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Abstract

The hyperdynamics method (HD) developed by Voter [J. Chem. Phys. 106 (1996)

11] sets the theoretical basis to construct an accelerated simulation scheme that holds

the time scale information. Since HD is based on transition state theory, pseudo-

equilibrium condition (PEC) must be satisfied before any system in a trapped state

may be accelerated. As the system evolves, many trapped states may appear and the

PEC must be assumed in each one to accelerate the escape. However, since the sys-

tem evolution is a priori unknown, the PEC cannot be permanently assumed as true.

Furthermore, the different parameters of the bias function used may need drastic recal-

ibration during this evolution. To overcome this problems we present a general scheme

to switch between HD and conventional molecular dynamics (MD) in an automatic

fashion during the simulation. To decide when HD should start and finish, criteria
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based on the energetic properties of the system are introduced. On the other hand, a

very simple bias function is proposed leading to a straightforward on-the-fly set up of

the required parameters. A way to measure the quality of the simulation is proposed.

The efficiency of the present hybrid HD-MD method is tested for a two-dimensional

model potential and for the coalescence process of two nanoparticles. In spite of the

important complexity of the latter system (165 degrees of freedoms), some relevant

mechanistic properties were recovered within the present method.

1 Introduction

One of the biggest problems of computer simulations using molecular dynamics (MD) is the

relatively short time scale that can be reached within this method. To achieve long simulation

times, powerful computer clusters are needed, and even in this case, only a few microseconds

can be simulated. For many systems, the dynamics at long times is characterized by rare

(infrequent) events: the system must escape from a certain basin of its potential energy

surface (PES) after wasting a long time trapped in it. At the present, many tools to handle

these rare events have been developed. For instance, there are different methods that allow

an enhanced sampling of the free energy surface (FES) associated with one or more specific

collective variables (CVs) of the system.1–10 In general, suitable CVs are chosen from a

prior knowledge of the system. On the other hand, the hyperdynamics (HD) developed by

Voter11,12 aims to achieve an acceleration in a representative way of the exact dynamics of

the system. In this case, the time information and the power of prediction of the conventional

MD can be retained.

Following the importance sampling,13 the HD introduces a transformation of the PES by

the addition of a bias function ∆Ub:

Ub(r) = U(r) + ∆Ub(r) (1)

2
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While this transformation leads to a reduction of the energy barriers of the PES, the residence

time in the metastable states will be shorter, improving the occurrence frequency of the rare

events. Using transition state theory (TST), Voter showed that the correct long-time kinetics

of the system can be recovered if the bias function is designed to vanish at the transition

states (TS). In spite of the great potentiality of this method, its implementation is not

straightforward, as can be seen from the many different approaches made in the last fifteen

years.14–30 For instance, finding a bias function that vanishes at the TS is a non-trivial task,

especially for systems with many degrees of freedom.

Since HD is based on TST, the system is required to achieve the pseudo-equilibrium

condition (PEC) at the trapped state before the HD may be applied. If the system is well

known, to ensure this condition for any state (as it is the case of a Markovian process) is

not a major problem. However, in the opposite case, an on-the-fly algorithm should be

applied to determine when HD can be safely used. In addition, the use of a bias function

usually requires different parameters that must be fixed for the particular state of the system.

These parameters might be unknown or even need drastic recalibration as the evolution of

the system takes place. Therefore, an acceleration algorithm with an automatic regulation

of these parameters is needed. For instance, Perez and Voter19 used a self-learning algorithm

to safely parametrize a variation of the bond boost method of Miron and Fichthorn.25

In the present work we propose an hybrid HD-MD scheme to parametrize on-the-fly

energy-based bias functions similar to that proposed by Hamelberg et al.23 During a MD

simulation period a test for the PEC is continually performed. When this test is successful,

the parameters of the bias function are automatically fixed using local energy properties

of the trapped state and some generals rules for the wished acceleration. Then, the HD

simulation starts and continues until a maximum limit for the magnitude of the bias (i.e.

the instantaneous value of the bias function) is overcome. In general this limit leads to a

decay probability for the HD simulation, but it also acts as a fuse if the acceleration becomes

too aggressive indicating that a recalibration of the bias parameters is needed. Finally, the
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MD simulation starts again and the described process is iterated.

This work is organized as follows. The method to analyze the occurrence of PEC is

presented in section 2. In section 3 we present the simple bias function used for the present

implementation and in section 4 we indicate how the parameters required are adjusted on-

the-fly. The criterion to finish the HD simulation is presented in section 5 and a global

scheme of the hybrid HD-MD algorithm is given in section 6. Finally, we illustrate the

use of the method for two different systems. First, we use the method to recover the drift

and diffusion coefficient in a simple two-dimensional potential surface. Second, we apply it

to study the coalescence process of metal nanoparticles (NPs). The results are compared

directly with those obtained in our recent work31 by long MD simulations. The application

of the present HD scheme allow us to recover useful time information for a complex process

with a relatively large number of degrees of freedom (165). In spite of the good performance

of the present method, further improvements are finally discussed and the need for a deeper

study on the scope and limitations of the hybrid HD-MD method is stated.

2 Analysis of the attainment of pseudo-equilibrium con-

ditions

Since HD is based on TST, it is necessary that the system achieves pseudo-equilibrium

conditions (PEC) at the trapped state before HD is applied. Here we propose a criterion to

define when PEC are reached based on the statistical behavior of the potential energy.

Let X be the potential energy of a system monitored during a canonical MD simulation.

The value of X at the ith step of the simulation will be denoted as Xi. For a set of MD

simulations, each one with N steps, the average value X =
∑N

i Xi/N has a variance given

4
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Figure 1: Energy trace for the coalescence process of two metallic NPs, made of 42 Au atoms
and 13 Co atoms respectively. Au atoms are shown in pink and Co atoms in blue.

by:

σ2(X) =
σ2(X)

N
+

2

N2

N
∑

j>i

σ(Xi, Xj) (2)

where σ(Xi, Xj) is the covariance for the pairs Xi and Xj along the different MD simulations.

To avoid the computation of the covariance term, a decorrelation process on the data trace

from each MD simulation is commonly used. This process involves splitting each trace in

m blocks and using the averages over each block as a set of Xi, . . . ,Xm decorrelated energy

values per MD simulation. If N is sufficiently large, the minimum value of m required to

get a decorrelated data set can be obtained from a Flyvbjerg-Petersen Plot (FPP),32 which

shows the dependence with m of

σm =

√

σ(X )

m− 1

(

1± 1
√

2(m− 1)

)

(3)

This quantity increases with m until a certain value is reached and then it remains constant

within fluctuations. This plateau is an estimator for σ(X) and its presence indicates that a

decorrelated data set was obtained by the blocking operation. From another point of view,

5
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the plateau in the FPP serves as an indicator that the system has a well behaved energy

distribution with meaningful values for X and σ(X). A well behaved energy distribution is a

characteristic of systems that have reached pseudo-equilibrium conditions (PEC). Therefore

we propose to use the occurrence of the plateau in the FPP as prerequisite to start the HD

simulation.

In Figure 1 we show the energy trace of a MD simulation obtained in a previous work.31

The process under study was the coalescence of two particles made of 42 Au atoms and 13

Co atoms respectively. The trajectory arose from a Langevin dynamics at 550 K (friction

coefficient of 5 ps−1) using second moment approximation to the tight binding potentials

(parameters from33). It is noted in this figure the initial decrease of the energy due to the

formation of the new Au-Co bonds and the steady state reached after ≈ 4 ns due to the

occurrence of the final core-shell structure. For the time intervals (1–2) and (4–5) ns we

computed the respective FPPs, as shown in figure 2. The presence of a plateau is evident in

figure 2b , in contrast with the exponential shape observed in figure 2a.

The use of the criterion presented above to start the HD simulation has some advantages.

First, the FPP can be constructed on-the-fly using the dynamic decorrelation distributable

algorithm (DDDA) designed by Kent et al.34 This is a very efficient algorithm and can be even

used in parallel computing schemes. Second, the test exhibits a relatively good sensitivity to

small perturbations of the energy. Third, after the test is successfully evaluated, the X and

σ(X) of the particular trapped state are immediately available for use. For instance, these

values can be used to setup the bias function parameters required, as described in section 4.

Fourth, if the trapped state involves several local minima and small barriers, the criterion

will still be useful if the energy trace involved is taken over a sufficiently large run. Beyond

these advantages, it is important to emphasize that the proposed test is only a criterion and

not a definitive test for the PEC. Although it is true that a plateau will be found in the FPP

when the system reaches the PEC, the opposite might not be true as it happens with some

pathological cases, like a system with a consistently flat PES.

6
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log2(m)
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σ
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Figure 2: a): Flyvbjerg-Petersen plots (FPP) for the interval (1–2) ns of the energy trace
shown in figure 1b): Same as a) but for the interval (4–5) ns. Vertical and horizontal lines
are drawn to guide the eyes.
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After the FPP is obtained on-the-fly using the DDDA, an automatic way to detect the

plateau in the plot is needed. In this work we use a simple procedure but other more

sophisticated might be chosen. First, we measure the length of the candidate plateau as the

maximum number of consecutive m values, counted from the right side of the plot, for which

the intersection of the error bars is not void. For example, the plateau in figure 2a has only

3 consecutive m values of length (log2(m) = 16, 15, 14) but in figure 2b it extends over 7 m

values (log2(m) = 16, . . . , 10). If this length covers a certain (arbitrarily defined) fraction of

the total m values we consider that the FPP has a well defined plateau. The vertical lines

in figure 2 indicates the defined fraction used in this work (7/17).

3 Selecting the bias function

In order to start a HD simulation, a suitable bias function must be selected. Since we

are using an energy-based test to verify the attainment of the PEC, an energy-based bias

function is an appropriate choice. This kind of bias function satisfies:

∆Ub(r) = g (U(r)) (4)

where g is any arbitrary function. In order to keep a transparent notation we will write g(x)

also as ∆Ub(x), where the distinction with ∆Ub(r) will be evident from the nature of the

argument. An useful energy-based bias function was proposed by Hamelberg et al.:23

∆Ub(U) =















(E − U)2

α + E − U
U < E

0 U ≥ E

(5)

Where E is a threshold energy above which the PES remains unchanged and α is a positive

number that regulates the intensity of the boost. The parameter E has an important mean-

ing: any escape from the basin enclosed by the surface U(r) = E satisfies Voter’s condition

8
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for zero bias at the TS. Therefore, E may be tunned to observe rare events in the desired

time scale, while the other events inside the basin are assumed to be ergodically sampled as

required by the PEC. However, when the number of degrees of freedom of the system (say n)

is relatively large, the set up of E is not trivial. The average energy and energy fluctuations

grow with n, thus forcing to increase E to get a reasonable acceleration. For these cases,

Hamelberg and collaborators suggest to set up E relative to the average energy.23 It must

be emphasized that within the methodology presented above the statistical properties of the

energy (as σ(X) and X) are immediately available after the FPP plateau is found.

For the sake of simplicity, instead of the Hamelberg et al. bias function we will use a

simpler version given by:

∆Ub(U) =















(E − U)(1− α) U < E

0 U ≥ E

(6)

with 0 < α ≤ 1. This function leads to the transformation:

Ub(r) =



















αU(r) + E(1− α) U(r) < E

U(r) U(r) ≥ E

(7)

The linear relation between the biased and unbiased PES facilitates the analytical treatment

of the HD scheme, as we will show in the next section. For instance, the parameter α has

now a straightforward meaning, since it is the compression factor of any energy difference

(i.e. barrier length) below E (see figure 3). The parameter E keeps the same meaning as

before. The main drawback of this function with respect to that of Hamelberg et al. is the

introduction of a discontinuity in the force when U(r) = E. However, since a stochastic

dynamic is used to performed the HD simulation, we believe that this discontinuity does not

introduce a major error in the results. We have checked that for some simple systems the

present bias function delivers results similar to those obtained with the bias of equation 5. It

9
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is important to remark that in any case the hybrid HD-MD algorithm here presented could be

improved using the Hamelberg et al. bias function. The choice of the lineal transformation

scheme was made to clarify the presentation of the method.

E

h

αh

Figure 3: Example of the PES transformation obtained using the bias function defined in
equation 6.

4 Setting the bias function parameters

Prior to start with the HD simulation stage, a suitable choice of the parameters E and α

must be made. Since the energetic properties of the trapped states are a priori unknown,

these parameters can not be kept fixed during the entire hybrid HD-MD simulation. For

instance, a certain value of E may be appropriate for a particular trapped state, but could

be inappropriate for others. Therefore, an automatic way to set up α and E when each HD

simulation period begins should be derived from the general properties of the system and

the acceleration desired.

In section 2 we defined X as the potential energy of the system observed during a canon-

ical MD simulation. X can be envisaged as a random variable distributed according to:

P (x) =
e−βxω(x)

Q
(8)

where β = kBT , Q is the canonical partition function and ω(x) is the density of states.

Similarly, we define Y as the potential energy of the (biased) system observed during a HD

10
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simulation. The distribution function associated with Y is:

Pb(y) =
e−βyωb(y)

Qb

(9)

where ω(y)b and Qb are the density of states and the partition function of the biased system

respectively. In the appendix we show a derivation of an expression relating Pb(y) and P (x)

for any energy-based bias function. For the particular case of the selected bias function we

get the relation:

Pb(y) =
Q

Qb















1
α
e−

β

α
∆Ub(y)P

(

y − 1
α
∆Ub(y)

)

y < E

P (y) y ≥ E

(10)

Expression 10 allows us to set up on-the-fly the parameters E and α of the bias function

from the statistical properties of the previous MD simulation and the desired boost factor.

In fact, the boost factor is given by:

B ≡ Q

Qb

=
〈

eβ∆Ub(~r)
〉

b
=
〈

e−β∆Ub(~r)
〉−1

=

[
∫

∞

−∞

e−β∆Ub(x)P (x)dx

]

−1

(11)

Where 〈〉 and 〈〉b are the averages over the canonical ensemble of the unbiased and biased

systems respectively. The parameter B does not depend on the particular trapped state of

the system and is fixed from the acceleration requirements. Another parameter relevant for

our purposes is:

w ≡
∫ E

−∞

Pb(y)dy (12)

which gives the probability of observing a non-zero bias. This is a property of interest for

the bias function presented in section 3. For instance, if w is close to one Voter’s condition

11
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concerning null bias at the TS will be compromised. On the other hand, if w is too low (close

to cero) a poor sampling of the biased region of the trapped state will take place. Hence, a

value of w near 0.5 could be desirable (see reference 11).

Replacing equation 10 in equation 12 yields:

w =
B

α

∫ E

−∞

e−
β

α
∆Ub(x)P

(

x− 1

α
∆Ub(x)

)

dx (13)

Equations 11 and 13 constitute a system that enables to find B and w for given E, α and

P (x). Conversely, we will show that the parameters E and α can be computed using these

equations, once the global parameters B and w are fixed at the beginning of the hybrid

HD-MD simulation.

Before starting the HD simulation period, the statistical properties of the energy, like X

and σ(X) may be obtained from the previous MD simulation. For energy values close to the

maximum of P (x), we can approximate this distribution by a normal distribution:35

P (x) ≈ 1

σ(X)
√
2π

e

−

1

2







x−X

σ(X)







2

(14)

With this approximation equations 11 and 13 become:















B =
[

1− cdfsn(E
′) + cdfsn(E

′ − α′) exp
(

α′2

2
− α′E ′

)]

−1

w = 1− B(1− cdfsn(E
′))

(15)

where cdfsn is the cumulative distribution function for the standard normal distribution and

E ′ ≡ E −X

σ(X)
(16)

α′ ≡ βσ(X)(1− α) 0 < α′ < βσ(X) (17)

Despite these new parameters were defined in terms of E and α, equation 15 indicates that

12
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obtained by inverting equations 16 and 17. Important insights can be obtained from the

plots in figure 4. For instance, when the system is big (large α′ values), the boost factor

becomes insensitive to α′ and it is necessary to increase the value of E ′ in order to get a

higher acceleration.

A final advantage can be pointed out for the present simulation scheme. The wished val-

ues for B and w are now input parameters for the hybrid HD-MD simulation. Furthermore,

since B and w can also be directly measured during the simulation, the comparison between

the target and the measured values may be taken as a degree of the quality of the simulation.

5 Switching back to the MD from the HD

In a similar way as we can predict the biased energy distribution Pb(y), we can predict the

probability distribution of the bias values observed, say P∆(z). That is, P∆(z) dz is the

probability of observing a bias of a magnitude between z and z + dz in the course of the

simulation. In the appendix we derive an expression relating P∆(z) with Pb(y) for the bias

function used in this work:

P∆(z) =



















B

1− α
P

(

E − z

1− α

)

e−βz z > 0

(1− w)δ(z) z = 0

(18)

Therefore, the probability to observe a bias of magnitude Z above a certain value ZM is:

φ(ZM) = 1−
∫ ZM

0

P∆(z)dz

= B cdfsn(E
′ − α′ − β

α′
ZM) exp(α

′2

2
− α′E ′) (19)

We will fix ZM as an initial parameter of the hybrid HD-MD algorithm in order to build a

criterion to stop the HD simulation: when the magnitude of the bias goes over ZM the HD

simulation switches to the ordinary MD. In other words, ZM will be a threshold limit for the
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bias magnitude, providing a fuse device to stop the HD simulation. φ = φ(ZM) becomes a

decay probability for the HD simulation and the value of ZM can be fixed choosing φ and

inverting the above equation:

ZM = α′

β

[

E ′ − α′ − cdf−1
sn

(

φ

B
exp

(

−α′2

2
+ α′E ′

))]

(20)

If φ has a relatively low value, the proposed criterion has the advantage to avoid the small

barrier problem.24 That is, if the system escapes to a neighboring trapping state with similar

energy, the HD simulation will continue without the need to recalibrate the parameters.

However, if the new trapping state has a lower energy, the probability φ(Z > ZM) will

increase quickly and the HD will be terminated, allowing to start the MD and recalibrate

the bias parameters for the new state.

6 The global picture of the hybrid HD-MD method

Figure 5 shows a complete diagram of the method proposed. Prior to starting the simulation

it is necessary to define the time scale of interest, which leads to the set-up of the boost

factor B. Also a value for the parameter w must be chosen. We suggest for the latter a

value close to 0.5, as was discussed in section 4. Once B and w have been chosen, the E ′ and

α′ values can be found using figure 4 or equivalently equation 15. Finally, it is necessary to

select a value for ZM by choosing a decay probability φ, which determines the length of the

HD simulation periods. Noting that φ/w is the expected fraction of bias values above ZM

and we can suggest φ < w/1000 for a good sampling on each HD simulation period. Then

using the selected φ and equation 20, the value for ZM is obtained.

Once the three parameters B, w and ZM are defined, the first MD simulation begins,

and the criterion for the attainment of the pseudo equilibrium condition is checked every

l steps. When the PEC condition is satisfied, the values for X and σ(X) are evaluated

and the parameters α and E and are computed through equations 17 and 16 respectively.
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Figure 5: Flow chart of the hybrid HD-MD method. The main input parameter are the
desired boost factor B, the desired non-zero bias probability w and the decay probability φ
to stop the HD simulation.
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Then, the HD simulation starts. Since the first n steps of HD do not belong to an ergodic

sampling of the biased PES, but rather to the unbiased one, these steps are considered an

equilibration stage and are discarded. Note that suitable values for l and n can be estimated

from a straightforward study of the energy autocorrelation function, a common practice in

most MD studies. Finally, the HD simulation proceeds until the condition ∆Ub > ZM is

achieved and the MD starts again.

7 Testing the method for a two-dimensional model po-

tential

-2

-1.5

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

E
n
er

gy

x

a = 0
0.02
0.04
0.06

Figure 6: Minimum-energy path along the x-direction of the two-dimensional model potential
defined in equation 21. Dashed lines correspond to the biased PES obtained using the bias
function 6 with E = −0.61 and α = 0.12.

In order to illustrate some of the capabilities of the hybrid HD-MD method we apply it
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to study the motion of a particle in the two-dimensional model potential given by:

U(x, y) = cos(2πx)(1 + 4y) + 2π2y2 − ax (21)

Excluding the last term, this is the potential named as “type I” by Voter in his original

publication of HD.11 The new term −ax is intended to be a small perturbation that generates

a tilt in the potential along the x direction (see figure 8). Therefore, when a 6= 0 this term

introduces a constant drift in the motion of the particle. We use 500 trajectories from

pure MD simulations in order to measure the drift and diffusion coefficient along the x

direction for different values of a. In order to allow the particle to overcome the potential

barriers we choose kBT = 0.2, and following reference 11 we fix a time step of 0.01 and a

friction coefficient of 0.5 for the Langevin dynamics. For each trajectory, the total simulation

time was 106. The drift µ and diffusion coefficient D were computed trough the respective

equations:

µ ≡ d

dt
〈x(t)− x(0)〉 (22)

D ≡1

2

d

dt

〈

(x(t)− x(0)− µt)2
〉

(23)

The results are reported in the columns headed with the label “MD” in table 1. It should

be noticed that for a = 0 the diffusion coefficient obtained is in good agreement with the

value of (4.5± 0.4)10−5 reported previously by Voter.11

Table 1 also reports the drift and diffusion coefficient computed from 500 trajectories

simulated with HD using the bias function of eq 6 with E = −0.61 and α = 0.12. It can

be noticed that for a = 0 there is a good agreement between the values obtained from MD

and HD. The difference between these values can be taken as a consequence of the TST

assumption on the HD framework, as was demonstrated in reference 11. On the other hand,

when a 6= 0 the direct implementation of HD lead to an unbounded increase of the boost

factor in the trajectories, ending in the poor sampling of the basins, the increment of the
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number of multiple crossing events and the persistent violation of the zero bias condition at

the transition states. This can be clearly noticed in the case of a = 0.1 where the simulation

time per trajectory (fixed to 106) is enough to achieve the described regimen. Furthermore,

it is even not possible to fit a constant value for µ and D to the result of this simulations,

as it can be seen from the non-linear dependence of the mean displacement in figure 7.

Finally, we computed the drift and diffusion coefficient from 500 trajectories through the

hybrid HD-MD method. The parameters for these simulations were B = 4, w = 0.9 and

φ = 10−3. The results are also shown in table 1, where it can be observed a good agreement

with the MD even when a is bigger. This agreement arise due to the capability of the

method to recalibrate E and α ensuring a constant boost factor along the trajectory. As was

mentioned above, the differences with MD could be explained from the basis of the HD in

TST. It is expected that this difference increases with a the probability to observe multiple

crossing events also increases. Nevertheless, a linear dependence of the mean displacement

with time is obtained in all the studied cases as can be see in figure 7 for a = 0.1.

Table 1: Comparison between the drift µ and diffusion coefficient D obtained by MD, HD
and hybrid HD-MD. The simulation time was fixed to 106 per trajectory. The dashes in the
last row indicate that it was not possible to assign a constant value.

µ (10−5) D (10−5)

a MD HDMD HD MD HDMD HD

0 -0.02 0.08 0.05 4.43 4.82 5.03

0.02 0.44 0.49 0.61 4.41 4.98 4.89

0.04 0.89 0.83 1.07 4.31 5.20 5.10

0.06 1.34 1.38 1.56 4.47 5.44 5.20

0.1 2.30 2.46 - 4.53 6.16 -
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Figure 7: Mean displacement along the x direction for the model potential of equation 21
computed using 500 trajectories from pure MD, a direct application of HD and the hybrid
HD-MD method.

8 Testing the method for the coalescence of nanopar-

ticles

We present here the aplication of the hybrid HD-MD method to study the coalescence

process of two metal nanoparticles (NPs) of 42 Au atoms and 13 Co atoms respectively. The

problem of NPs coalescence is a hot research area36–44 as well as the study of bimetalic NPs

and their remarkable features.45–50 For the coalescence process presented here, the simulation

results can be directly compared with those obtained from straightforward MD simulations

performed in our previous work.31

Figure 8a presents an example of the energy profile for a hybrid HD-MD trajectory for

the same initial conditions as those of the results presented in figure 1. The parameters of

this simulation were B = 10, w = 0.5 and φ = 4 10−6. Note that until completing the first

5 ns, the energy traces of figures 1 and 8 are the same. After this time the HD begins, in

synchrony with the plateau found in the FPP (see figure 2b). The yellow traces correspond
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a

b

Figure 8: a): Energy trace for the same phenomenon of coalescence as that analyzed in figure
1, but resulting from the hybrid HD-MD method. b): The corresponding values of the bias.
The time axis correspond to the “integration time” (without taking into account the boost).
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B ≈ tHD
b /tHD and tb/t ≤ B because of the simulation time spent in regular MD. Figure 9

shows a plot of tb vs t, where it is possible to differentiate the different periods of HD and

MD simulations. It can be observed how the global slope of the simulation is higher than

the slope of each MD stage, but is lower than the slope of each HD period which present the

desired B = 10.

0

2

4

6

-201 -200 -199

Energy (eV)

-201 -200 -199 -198

Energy (eV)

0

2

4

6

0

2

4

6
P (x)
Pb(y)

U
Ub

Figure 10: Energy distribution P (x) and Pb(x) for some w and B as is indicated in each
frame. Continuous lines correspond to the gaussian fit (blue) and the prediction according
to equation 10 (yellow). The dashed lines correspond to the histograms measured during the
MD (black) and the subsequent HD (red) simulations.

Figure 9 suggests a way to measure the power of a hybrid HD-MD simulation. It is

possible to compare the input B value with the measured ratio tHD
b /tHD. Simultaneously, it

is also possible to compare the input w value with the fraction of HD steps with a positive

value of the bias. We performed this comparison for a certain set of B and w parameters, as
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presented in table 2. Better agreements are found for w = 0.5, which is consistent with the

discussions given above. On the other hand, there are larger deviations of the ratio tHD
b /tHD

from the preset value of B for simulations with w = 0.3 and B > 10, as highlighted in

red. This deviations are indicating a too aggressive acceleration which could lead to several

issues, as for example, a bad statistics over tHD
b (see reference 11).

Table 2: Comparison between B and w input parameters and the measured equivalent
quantities from the performed hybrid simulations. The slope tHD

b /tHD is obtained through
a linear fit of the tHD

b vs tHD plot.

B

10 50 100 10 50 100

0.3 0.26 0.24 0.23 12.4 1318 323.0

w 0.5 0.45 0.40 0.40 10.3 55.7 111.6

0.7 0.64 0.60 0.59 8.79 32.6 55.1

Prob(∆Ub > 0) tHD
b /tHD

In addition to the simple test of table 2, a full comparison between predicted and obtained

energy distributions P (x), Pb(y) and P∆(z) was performed. The histograms of potential en-

ergy for a HD simulation period and the corresponding histogram for the immediately pre-

ceding MD simulation are plotted in figure 10, for differents w and B input parameters. The

respective approximated P (x) and predicted Pb(y) densities are also shown in the plot. In all

cases, the gaussian shaped P (x) fits very well the main part of the MD energy distribution.

In the case of Pb(y), a better agreement is found for energies below E. This can be under-

stood considering that this portion of Pb(y) is predicted using the gaussian approximation of

P (x) (equation 14) at energies closer to 〈X〉, where the approximation is better.35 Far away

from the center of P (x), as it is the case of energies above E, the gaussian approximation

may not be good, and therefore the predicted Pb(y) for these energies is expected to show

some deviations, as can be seen in the figure. When w is small and/or B is big, the computed

E could be many σ(X) times far from X, and the discrepancy of Pb(y) above E is expected

to be bigger. For the same reason, similar discrepancies can be observed on the predicted

distribution of the bias P∆(z) near cero (see supplementary information), the region of the
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distribution related to P (x) with energies close to E. Despite this details, figure 10 shows

that a good overall prediction of Pb(y) may be obtained if suitable w and B parameters are

selected carefully.

The time behavior of a NP coalescence process was studied by straightforward MD in

our previous work.31 In that work, a histogram of waiting times for the formation of the final

core-shell structure was constructed using 256 MD trajectories. A replica of this histogram

is shown in figure 11a. Two peaks (labeled as I and II) can be seen in this figure. In the

aforementioned work, we found that peak II arises from some particular set of trapped states

that delay the process of core-shell formation. In order to study the predictive power of the

present method, we constructed the same histogram by means of hybrid HD-MD simulations.

Therefore, with w = 0.5, B = 50 and φ = 7 10−6 as input parameters, 256 hybrid HD-MD

simulations where performed with different random seeds and orientations of the initial NP,

as done in the reference work. Two kind of histograms may be constructed with the results of

the present simulations: the histogram using the integration time t and the histogram using

the boosted time tb. These two histograms are shown in figure 11b and 11c respectively. In

the former, only a broad peak around 30 ns is found and there is no evidence for peak II. This

means that in the hybrid simulations the trajectories can quickly escape from the trapped

states associated with this peak. Moreover, it can be observed in figure 11(d) that peak II

reappears, so that the presence of the trapped system is reflected after taking in account

the boosted time. The occurrence of this peak is an exciting result, since it is an indication

that accelerated dynamics may recover features of a very complex process, involving a large

number of degrees of freedom (165).

9 Conclusions

We propose an on-the-fly algorithm to switch between ordinary and accelerated molecular

dynamics during the course of a simulation. This automatic interchange requires a minimal
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φ = 7 10−6

w = 0.5

B = 50

a

b

c

MD
I II

HD-MD: t

HD-MD: tb

time (ns)

Figure 11: (a): Distribution of waiting times for the formation of the final core-shell structure
built from pure MD, taken as reference from our recent work.31 (b) and (c): Same as (a)
but using “integration” and “boosted” times respectively obtained from the hybrid HD-MD
simulations.
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computational cost and allows to adapt the bias parameters to the different trapped states

visited by the system. Furthermore, this method prevents the application of the hyper-

dynamics scheme in evolution periods that do not fullfill the pseudo equilibrium condition

required for the validity of the transition state theory. An analytical treatment of the differ-

ent criteria imposed to regulate the algorithm was achieved by using a simple bias function,

approximating the unbiased energy distribution by a gaussian function. Even with this ap-

proximation, the method successfully predicts the long time characteristics of the coalescence

process of two metallic nanoparticles (165 degrees of freedoms). As far as we know, this is

the first time that an hyperdynamics scheme using a bias potential of the type given in

equations 5-6 can recover relevant time information for such a complex process.

The present results on nanoparticle coalescence heuristically show that it is possible to

obtain sets of trajectories where the kinetics of particle coalescence is mostly preserved, even

for this complex system. On the other hand, many hyperdynamic strategies that formally

guarantee the condition of bias nullity at the transition state are not computationally efficient

to take advantage of the acceleration obtained. Thus, although the present methodology is

clearly not the optimal one concerning hyperdynamics, it opens the possibility to observe

many relevant trajectories using a computationally efficient method, without the need to

define a particular set of collective variables. Further research is desirable to analyze the

applicability of the present methodology to other complex systems.
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10 Appendix: Prediction of the HD energy distribu-

tion

The density of states of the unbiased and biased systems are respectively given by:

ω(x) ≡
∫

Ω

δ(x− U(r))dr (24)

ωb(y) ≡
∫

Ω

δ(y − Ub(r))dr (25)

Where Ω denotes the configuration space. If the bias function used is a energy-based bias

function (equation 4), it is possible to write:

Ub(r) = U(r) + g (U(r)) ≡ f (U(r)) (26)

Then, the number of states with energy y = Ub(r) can be also recovered by taking into

account all the energies x = U(r) that satisfy 26. In other words:

∫

∞

−∞

ω(x)δ (y − f(x)) dx (27)

=

∫

∞

−∞

∫

Ω

δ (x− U(r)) δ(y − f(x))drdx (28)

=

∫

Ω

δ (y − f (U(r))) dr (29)

= ωb(y) (30)

This equation sets the relationship between the density of states of the biased and unbi-

ased system and can be used together with equation 8 and 9 to get:

Pb(y) =
Q

Qb

∫

∞

∞

P (x)e−β(y−x)δ(y − f(x))dx (31)

which relates the probability distribution of variables X and Y . If the function f(x) is
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invertible, an especial case of equation 31 arises by changing the variable of integration

trough x = f−1(y′):

Pb(y) =
Q

Qb

e−β(y−f−1(y))

∣

∣

∣

∣

df−1(y)

dy

∣

∣

∣

∣

P
(

f−1(y)
)

(32)

This is the case of the bias function presented in equation 6, used in this work. The use of

this bias function in the above equation leads to equation 10.

Equation 32, or even the more general case of equation 31, gives the possibility to predict

any property of the biased system that depends on its energy distribution. This could be

used to improve the simulation parameters of the HD simulation before it starts. As it is

shown in the present work, some conditions to achieve a well behaved acceleration or even

the desired boost factor can be fixed in this way.

Let us define Z as the random variable associated with the bias values observed during

the HD simulation. The Z values arise by sampling Y through the function:

Z ≡ Y − f−1(Y ) ≡ h(Y ) (33)

It is possible to use this function with the random variable transformation theorem51 to

obtain the distribution function P∆(z) of Z from Pb(y):

P∆(z) =

∫

∞

−∞

Pb(y)δ(z − h(y))dy (34)

Then, P∆(z) can be predicted by computing Pb(y) from the MD simulation via equation 31

or, in the case of the bias function used in this work, replaced from equation 10 to obtain

equation 18.
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Rosales, S.; M Mariscal, M.; José-Yacaman, M. Beilstein J. Nanotechnol. 2014, 5,

1371.

(46) Bochicchio, D.; Ferrando, R. Phys. Rev. B 2013, 87, 165435.

(47) Rapallo, A.; Olmos-Asar, J. A.; Oviedo, O. A.; Ludueña, M.; Ferrando, R.;

Mariscal, M. M. J. Phys. Chem. C 2012, 116, 17210.

(48) Parsina, I.; DiPaola, C.; Baletto, F. Nanoscale 2012, 4, 1160.

(49) Parsina, I.; Baletto, F. J. Phys. Chem. C 2010, 114, 1504.

(50) Langlois, C.; Li, Z. L.; Yuan, J.; Alloyeau, D.; Nelayah, J.; Bochicchio, D.; Ferrando, R.;

Ricolleau, C. Nanoscale 2012, 4, 3381.

(51) Gillespie, D. Am. J. Phys. 1983, 51, 520.

33

Page 33 of 34

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Page 34 of 34

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


