a unitary transformation allows one to 
formulate these wave functions as [24, 52, 53]

in which all the Slater determinants possess seniority num-
ber Ω = 0. Hence, the value of the �Ω̂�Ψ quantity for wave 
functions of that type is zero, which is the minimum expec-
tation value of the seniority number operator. On the other 
hand, the spin-free first-order reduced density matrix cor-
responding to a wave function satisfying Eq. (4) is diagonal 
and consequently the orbitals i are the natural ones. This 
argument shows that for two-electron systems in singlet 
states the NO and Mmin basis sets must coincide. The direct 
minimisation of the IC index through the simulated anneal-
ing technique (in both symmetry and nonsymmetry con-
serving approaches) also yields that same basis, in accord-
ance with the results reported in Ref. [52].

The results in Table 2 show that all the orbital basis sets 
considered, except the CMO one, yield identical IC val-
ues in the four-electron systems (Be, LiH(Re), LiH(Rst ), 
BeH+(Re) and BeH+(Rst)). The higher values exhibited by 

(4)|Ψ (N = 2, S = 0) > =
∑

i

Ci|i
α
i
β >

Table 1   Calculated IC values 
for the FCI ground state wave 
functions of selected two-
electron systems expressed in 
several orthonormal bases using 
different atomic basis sets

Equilibrium distances (Re) at experimental or optimised bond lengths and symmetrically stretched ones 
(Rst) at Rst= 2.349Re (for H2), Rst=1.324Re (for HeH+)

System Basis CMO NO Mmin IC(sym) IC(nonsym)

He 6-31G 0.040 0.040 0.040 0.040 0.040

6-311G 0.045 0.040 0.040 0.040 0.040

6-311G(d,p) 0.084 0.079 0.079 0.079 0.079

H2(Re) 6-31G 0.141 0.119 0.119 0.119 0.119

6-311G 0.158 0.124 0.124 0.124 0.124

6-311G(d,p) 0.185 0.150 0.150 0.150 0.150

H2(Rst) 6-31G 0.710 0.622 0.622 0.622 0.622

6-311G 0.820 0.621 0.621 0.621 0.621

6-311G(d,p) 0.810 0.608 0.608 0.608 0.608

HeH+(Re) 6-31G 0.087 0.067 0.067 0.067 0.067

6-311G 0.088 0.063 0.063 0.063 0.063

6-311G(d,p) 0.122 0.092 0.092 0.092 0.092

HeH+(Rst) 6-31G 0.097 0.071 0.071 0.071 0.071

6-311G 0.097 0.068 0.068 0.068 0.068

6-311G(d,p) 0.137 0.102 0.102 0.102 0.102
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the CMO set indicate, as expected, a less compact wave 
function in that basis. The stretched configurations of the 
systems LiH(Rst) and BeH+(Rst) also show systematically 
higher values with respect to their equilibrium counter-
parts LiH(Re) and BeH+(Re). These results are coher-
ent with the higher static correlation [24] in the stretched 
geometries, where the FCI expansion requires a higher 
number of Slater determinants with significant weight. 
Table  2 also shows IC values for the six-electron systems 
(Li2(Rst ), BH(Re), BH(Rst), BH+

2 (Re), BH+
2 (Rst), BeH2(Re ), 

and BeH2(Rst)). As can be observed, the highest values of 
the entropic index are again found with the CMO basis. 
Only small differences appear between the results with the 
other bases. The NO and Mmin basis sets lead to very simi-
lar values, although in the BH(Rst) system the Mmin basis 
set provides a markedly more compact wave function than 
the NO one. The results from the IC(sym) and IC(nonsym) 
optimisations reflect the highest compactness, particularly 
in the latter case, although the values remain similar to 
those obtained with the Mmin basis. The stretched configu-
rations of these systems also entail very high IC values with 
respect to the equilibrium geometries, again coherent with 
their higher static correlation.

Table 3 describes the results for the eight-electron sys-
tems, BH3(Re) and BH3(Rst), in which the lowest value 
of the IC index is obtained with the IC(nonsym) opti-
misation although the Mmin basis leads to very similar 
results. For the ten-electron systems, again the basis sets 
obtained from the IC(nonsym) and Mmin procedures yield 
similar results. We do notice that in several cases, releas-
ing the constraints of the IC(sym) procedure to give the 
IC(nonsym) results significantly increases the compaction 
of the wave function. The similarity of the IC values for 
the IC(nonsym) and Mmin bases can be explained as fol-
lows. According to Eq. (2), the minimisation of the �Ω̂�Ψ 
quantity requires the maximisation of the 

∑
i
�Êii

ii
�Ψ one, 

which implies reaching wave function expansions with 
larger coefficients for the Slater determinants containing 
doubly occupied orbitals i, which is equivalent to getting 
more ordered configurations. The numerical values of the 
IC index arising from these last two methods are markedly 
lower than those provided by the NO basis sets and conse-
quently they must be preferred in the task of compacting 
wave functions.

In truncated single-reference CI methods, one starts 
with a single determinant wave function and adds excita-
tions of a given order by replacing occupied orbitals by 
virtual orbitals. This requires a rationale to distinguish 
between occupied and virtual orbitals or at least some 
meaningful order among the orbitals. In case of CMOs, 
the ordering is based on the expectation values of the 
Fock operator. The reference determinant is built from the 
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lowest energy orbitals. In NOs, one uses the occupation 
numbers of the natural orbitals and constructs a reference 
determinant that includes only the most populated natural 
orbitals. In case of the seniority and IC minimising orbit-
als, there appears no simple ordering between the differ-
ent orbitals in the orthonormal basis. In that case, the most 

obvious choice is to use as a reference the Slater determi-
nant with the largest absolute coefficient of the FCI wave 
function.

To examine the possible relationship between the IC 
value and truncated CI energies, CIS, CISD, CISDT, CIS-
DTQ, and CISDTQ5 energies were computed starting from 

Table 3   Calculated IC values for the FCI ground state wave functions of selected eight- and ten-electron systems expressed in several orthonor-
mal bases using STO-3G basis sets

Equilibrium distances (Re) at experimental or optimised bond lengths and symmetrically stretched ones (Rst) at Rst =  1.750Re (for BH3), 
Rst = 1.750Re (for CH4), Rst = 1.894Re (for NH3), Rst = 1.995Re (for H2O), Rst = 2.00Re (for HF)

BH3(Re) BH3(Rst) CH4(Re) CH4(Rst) NH3(Re) NH3(Rst) H2O(Re) H2O(Rst) HF(Re) HF(Rst)

CMO 0.358 2.803 0.495 3.850 0.462 4.788 0.281 2.442 0.132 0.860

NO 0.357 2.792 0.515 3.822 0.443 4.142 0.261 2.362 0.117 0.829

Mmin 0.312 2.599 0.417 3.239 0.383 3.660 0.234 2.031 0.117 0.829

IC(sym) 0.331 2.619 0.495 3.812 0.408 3.889 0.260 2.362 0.117 0.829

IC(nonsym) 0.312 2.598 0.417 3.239 0.383 3.659 0.234 2.030 0.117 0.829

Fig. 1   STO-3G Truncated CI energies for different orthonormal bases versus FCI IC for BeH2 at equilibrium geometry. The red dot locates the 
CMO, NO and seniority minimising basis sets (indistinguishable on the IC axis)
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the reference determinant obtained from CMOs, NOs, sen-
iority minimising, IC minimising orbitals and 5000 ran-
domly chosen basis sets obtained as described above. For 
each basis, the FCI coefficients were computed and from 
there the IC values. Figure 1 shows the scatterplot for the 
truncated CI energies of BeH2 versus the IC value com-
puted using the STO-3G basis at the equilibrium geometry. 
The fact that the CIS energies differ from the Hartree–Fock 
energy is due to the fact that single excitations generally 
interact with the reference determinant. Only in case of 
the Hartree–Fock single determinant, Brillouin’s theo-
rem renders these interactions zero. The random basis sets 
cover the entire range of IC values from the lowest values 
obtained with the entropy minimising basis sets to the theo-
retical upper bound corresponding to equal coefficients for 
all determinants. As Fig. 1 clearly shows, a qualitative trend 
may be discerned. However, the main observation is that 
low truncated CI energies are not exclusively connected to 
the lowest values of IC. The lowest values of IC are derived 
from the CMO, NO and seniority and entropy minimising 
basis sets, but several other random basis sets result in low 
energies as well although with higher IC values. This means 
there is no fundamental quantitative relationship between 
the IC values and truncated CI energies.

The seniority minimising basis results in low entro-
pies (similar to those obtained from the IC(nonsym) and 

slightly better than the IC(sym) basis) and so more com-
pact wave functions and tends to result in low energies 
for the closed shell systems tested. Besides one-electron 
excitations, we also explored seniority-based CI expan-
sions such as DOCI (seniority-zero sector), wave func-
tions including the (0+2) sectors (combining DOCI and 
two unpaired electron determinants), (0+2+4) sector 
wave functions, and FCI (here equal to (0+2+4+6) wave 
functions). Figure  2 shows the results, again indicating 
that there is no obvious relationship. As in Fig. 1, virtu-
ally indistinguishable energies are obtained once below a 
cut-off value in IC. Any fundamental and quantitative rela-
tionship between IC and the truncated CI energies should 
apply over the entire range of IC values, including the 
large number of random basis sets with high IC in Figs. 1 
and 2 and as discussed such a good correlation is absent. 
As higher excitations are included, more basis sets of 
quite different IC values converge to a lower energy pla-
teau as eventually FCI is independent of the basis chosen. 
That some high IC basis sets result often in the highest 
energies is not surprising as one could also imagine max-
imising the entropy and using one of the many determi-
nants with all (virtually) the same absolute coefficient in 
the FCI expansion. Still, the main observation is that high 
entropy does not automatically mean high energy despite 
an apparent but not quantitative tendency.

Fig. 2   STO-3G Seniority-based CI energies for different orthonormal bases versus FCI IC for BeH2 at equilibrium geometry. The red dot locates 
the CMO, NO and seniority minimising basis sets (indistinguishable on the IC axis)
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Another aspect mentioned in the Introduction, which 
deserves to be remarked, is the localisation properties of 
the orbitals that compose the basis sets used in this work. 
As is well known, the split-localised natural orbitals are 
among the best sets in terms of CI series convergence. 
However, this localisation entails symmetry breaking 
[14]. We have checked this property plotting in Figs.  3 
and 4 the orbitals arising from all reported methods for 
the H2O molecule at the equilibrium and stretched geom-
etries. As can be observed, the CMO, NO and IC(sym) 

orbitals maintain the symmetry, while it is broken in the 
cases of the Mmin and IC(nonsym) methods; the uncon-
strained minimisation of seniority number or entropy 
causes orbital localisation on atoms and bonding direc-
tions, which agrees with genuine chemical behaviour. 
This agrees with what was previously pointed out in Ref. 
[14] for natural orbitals (symmetry adapted) and split-
localised ones where the symmetry adaptation is sacri-
ficed to obtain a better localisation and a faster conver-
gence for CI expansions.

Fig. 3   Symmetry of the orbitals 
used in this work for the H2O 
at equilibrium geometry. ±0.11 
a.u. isosurfaces in all plots
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5 � Conclusions

The compactness of FCI N-electron wave functions 
expressed in different molecular basis sets has been scruti-
nised, including a basis designed to minimise the Shannon 
entropy as a benchmark. For the latter, both symmetry con-
serving and nonsymmetry conserving simulated annealing 
procedures have been used. Numerical determinations of 
Shannon entropy indices on several systems using FCI wave 
functions have revealed that the compactness of the wave 
functions may depend significantly on the molecular basis.

The seniority-number minimising basis performs nearly 
as well as the nonsymmetry conserving entropy minimising 

basis set, and both of them lead to more compact wave 
functions than the natural orbital and canonical molecular 
orbital basis sets. In case of two-electron systems, all the 
studied basis sets, except the canonical molecular orbital 
one, give rise to the same entropy value due to their special 
features.

The hypothesis that a more compact FCI wave function 
would allow us to extract a better single-reference deter-
minant to initiate one-electron excitation-based truncated 
CI or seniority-based truncated CI calculations that give 
lower energies is shown to be false. Some basis sets with 
higher IC values may still result in low truncated CI ener-
gies although there appears to be a cut-off above which 

Fig. 4   Symmetry of the orbitals 
used in this work for the H2O at 
stretched geometry. ±0.11 a.u. 
isosurfaces in all plots
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there is a tendency towards higher energies. Choosing an 
orbital basis that makes FCI more compact does not seem 
to automatically lead to more rapidly convergent trun-
cated CI expansions using either the excitation hierarchy 
or the seniority hierarchy. Choosing the right configura-
tions seems to be more important than choosing the right 
orbitals.
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