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Prony’s method and the connected–moments expansion

Francisco M. Fernández

INIFTA (UNLP, CCT La Plata–CONICET), Blvd. 113 y 64 S/N,

Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina

We show that Prony’s method provides the full solution to the nonlinear equations of the

connected–moments expansion (CMX). Knowledge of all the parameters in the CMX ansatz is useful

for the analysis of the convergence properties of the approach. Prony’s method is also suitable for

the calculation of the correlation function for simple quantum–mechanical models.

PACS numbers: 03.65.Ge

I. INTRODUCTION

Horn and Weinstein[1] and Horn et al[2] proposed the t–expansion for the calculation of the ground–state energy of

quantum–mechanical models. It is the Taylor expansion about t = 0 of a monotonically decreasing function E(t) that

leads to the ground–state energy when t→ ∞ provided that the chosen reference function exhibits a nonzero overlap

with the ground state. The coefficients of such Maclaurin series are known as connected moments or cummulants.

Since the extrapolation of the t–expansion towards t → ∞ by means of Padé approximants[1, 2] did not appear

to produce encouraging results, Cioslowski[3] proposed an exponential series and Stubbins[4] compared it with other

extrapolation approaches. On matching the t–expansion and the exponential series at origin one has to solve a

system of nonlinear equations. In order to bypass this problem Cioslowski[3] developed a systematic algorithm for

obtaining just the parameter related to the energy by removing all the other variables in the nonlinear equations. The

resulting approach is known as connected moments expansion (CMX). From the properties of the Padé approximants

Knowles[5] derived a compact an ellegant explicit expression for the approximants to the energy in terms of the

connected moments.

Since the CMX approximants may exhibit singularities[5–7] other authors proposed improved approaches like the

alternate moments expansion (AMX)[8, 9] and the generalized moments expansion(GMX)[10]. Although these meth-

ods may avoid the singularities in the CMX approximants they do not seem to improve the convergence properties of

the sequences of approximants and commonly their results are not more accurate than the CMX ones.

A recent analysis of the convergence properties of the CMX required the calculation of all the variables in the CMX

ansatz[11]. For that reason, Amore and Fernández[12] proposed a systematic method for the full solution of the CMX

nonlinear equations motivated by an earlier discussion[13] of the connected–moments polynomial approach[14].

Nonlinear equations like the CMX ones are an old problem in applied mathematics and were first solved by Prony[15]

and later Weiss and McDonough[16] proposed an alternative approach based on Padé approximants. In fact, Prony’s

method is well known in numerical analysis[17] and has been widely applied to a variety of problems in chemistry and

engineering[18, 19]. Further inspection of the procedure developed by Amore and Fernández[12] has revealed that it

is closely related to Prony’s method, although the main result derived by the former authors does not appear in the

discussions of the latter method[16, 17].

The main purpose of this paper is to show the connection between Prony’s method and the procedure developed
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by Amore and Fernández. In Sec. II we show how to solve a particular set of nonlinear equations by means of Prony’s

method and derive the main result of Amore and Fernández[12]. In Sec. III we discuss the application of that method

to the extrapolation of the generating functions for the moments and connected moments. In Sec. IV we test the

general analytical results on simple models and show that they are useful for a discussion of the convergence properties

of the CMX as well as for the approximate calculation of the autocorrelation function.

II. PRONY’S METHOD

In what follows we discuss the solution of the system of 2N equations

Fk =

N
∑

n=1

Anb
k+s
n , k = 1, 2, . . . , 2N (1)

for the 2N unknowns An and bn, where Fk are known real numbers and s an integer.

Prony’s method is based on the construction of the polynomial[16, 17]

p(b) =

N
∏

n=1

(b− bn) =

N
∑

j=0

pjb
j , pN = 1 (2)

where the polynomial roots bn, and thereby the polynomial coefficients pj, are unknown. It follows from

N
∑

j=0

Fi+jpj =

N
∑

n=1

Anb
i+s
n

N
∑

j=0

pjb
j
n = 0, i = 1, 2, . . . , N (3)

that the coefficients pj are solutions to the linear system of equations

N−1
∑

j=0

Fi+jpj = −Fi+N , i = 1, 2, . . . , N (4)

If the matrix F with elements Fi+j , i = 1, 2, . . . , N , j = 0, 1, . . . , N−1 is nonsingular then the solution is unique. Once

we have the polynomial coefficients pj we obtain its roots bn and then solve the resulting system of linear equations

(1) (for example for k = 1, 2, . . . , N) for the remaining unknowns An.

The technique just outlined is known since 1795[15] and is commonly called Prony’s method[16, 17]. Weiss and

McDonough[16] proposed an alternative way of solving the nonlinear equations by means of a partial fraction expansion

of Padé approximants, and in what follows we describe a different strategy for obtaining the roots bn developed by

Amore and Fernández[12]. The starting point of this procedure is the homogeneous system of N linear equations

N
∑

i=1

(Fi+j − bFi+j−1) ci = 0, j = 1, 2, . . . , N (5)

with N unknowns ci. There will be nontrivial solutions (ci 6= 0) only if the determinant vanishes:

|Fi+j − bFi+j−1|Ni,j=1 = 0 (6)

Under such conditions we define

γj =

N
∑

i=1

Fi+jci (7)
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so that equations (5) become γj = bγj−1 that leads to γj = bjγ0, j = 1, 2, . . . , N . Therefore, it follows from

N
∑

j=0

γjpj =
N
∑

i=1

ci

N
∑

j=0

Fi+jpj = γ0

N
∑

j=0

pjb
j (8)

that the roots of the determinant (6) are exactly the roots of the polynomial p(b) of Prony’s method.

We have now at least three alternative procedures for solving the nonlinear equations (1). First, the original Prony’s

method that consists of solving the system of linear equations (4) for the coefficients of the polynomial p(b), then

calculating its roots bn, and finally solving the resulting system of linear equations (1) for the remaining unknowns

An. Second, the partial fraction expansion of the Padé approximants proposed by Weiss and McDonough[16]. Third,

our approach that consists of obtaining the polynomial p(b) from the determinant (6). The choice of either of them

is probably a matter of taste. We find our technique quite straightforward and it has revealed a most interesting

connection between the exponential expansion of the generating function for the moments and the Rayleigh–Ritz

method in the Krylov space[12].

Prony’s method was developed for fitting a series of exponential functions to given numerical data[15–18]. In what

follows we apply it to a completely different problem so that the name Prony’s method refers only to the strategy for

solving the nonlinear equations (1).

III. GENERATING FUNCTIONS FOR THE MOMENTS AND CONNECTED MOMENTS

The general equations developed in the preceding section prove useful for the analysis of the CMX[3, 5]. We first

consider the moments–generating function[1]

Z(t) = 〈φ| e−tĤ |φ〉 (9)

where Ĥ is the Hamiltonian operator of the system and |φ〉 is an arbitrary reference state. The coefficients of its

Maclaurin series

Z(t) =

∞
∑

j=0

(−t)j
j!

µj (10)

are the moments µj = 〈φ| Ĥj |φ〉.
For simplicity we assume that the spectrum of Ĥ is discrete

Ĥ |ψj〉 = Ej |ψj〉 , j = 0, 1, . . . (11)

where E0 ≤ E1 ≤ E2 ≤ . . ., and without loss of generality we choose the eigenvectors of Ĥ to be orthonormal:

〈ψi| ψj〉 = δij . Under such conditions the generating function exhibits the exponential behaviour

Z(t) =

∞
∑

j=0

|〈φ| ψj〉|2 e−tEj (12)

where the expansion coefficients |〈φ| ψj〉|2and the energies Ej are unknown. We can calculate them approximately

by means of the method developed in the preceding section and the ansatz

ZN(t) =

N−1
∑

j=0

Aje
−tWj (13)



4

where Aj andWj are the approximations to |〈φ| ψj〉|2and Ej , respectively. If we require that the Maclaurin expansion

of this ansatz yields the first moments µj exactly we are left with the nonlinear equations (1) with Fk = µk−1, s = −1

and Wj = bj−1.

It is has been proved that matching those expansions at origin is equivalent to the application of the Rayleigh–Ritz

variational method in the Krylov space (RRK)[12]. Note that the determinant (6) becomes the secular determinant

of the RRK. The RRK solutions

|ϕj〉 =
N−1
∑

i=0

cij |φi〉 , |φi〉 = Ĥi |φ〉 (14)

satisfy

〈φk| Ĥ |ϕj〉 =Wj 〈φk| ϕj〉 (15)

and the application of Prony’s method in the way just outlined yields Aj = |〈φ| ϕj〉|2.
The CMX is based on the generating function

E(t) = −Z
′(t)

Z(t)
(16)

that is monotonically decreasing[1] and the coefficients of its Maclaurin series are the connected moments Ij :

E(t) =

∞
∑

j=0

(−t)j
j!

Ij+1 (17)

The recurrence relation[1]

I1 = µ1

Ij+1 = µj+1 −
j−1
∑

i=0





j

i



 Ii+1µj−i, j = 1, 2, . . . (18)

yields the connected moments (or cummulants) Ii in terms of the moments µj .

The main interest in E(t) is that it provides a size consistent approach to the ground–state energy[1]

lim
t→∞

E(t) = E0 (19)

when 〈φ| ψ0〉 6= 0. In order to carry out this extrapolation Cioslowski[3] proposed the exponential–series ansatz

E(N)(t) = A0 +
N
∑

j=1

Aje
−bjt (20)

where the unknown parameters bj are supposed to be real and positive and A0 is the approximation to E0. Matching

this expression with the t–expansion (17) leads to the set of equations

A0 = I1 −
N
∑

n=1

An (21)

and

Ik+1 =

N
∑

n=1

Anb
k
n, k = 1, 2, . . . , 2N (22)
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We can solve the set of 2N equations (22) by means of the method of the preceding section with Fk = Ik+1 and s = 0.

In this case the exponential parameters bj , j = 1, 2, . . . , N are the roots of the pseudo–secular determinant

|Ii+j+1 − bIi+j |Ni,j=1 = 0 (23)

Once we have them we solve N of the resulting 2N linear equations (22) for the coefficients Aj , j = 1, 2, . . . , N , and

then we obtain A0 from equation (21). Cioslowski[3] and Knowles[5] developed remarkable strategies for obtaining

A0 without calculating the other parameters explicitly. We have just shown that the explicit calculation of all the

parameters in the exponential–series ansatz (20) is quite straightforward.

IV. ILLUSTRATIVE EXAMPLES

In order to test the equations developed in the preceding section and show their usefulness in the analysis of the

CMX we first consider an exactly solvable model: the dimensionless harmonic oscillator

Ĥ = − d2

dx2
+ x2 (24)

As a trial function we choose one of the examples discussed in earlier papers[11, 12]

φ(x) = 〈x| φ〉 =
(

x2 − 1

2

)

e−2x2/5 (25)

for which |〈φ| ψ2〉| > |〈φ| ψj〉|, j 6= 2. (The normalization factor is irrelevant to present purposes) One advantage of

this example is that it is not difficult to obtain the generating function exactly

E(t) =
121u3 + 189199u2 + 8180919u+ 6561

(81− u) (121u2 + 20198u+ 81)
, u = e−4t (26)

Note that limt→∞E(t) = E0 = 1 because 〈φ| ψ0〉 6= 0 in agreement with the discussion in Sec. III.

By means of the general results of the preceding section we can easily calculate the generating function E(t)

approximately in two ways: as U (N)(t) = −Z ′

N (t)/ZN (t) from equation (13) and directly from equation (20). Fig 1

shows that U (N)(t) approaches the exact generating function E(t) for all 0 ≤ t < ∞ as N increases. On the other

hand, the approximate expression E(N)(t) given by Eq. (20) is an unsatisfactory approximation to the exact E(t) as

shown in Fig. 2 (except for sufficiently small values of t). This situation does not appear to improve as N increases.

It is found that limt→∞E(N)(t) = −∞ for N = 2, 3 because in both cases there is one negative root bj associated

to a negative coefficient Aj . For example, A1 ≈ −0.0170, A2 ≈ 0.147, A3 ≈ 0.000617, b1 ≈ −3.87, b2 ≈ 4.04, and

b3 ≈ 9.29 for N = 3. Note that the curves in both figures are directly comparable in the sense that the calculation of

either ZN+1(t) and E
(N)(t) requires exactly the same number of moments µj (2N +1). The behaviour of E(N)(t) for

larger N may be different; for example, for N = 4, 5 there are two negative roots and limt→∞E(N)(t) = +∞.

The anomalous behaviour of E(N)(t) is due to the poles of E(t) in the complex t–plane. Note that Eq. (26) exhibits

three real poles in the u–plane and the closest to the origin is located at u ≈ −0.0040. It is reasonable to assume that

the CMX ansatz E(N)(t) should approach the Taylor series about u = 0 for E(t) when the approach is successful.

However, this expansion does not converge for u = 1 which is necessary for matching the t–expansion and exponential
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series at t = 0. This problem was discussed by Amore et al[11] by means of two–level models and we see it here again

for the harmonic oscillator. Those authors have shown that the CMX approximants for the harmonic oscillator with

the trial function (25) converge towards the second–excited state E2 = 5. From the approximate expressions E(N)(t)

with N = 1, 2, 3 we obtain A0 ≈ 4.932, 5.015, 5.002, respectively, in agreement with those results. This example

shows that the CMX approximants may converge to a meaningful result even when the ansatz E(N)(t) (on which the

approach is based) is an unacceptable global approximation to E(t).

Knowles[5] argued that if the connected moments Ik are positive for all k then the bi are real and positive. Later,

Massano et al[6] and Mancini et al[7] suggested that Knowles’ argument may not be valid and that it is the Hadamard

determinants constructed from the Ik that should be positive. The example just analysed supports the latter conclusion

because the first connected moments are all positive (≈ 5.13, 0.665, 2.12, 11.2, 40.0, 216, 979) but one of the roots

is negative as shown above. We realize that the general formulas derived in Sec. II are most useful for this kind of

analysis. In fact, the calculation of the roots bj by means of present formulas is almost as easy as the calculation of

the Hadamard determinants and the former provide a much clearer indication of the suitability of the ansatz E(N)(t)

as an approach for E(t).

By means of the example discussed above we do not want to convey the wrong impression that the CMX is suitable

for the calculation of excited–state energies because it is quite difficult to choose an appropriate trial function for

this purpose (except when we can exploit the symmetry of the problem to make the trial function orthogonal to the

ground–state[20]). The main interest in that exactly solvable problem is to show that we may predict an anomalous

behaviour of the CMX by means of the roots bj . If they are not real and positive it is reasonable to suspect that the

trial function may not be suitable and that it is convenient to choose another one. For example, if φ(x) = e−x2

all

the roots bj are positive and the resulting E(N)(t) is a remarkably good approximation to E(t) for all 0 ≤ t <∞ even

at the low orders N = 1, 2.

Finally, we explore the possibility of calculating of the correlation function

C(t) = Z(it) = 〈φ| e−itĤ |φ〉 (27)

where |φ〉 = |φ(0)〉 is the initial state normalized to unity and |φ(t)〉 = e−itĤ |φ(0)〉 is the state at time t. In particular

we concentrate on the real function |C(t)|2.
As a first example we consider the harmonic oscillator (24) and the trial function

φ(x) =

(

2

π

)1/4

e
−x2

(28)

The exact correlation function is

|C(t)|2 =
4
√
2

√

41− 9 cos (4t)
(29)

Fig. 3 shows results for N = 2, 3, 4, 5. There is no doubt that |ZN (it)|2 converges towards |C(t)|2 as N increases.

The approximation is satisfactory within the first period but the errors accumulate as t increases. This fact is not

surprising because the approximate expression is constructed from the Maclaurin series for Z(it).

The second example is the anharmonic oscillator

Ĥ = − d2

dx2
+ x4 (30)
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and the same trial function (28). Fig. 4 shows that the approximate results for N = 2, 3, 4, 5 follow the same trend as

in the case of the harmonic oscillator. At first sight it may be surprising that the convergence rate for the anharmonic

oscillator appears to be greater than for the harmonic one. The reason is that the chosen trial state exhibits a greater

overlap with the ground state of the former. Note that the magnitude of the coefficient A0 of ZN (t) tells us that

|〈φ |ψ0〉|2 is approximately 0.943 for the harmonic oscillator and 0.981 for the anharmonic one.

As a two–dimensional example we consider the anharmonic oscillator

Ĥ = − d2

dx2
− d2

dy2
+ x2 + y2 + λx2y2 (31)

where λ > 0, and the trial function

φ(x, y) =

(

2

π

)1/2

e−x2
−y2

(32)

Fig. 5 shows results for λ = 0.5 that look quite similar to those for the one–dimensional models.

One does not expect that it may be possible to construct C(t) from its Taylor expansion about t = 0 in all the

cases. The problems discussed above are simple examples of single–well oscillators. In the case of the double–well

oscillator V (x) = (x2 − 1)2 and the trial state localized in one of the wells φ(x) =
(

2
π

)1/4
e−(x−1)2 the approximants

to |C(t)|2 do not appear to converge although the results for Z(t) look reasonable. If, on the other hand, we locate

the initial state on top of the barier (for example, Eq. (28)) then the results are as accurate as those for the single

wells.

V. CONCLUSIONS

The main goal of this paper is to show that Prony’s method provides the full solution of the CMX equations in

a straightforward and simple way. We have outlined the connection between Prony’s method and the procedure

developed recently by Amore and Fernández[12]. Although both approaches are equivalent and Prony’s one is known

since long ago it seems that the pseudo–secular determinants obtained by Amore and Fernández are not available

elsewhere.

In spite of the fact that the harmonic oscillator with the trial function (25) was chosen as an illustrative example in

two earlier papers[11, 12] we think that present discussion based on the exact generating function (26) is clearer and

provides more information about the behaviour of the CMX ansatz E(N)(t). In particular, we have shown that this

simple problem clearly illustrates that Knowles’ conclusion about the sign of the connected moments[5] is not valid

as argued before by Massano et al[6] and Mancini et al[7].

It is clear that the roots bi provide a clear indication of the success of the CMX and the method developed by

Amore and Fernández[12], as well as Prony’s method, make their calculation straightforward. Both procedures may

be applied to the calculation of the autocorrelation function for simple quantum–mechanical models. If the approach

converges then one obtains a reasonable analytic expression for the autocorrelation function within the first period of

oscillation.
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FIG. 1: Exact E(t) and approximants U (N)(t) for the harmonic oscillator
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FIG. 2: Exact E(t) and approximants E(N)(t) for the harmonic oscillator
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FIG. 3: Exact |C(t)|2 for the harmonic oscillator (line) and approximants |ZN (it)|2 with N = 2 (squares,blue), N = 3 (filled

squares, red), N = 4 (circles, green) and N = 5 (filled circle, black).
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FIG. 4: Approximants |ZN (it)|2 for the anharmonic oscillator (30) with N = 2 (squares,blue), N = 3 (filled squares, red),

N = 4 (circles, green) and N = 5 (filled circle, black).
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FIG. 5: Approximants |ZN (it)|2 for the anharmonic oscillator (31) with N = 2 (squares,blue), N = 3 (filled squares, red),

N = 4 (circles, green) and N = 5 (filled circle, black).
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