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We study theoretically the ultrafast spin dynamics of II-VI diluted magnetic semiconductors in
the presence of spin-orbit interaction. Our goal is to explore the interplay or competition between
the exchange sd-coupling and the spin-orbit interaction in both bulk and quantum well systems. For
bulk materials we concentrate on Zn1−xMnxSe and take into account the Dresselhaus interaction,
while for quantum wells we examine Hg1−x−yMnxCdyTe systems with a strong Rashba coupling.
Our calculations were performed with a recently developed formalism which incorporates electronic
correlations beyond mean-field theory originated from the exchange sd-coupling. For both bulk
and quasi-two-dimensional systems we find that, by varying the system parameters within realistic
ranges, both interactions can be chosen to play a dominant role or to compete on an equal footing
with each other. The most notable effect of the spin-orbit interaction in both types of systems is the
appearance of strong oscillations where the exchange sd-coupling by itself only causes an exponential
decay of the mean electronic spin components. The mean-field approximation is also studied and it
is interpreted analytically why it shows a strong suppression of the spin-orbit-induced dephasing of
the spin component parallel to the Mn magnetic field.

I. INTRODUCTION

Diluted magnetic semiconductors (DMS) are multi-
functional materials that combine the outstanding elec-
tronic and optical properties of semiconductors with
highly controllable magnetic properties.1,2 With the
prospect of spintronic applications of DMS in mind,
much effort has focused recently on the study of ul-
trafast spin dynamics and control.3–9 At the same
time, spin-orbit interaction (SOI) effects have been in-
tensely studied in non-magnetic bulk and nanostructured
semiconductors.10–15 The interplay between the exchange
interaction characteristic of DMS and the more generic
SOI can lead to new possibilities for applications and
basic research.16–21 In particular, the spin-orbit torque
effect in DMS has attracted much interest in recent
years.22–29

In this article we explore theoretically this interplay by
studying the ultrafast spin dynamics of a non-equilibrium
electron distribution in the conduction band of II-VI Mn-
doped semiconductors. Our work is based on a micro-
scopic density-matrix theory that models on a quantum-
kinetic level the spin precession and the spin transfer be-
tween electrons in the conduction band of such semicon-
ductors and the manganese electrons, and which accounts
for exchange-induced correlations beyond the mean-field
level and considers the localized character of the Mn
spins.30 This recently developed formalism is quite gen-
eral and can be computationally costly to apply in some
circumstances. For this reason, in the present study we
consider a particular situation which is nevertheless ex-
perimentally relevant and theoretically interesting: the
limit of high Mn density compared to the electron den-
sity, which is normally realized in photoexcitation exper-
iments. In this particular regime we can apply a simpli-

fied formalism which captures the essential physics that
is relevant here and which reduces greatly the numerical
effort.31

The purpose of our study is to determine under which
conditions, if any, the spin-orbit interaction mechanisms
present in semiconductors can become relevant or even
dominant in the picosecond time-scale spin dynamics in
DMS. As will be seen here, for both bulk and quasi-two-
dimensional systems, depending on the choice of mate-
rial parameters and excitation conditions, there can be
a strong interplay or competition between the two types
of interactions. This rather unexplored combined effect
between exchange and SOI in DMS could lead in prin-
ciple to new forms of spin control suitable for spintronic
applications.

This article is organized as follows. In Section II A we
present the model Hamiltonian of the DMS with spin-
orbit interaction and in Section II B we review the equa-
tions of motion that describe the spin dynamics in the for-
malism adopted here. In Sections III and IV we present
and discuss our results for bulk Zn1−xMnxSe and for
Hg1−x−yMnxCdyTe quantum wells, respectively. Finally,
we provide some concluding remarks.

II. QUANTUM KINETIC FORMALISM

A. DMS Hamiltonian

The theoretical model of DMS for our work includes
the exchange sd-coupling between electrons in the con-
duction band and d-electrons of the doping Mn atoms
and the SOI of conduction-band electrons expressed in
the envelope-function approximation. The Hamiltonian
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has the form

H = H0 +Hsd +HSO , (1)

where H0 =
∑
i p

2
i /2m

∗, with conduction-band effective
mass m∗, and the Kondo-like Hamiltonian30

Hsd = Jsd
∑
iI

si · SI δ(ri −RI) (2)

describes the coupling due to the exchange interaction
between the conduction-band electrons and the Mn elec-
trons. The spin operator and position of the I-th Mn
atom (i-th conduction-band electron) are denoted as SI
and RI (si and ri), respectively. The coupling constant
Jsd is negative here, corresponding to a ferromagnetic
coupling.32 In the present work the negative Landé-factor
of Mn will always be combined with the negative sign of
the coupling constant Jsd. In addition, all spin variables
will be considered dimensionless and the coupling con-
stant accordingly modified.

For bulk materials, the SOI Hamiltonian HSO

of zincblende semiconductors is the Dresselhaus
Hamiltonian33

HD = γD
∑
i

[σi,xki,x(k2i,y − k2i,z) + cyclic perm.] , (3)

where σ is the vector of Pauli matrices and k is the
operator p/~. For quasi-two-dimensional systems, we
consider asymmetric quantum wells which display the
Rashba SOI34

HR = αR

∑
i

(ki,yσi,x − ki,xσi,y) . (4)

These effective spin-orbit couplings can be thought of as
interactions of a spin with k-dependent magnetic fields.

B. Equations of motion

In Refs. [30], [31], and [35], the Heisenberg equations of
motion of the density matrix for DMS without SOI were
posed and analyzed in terms of a correlation hierarchy
which includes averaging of the Mn-atom positions, thus
rendering the problem spatially homogeneous. In this
work we follow that formalism and extend it in a simple
fashion in order to study the effects of the SOI on the
electronic spin degree of freedom.

When the number of Mn atoms (NMn) is much larger
than the number of conduction-band electrons (Ne), i.e.

in the limit NMn � Ne, the quantum kinetic equations
established in Ref. [30] can be significantly simplified.
This assumption can be easily fulfilled for intrinsic semi-
conductors in which the Mn2+ ions are incorporated iso-
electronically, like in the case of II-VI semiconductors.36

Unlike the situation in, for example, III-V based DMS,
where the Mn doping results in a large number of holes,
in isoelectronically doped systems the density of free car-
riers is controlled solely by the photoexcitation and thus
can be kept much smaller than the Mn density simply
by using low laser intensities. Here we consider elec-
trons excited with typical narrow-band laser pulses with
near-bandgap energies and low intensities. Employing
the approximation of low-electron density as compared
to the Mn doping density, we have developed a simpli-
fied formalism31 based on the full model of Ref. [30] which
allows a numerically efficient handling of electronic cor-
relations. Here we adopt the low electron-density limit
and follow the formalism of Ref. [31].

In the regime NMn � Ne the Mn density matrix can
be considered stationary and we take the z-axis along the
mean Mn magnetization 〈S〉. The assumption of a sta-
tionary Mn density matrix has been numerically tested
under conditions comparable with our present case in
Refs. [31], [35], [37], and [38]. We introduce a preces-
sion frequency for the conduction-band electrons in the
effective magnetic field of the Mn atoms

ωM =
Jsd
~
nMnS , (5)

where nMn is the Mn density and S = |〈S〉|, with 0 ≤
S ≤ 5

2 .
We study the time evolution of the mean value of the

spin operator associated with the state with wave vector
k,

〈sk〉 =
∑
σσ′

sσσ′〈c†σkcσ′k〉 = (〈s⊥k 〉, 〈s
‖
k〉), (6)

where 〈s⊥k 〉 and 〈s‖k〉 are the mean spin components per-
pendicular and parallel to the mean Mn magnetization,
respectively [see Fig. 1(b)]. We will take as system vari-

ables 〈s⊥k 〉 and the populations nσk = 〈c†σkcσk〉. The par-
allel mean spin can be obtained from the latter as

〈s‖k〉 =
1

2

(
n↑k − n

↓
k

)
. (7)

Leaving aside for the moment the SOI, the time evolution
of these variables induced by H0 and the sd-interaction
is given by31

∂

∂t
n
↑/↓
k

∣∣∣∣
sd

=
∑
k′

[
<(Gωk

ωk′ )
b‖

2

(
n
↑/↓
k′ − n↑/↓k

)
+ <(Gωk±ωM

ωk′ )
(
b±n

↓/↑
k′ − b∓n↑/↓k ∓ 2b0n

↑/↓
k n

↓/↑
k′

)]
, (8)



3

∂

∂t
〈s⊥k 〉

∣∣∣∣
sd

= −
∑
k′

{[
<(Gωk−ωM

ωk′ )

(
b+

2
−b0n↑k′

)
+ <(Gωk+ωM

ωk′ )

(
b−

2
+b0n↓k′

)]
〈s⊥k 〉+ <(Gωk

ωk′ )
b‖

2
(〈s⊥k′〉+ 〈s⊥k 〉)

}

+

{
ωM −

∑
k′

[
=(Gωk−ωM

ωk′ )

(
b+

2
− b0n↑k′

)
−=(Gωk+ωM

ωk′ )

(
b−

2
+ b0n↓k′

)]}
〈S〉
S
× 〈s⊥k 〉 . (9)

The constants in Eqs. (8) and (9) depend only on the
setting of the Mn magnetization and are given by b± =

〈S⊥2〉±b0, b0 = 〈S‖〉/2, b‖ = 〈S‖2〉, where S‖ = S·〈S〉/S,

and 〈S⊥2〉 = 〈S2 − S‖2〉/2. We also called ωk = Ek/~ =
~k2/2m∗.

The function Gωk
ωk′ can be interpreted as a memory

function and has the form

Gωk
ωk′ (t) =

J2
sd nMn

V ~2

∫ 0

−t
dt′ei(ωk′−ωk)t

′

≈ J2
sd nMn

V ~2
πδ(ωk′ − ωk), (10)

where in the last step we neglected the imaginary part
and the finite memory, i.e. we applied a Markov limit
which is a good approximation for not too large values
of J2

sd and excitations not too close to the band edge.38

The spin-orbit Hamiltonians of Eqs. (3) or (4) intro-
duce, to a first approximation, an additional k-dependent
spin precession. If the contribution of a single electron
with wave vector k to the spin-orbit Hamiltonian is writ-
ten in the form

HSO =
~
2

Ω̂k · σ, (11)

then the mentioned spin precession is described by the
Heisenberg equation of motion of the mean value of the
spin operator introduced in Eq. (6),

∂

∂t
〈sk〉

∣∣∣∣
SO

= Ωk × 〈sk〉. (12)

Note that while Ω̂k is an operator, we introduced Ωk as
the corresponding regular vector where k is interpreted
simply as a wave vector and not as an operator as in
Eqs. (3) and (4) [see Fig. 1(b)]. In the present study we
take into account the influence of the spin-orbit interac-
tion at this level, in order to elucidate how this added
k-dependent precession alters the quantum spin dynam-
ics in bulk and quasi-two-dimensional DMS.

III. BULK ZN1−xMNxSE

In this Section we present ultrafast spin dynamics re-
sults for bulk semiconductors. For concreteness we fo-
cus on Zn1−xMnxSe which is currently one of the best
studied II-VI DMS, and as we will see, it can display
an interesting interplay between exchange and SOI. We
first examine numerically and analytically the dephasing

caused by the Dresselhaus spin-orbit coupling and then
we proceed to calculate and analyze the full dynamics
under the influence of both exchange coupling and SOI.

A. Dresselhaus-induced dephasing

As mentioned in Sec. II A, the spin-orbit interaction
in the envelope-function approximation plays the role
of an effective k-dependent magnetic field around which
the electron spin precesses. This spin precession in the
case of an electron gas leads to global spin dephasing
and decay, which is at the root of the D’yakonov-Perel
spin-relaxation mechanism.39 As initial condition for the
conduction-band electrons we assume a Gaussian distri-
bution caused by a pulsed optical excitation, similar to
the one illustrated in Fig. 1(a). For the moment we con-
sider a Gaussian distribution centered at EC = 0 (the
band edge) and later we will consider an excitation cen-
tered at EC =10 meV, always with standard deviation
∆ =3 meV. We assume that the optical excitation popu-
lates only the spin-up conduction-band states thanks to
its appropriate circular polarization. In Fig. 2 we plot
the spin polarization, 〈sz〉(t) = 2N−1e

∑
k〈sk,z〉(t) (nor-

malized to 1), of the initially spin-up electron population
(the z-axis coincides with the main axis of the zincblende
lattice) in the conduction band versus time for differ-
ent values of the Dresselhaus spin-orbit coupling constant
γD.

The accepted standard value of γD/~ = 13.3 ps−1nm3

is included,10 and two artificially high values (40 and 100
ps−1nm3) are added to explore the tendencies of the de-
cay behavior. We use for the conduction-band effective
mass of ZnSe the value m∗ = 0.134m0,40 where m0 is
the bare electron mass. The expected dephasing and de-
cay mentioned above is clearly observed, with faster de-
cay obtained for increasing SOI coupling constant. Note
that the decay, however, is not exponential from the be-
ginning, but rather quadratic at short times. Another in-
teresting feature is that for an excitation 10 meV above
the band edge the evolution displays a non-monotonic
behavior. Below we shall indicate the origin of this in-
cipiently oscillatory behavior.

The long-time limit of the spin polarization seen in
Fig. 2, which corresponds to the equilibrium distribution
caused by the SOI effective field dephasing, is given by
the value 1/3:

lim
t→∞
〈sz〉(t) =: 〈seq〉 =

1

3
〈sz〉(t = 0). (13)
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FIG. 1. (a) Schematic representation of the conduction band (C.B.) and the spectrum of the circularly-polarized Gaussian
laser pulse that excites electrons from the valence band to a Gaussian distribution of spin up electrons in the conduction band
(centered at an energy EC above the band edge and with standard deviation ∆). (b) The electron spin and its components

〈s⊥k 〉 and 〈s‖k〉, perpendicular and parallel to the Mn magnetic field (or equivalently angular frequency ωM), respectively. Also
represented is Ωk, the angular frequency associated with the k-dependent spin-orbit effective magnetic field. The electron spin
precesses about ωM + Ωk.
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FIG. 2. Dephasing after isotropic Gaussian excitation of the
spin-up band (standard deviation ∆ =3 meV) without ex-
change sd-coupling in an effective Dresselhaus spin-orbit mag-
netic field with prefactor γD, specified in ps−1nm3. Three of
the curves correspond to a Gaussian excitation centered at the
band edge (EC = 0), while the fourth, marked with (*), cor-
responds to a displacement of the excitation to EC =10 meV
above the band edge.

This equilibrium value can be understood analytically as
follows. The equation of motion for the spin under the
SOI effective magnetic field, ∂

∂t 〈sk〉
∣∣
SO

= Ωk × 〈sk〉, can

be cast in the matrix form ∂
∂t 〈sk〉

∣∣
SO

= Mk〈sk〉, where

Mk =

 0 −Ωk,z Ωk,y

Ωk,z 0 −Ωk,x

−Ωk,y Ωk,x 0

 , (14)

and has the formal solution

〈sk〉(t) = exp(Mkt) 〈sk〉(0). (15)

The Taylor expansion of the matrix exponential can be
simplified using that M3

k = −Ω2
k Mk and M4

k = −Ω2
k M2

k,
with Ωk = |Ωk|. One obtains

exp(Mkt) = 1 + sin(Ωkt)
Mk

Ωk
+ [1− cos(Ωkt)]

(
Mk

Ωk

)2

.

(16)
The diagonal elements of this matrix are given by

exp(Mkt)|ii =
Ω2

k,i

Ω2
k

+

(
1−

Ω2
k,i

Ω2
k

)
cos(Ωkt). (17)

Assuming that initially only the i-th spin component is
non-zero, from Eqs. (15) and (17) we obtain 〈ski〉(t) =
exp(Mkt)|ii 〈ski〉(0). Thus, for large times t, this spin
component, averaged over the isotropically occupied k-

states, tends to 〈si〉 = Ω2
i /Ω

2 = 1/3 since the effective
field is isotropic (the bar denotes average over k-states).

Note again that in Fig. 2 the curve corresponding
to the excitation above the band edge displays a non-
monotonic behavior which is the precursor of an oscilla-
tion that can be seen under stronger SOI. These oscilla-
tions will be observed later in the quantum-well situation,
and originate from the cos-term in Eq. (17), appropri-
ately averaged over the occupied k-states.

B. Interplay between exchange and Dresselhaus
interactions

Having verified the dephasing caused by the k-
dependent Dresselhaus effective magnetic field, we now
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wish to study the interplay between the exchange sd-
(sd) and Dresselhaus (D) couplings. The material pa-
rameters of Zn1−xMnxSe related to the Mn doping used
in our simulations are as follows. The exchange coupling
constant of Zn1−xMnxSe is N0α = 260 meV,41 where N0

is the number of unit cells per unit volume, and α = Jsd
in our notation. The lattice constant of ZnSe is 0.569 nm,
the volume of the primitive unit cell is 0.0455 nm3, thus
N0 = 22 nm−3, and then Jsd ≈ 12 meV nm3. We assume
a relatively low percentage of Mn doping of 0.3% which
gives a Mn density of 6.6 × 10−2 nm−3. The density of
photoexcited electrons is assumed to be 5 × 10−5 nm−3,
i.e. three orders of magnitude lower than the Mn density.

We first consider a Gaussian distribution for the
conduction-band electrons centered at the band edge,
and take an average Mn magnetization of S = 0.5.
The Mn magnetization can be simply tuned by apply-
ing an external magnetic field in the desired direction
and waiting for the Mn spin to reach its thermal equilib-
rium. Thus, we envision an experiment where the mag-
netic field is turned off before the pump laser pulse ar-
rives. Note that the Mn spin-lattice relaxation time is
of the order of 0.1µs42 which suffices to carry out the
ensuing optical excitation experiment studied here un-
der almost constant Mn magnetization. Figure 3 shows
the time evolution of the parallel, 〈sz〉(t), and perpen-
dicular, |〈s⊥〉(t)| = 2N−1e |

∑
k〈s⊥k 〉(t)|, mean spin com-

ponents. From now on we use only the realistic value
γD/~ = 13.3 ps−1nm3 for the Dresselhaus constant and
for concreteness we take the initial spin-polarization ro-
tated 45 degrees with respect to the z-axis. The specific
choice for this angle is not very relevant, but it is im-
portant to set it to a value different from zero in order
to have spin precession about the Mn field. Since the
Dresselhaus Hamiltonian is cubic in the wave vector, we
expect it to have a relatively weak effect, as compared
to the exchange coupling, on electrons populating low-
energy states around the band edge, and Fig. 3 confirms
this expectation. Indeed, we see that for the parallel spin
component the presence of the Dresselhaus coupling does
not modify the dynamics noticeably [the red-solid line
(sd+D) and the green dots (only sd) are superimposed].
For the perpendicular components there is a noticeable
difference, but the two curves are still qualitatively simi-
lar. We have checked that if the Mn concentration and/or
the Mn magnetization are increased the effect of the spin-
orbit coupling becomes rapidly negligible also for the per-
pendicular spin component. Roughly speaking, the ex-
change sd-coupling can be thought of as causing two main
effects: a spin precession about the mean Mn magnetiza-
tion and spin transfer between conduction-band and Mn
electrons. On the other hand, as seen above, the Dressel-
haus spin-orbit Hamiltonian, by providing a k-dependent
effective magnetic field, induces a global dephasing in the
electron population. The decay seen in both spin compo-
nents in Fig. 3 is thus a result of both exchange-induced
spin transfer and spin-orbit dephasing, but the former
dominates the dynamics for the chosen set of parame-

ters.
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FIG. 3. Influence of the Dresselhaus spin-orbit coupling (D)
on the spin dynamics in bulk Zn1−xMnxSe with exchange
sd-coupling (sd) for an initially Gaussian electron occupation
centered at the band edge with standard deviation ∆ =3 meV
and initial spin-polarization rotated 45 degrees with respect
to the z-axis. The Mn concentration is xMn = 0.3% and the
net Mn magnetization S = 0.5. Red solid lines correspond
to the full calculation (sd+D) and green dotted lines to the
calculation leaving out the Dresselhaus coupling (only sd).

This raises the question of whether a parameter regime
can be reached experimentally in which the dephasing
caused by the spin-orbit effective field has a consider-
able influence on or even dominates the spin dynamics.
As mentioned above, shifting the optical excitation away
from the band edge to higher k-values should enhance
the effect of the SOI on the spin dynamics. Further-
more, the influence of the exchange sd-coupling can be
reduced by lowering both the Mn concentration and/or
the average Mn magnetization. Thus, in Fig. 4 we show
the time evolution of the parallel and perpendicular spin
components like in Fig. 3, but centering the Gaussian oc-
cupation 10 meV above the band edge and reducing the
Mn magnetization to S = 0.1. The Mn doping is kept at
xMn = 0.3% as before, and for the conduction-band elec-
trons we choose again an initial spin orientation rotated
45 degrees away from the z-axis. In the parallel spin
component there is now a noticeable difference between
the full calculation (sd+D) (red solid line) and the sd-
only case (green long-dashed line). A qualitatively new
feature is that the combination of sd- and Dresselhaus
couplings now produces not only a decay but also oscil-
lations, revealing a combined spin precession. In the per-
pendicular component the spin-orbit coupling has now an
enormous effect, greatly accelerating the decay and caus-
ing superimposed oscillations. The oscillations seen in
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Fig. 4 have a frequency close to the precession frequency
associated with the mean Mn magnetic field (ωM = ωMẑ),
ωM = 0.124 Thz (period TM = 50.7 ps). We come back to
this issue after discussing the mean-field approximation
which we now introduce.
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FIG. 4. Influence of the Dresselhaus spin-orbit coupling (D)
on the spin dynamics in bulk Zn1−xMnxSe with exchange
sd-coupling (sd) for an initially Gaussian electron occupation
centered at EC =10 meV above the band edge with standard
deviation ∆ =3 meV and initial spin-polarization rotated 45
degrees with respect to the z-axis. The Mn concentration is
xMn = 0.3% and the net Mn magnetization S = 0.1. Red solid
lines: full calculation with sd+D; green long-dashed lines:
only sd; blue short-dashed: only D; pink dotted lines: mean-
field approximation with sd+D.

It is interesting to elucidate whether a similar spin
dynamics would also be obtained in a simpler scenario
combining the Dresselhaus SOI with a constant magnetic
field of appropriate strength. (This type of problem has
been studied recently from the point of view of impurity
entanglement43 and spin relaxation44.) We can readily
answer this question by intentionally leaving the corre-
lation terms out of the equations of motion [keeping in
the RHS of Eq. (9) only the first term of the second
line] thus reverting to a mean-field approximation, which
for a given Mn magnetization is equivalent to adding a
constant magnetic field. The result is given by the pink
dotted lines in Fig. 4. For the perpendicular component
we see that the mean-field calculation resembles the full
one, although there is a clearly distinguishable difference
between them. On the other hand, both results are far
away from the sd-only result, and we have to conclude

that in this sense the mean-field approximation does cap-
ture an important part of the interplay between the ex-
change and spin-orbit couplings. For the parallel compo-
nent the mean-field approximation radically modifies the
dynamics. We see here that when the sd correlations are
removed the spin-orbit dephasing is not capable by itself
of inducing a decay in the presence of the spin precession
about the Mn magnetization. In other words, the longi-
tudinal component does not decay since its Dresselhaus
dephasing is in a sense prevented by the ’naked’ (without
exchange-induced correlations) precession about the Mn
magnetization. To confirm this point we show in Fig.
4 the spin dynamics with only the Dresselhaus SOI (no
sd-coupling) with blue dotted lines. These curves show
the strong decay induced by spin-orbit dephasing in the
absence of both the spin precession and the spin transfer
caused by the exchange coupling.

The origin and frequency of the oscillations mentioned
above, which appear when both interactions are present,
and in both the full and mean-field calculations, can be
interpreted with the help of Eq. (17). For a given k-
state the precession frequency is now Ω ≡ Ωk + ωMz. In
the limit ωM � Ωk we can assume that Ωz ≈ Ω ≈ ωM,
and using Eqs. (15) and (17) we obtain 〈sz〉(t) = 〈sz〉(0).
This argument applies to every k-state and thus can be
extended to the whole electron population. Then, the
precession about the spin-orbit effective magnetic field
of the longitudinal component is suppressed by the dom-
inant precession about the Mn magnetic field, a feature
that can be seen clearly in the mean-field result of Fig.
4. If the spin-orbit angular frequency is not completely
neglected we obtain oscillations in the parallel compo-
nent with frequency |Ωk +ωM| and small amplitude pro-
portional to 1 − (Ωk,z + ωM)2/|Ωk + ωM|2, as seen in
Fig. 4. We have verified that increasing the Dresselhaus
coupling increases the amplitude of the oscillations (not
shown here). Oscillations of the same frequency are also
present in the perpendicular spin component.

IV. HG1−x−yMNxCDyTE QUANTUM WELLS

We now turn to the study of the influence of the spin-
orbit coupling in II-VI semiconductor quantum wells. In
this case the SOI that we consider is the Rashba coupling
(R), which is present when the quantum-well confinement
lacks inversion symmetry. As explained in the Introduc-
tion, the role of the spin-orbit coupling is conceptually
similar in bulk and in quantum wells, since in both cases
it can be thought of as a k-dependent Zeeman Hamilto-
nian which induces global dephasing in an electron gas.
However, quantum wells offer greater flexibility to con-
trol the SOI and also display high electron mobilities in
high quality modulation-doped samples. High mobilities
amount to longer momentum-scattering times and there-
fore to more coherent quantum dynamics.

In line with the bulk studies discussed above, we first
tested the spin dynamics in Zn1−xMnxSe quantum wells.
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For realistic parameters for this material, it turned out
that the Rashba coupling was too weak to modify the
dynamics driven by the exchange sd-coupling. The root
of this difficulty seems to be the large bandgap (about
2.8 eV) of ZnSe, which results in a small Rashba cou-
pling constant. Thus for the quantum well calculations
we looked for a family of materials with stronger and
more controllable Rashba interaction. Hg1−xMnxTe is a
good candidate since the energy gap Eg of this ternary
compound depends strongly on the Mn concentration,45

going to zero at x ≤ 6.5%, while its spin-orbit valence-
band splitting ∆ is insensitive to it.46 This interesting
combination leads to flexible spin-orbit properties, which
are generally controlled by the ratio ∆/Eg. By choos-
ing a Mn concentration slightly above 6.5% we can select
a very low energy gap, which leads in turn to a strong
Rashba coupling.47 However, this lower limit for the Mn
concentration is still too high and leads again to a com-
pletely dominant exchange interaction even for as low
a Mn magnetization of S = 0.01 (with sd-coupling in-
duced spin relaxation times below 5 ps). This drawback
can be overcome by considering instead the compound
Hg1−x−yMnxCdyTe in which the non-magnetic Cd atoms
replace some of the Mn dopants. This change maintains
the gap tunability via the doping fraction x+y giving full
flexibility regarding the concentration of magnetic ions.46

The Rashba coupling constant can be calculated with the
expression16,47

αR =
~2

2m∗
∆

Eg

2Eg + ∆

(Eg + ∆)(3Eg + 2∆)

Vqw
d

. (18)

We work with the effective mass of HgTe, m∗ =
0.093m0,40 and take the spin-orbit valence-band split-
ting as ∆ = 1.08 eV.48 Assuming Eg = 300 meV, a

quantum-well width d = 200 Å, and a potential en-
ergy drop of Vqw = 50 meV across the quantum well,
we obtain αR = 4.87 meV nm (αR/~ = 7.4 ps−1nm).
Note that for ZnSe one obtains αR = 0.015 meV nm
(αR/~ = 0.023 ps−1nm), a very low value which leads
to negligible spin-orbit effects, as mentioned before. For
the exchange sd-coupling constant of HgMnTe we take
N0α = 400 meV,49 and the lattice constant of 0.645 nm
leads to Jsd = 26.8 meV nm3. We keep the previous Mn
concentration of x = 0.3%.

In Fig. 5 we show the time evolution of the parallel and
perpendicular spin components for quantum wells, where
now the parallel component corresponds to the growth
direction of the quantum well (z-axis). The Gaussian
occupation is centered 10 meV above the band edge and
we consider a Mn magnetization of S = 0.1. The initial
spin orientation is rotated 45 degrees away from the z-
axis.

Figure 5 shows that while the sd-only curve (green
long-dashed line) follows the usual exponential decay,
the full dynamics with sd+R displays clear oscillations in
both components. We have verified that the amplitude of
these oscillations increases with increasing Rashba coef-
ficient, which in turn is obtained by lowering the energy
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FIG. 5. Influence of the Rashba spin-orbit coupling (R) on
the spin dynamics in a Hg1−x−yMnxCdyTe quantum well with
exchange sd-coupling (sd) for an initially Gaussian electron
occupation centered 10 meV above the band edge with stan-
dard deviation of 3 meV and initial spin-polarization rotated
45 degrees with respect to the z-axis. The Mn concentra-
tion is xMn = 0.3% and the net Mn magnetization S = 0.1.
Red solid lines: full calculation with sd+R; green long-dashed
lines: only sd; blue short-dashed lines: only R; pink dotted
lines: mean-field approximation with sd+R.

gap. The pink-dotted-lines in Fig. 5 show the mean-
field approximation results with both sd+R. Here the
decay seen in the perpendicular component is due to
the Rashba-induced dephasing since exchange correla-
tions are absent. The parallel component maintains an
approximately constant mean value in agreement with
the analysis done in the previous Section, and shows a
slight decrease of the oscillation amplitude due to the
dephasing induced by the Rashba SOI. We verified that
this amplitude reduction is accelerated by increasing the
Rashba coupling constant. The blue-short-dashed lines
show the evolution of the spin with only the Rashba in-
teraction present (no sd). Here we see the full-fledged
oscillations that had been anticipated in the discussion
of Fig. 2. These oscillations are the collective result
of the individual spin precessions about the effective k-
dependent Rashba magnetic field. To the best of our
knowledge, an analytical expression or a simple interpre-
tation for the frequency of these oscillations is not cur-
rently available. This frequency depends on many factors
such as the Rashba coefficient, the electron density, and
the electronic distribution (which in our simulations is
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determined by the mean value and the standard devia-
tion of the initial Gaussian population). We have checked
numerically that there is a roughly linear dependence of
this frequency on the Rashba coefficient for an excitation
10 meV above the band edge.

It is unexpected and noteworthy that, in the quantum-
well case, the addition of the spin-orbit interaction to the
DMS produces strong oscillations while at the same time
leaves fairly unchanged the decay rate for our parameters,
as can be seen in Fig. 5 (“only sd” versus “sd+R” curves).
Finally, we point out that the main qualitative difference
between the results shown in Fig. 4 for bulk and Fig. 5
for a quantum well is that, for the perpendicular spin
component in the quantum well, the sd-only curve stays
near the full result and the MF curve moves strongly
away, while the opposite behavior occurs in bulk.

V. CONCLUSION

We studied theoretically the combined effects of the
exchange sd-coupling and the spin-orbit interaction in
II-VI diluted magnetic semiconductors (DMS), both in
bulk and in quantum wells. Although our results can
be considered generally valid in zincblende semiconduc-
tor systems, we focused on particular materials that
show clearly the interplay between the two mechanisms:
Zn1−xMnxSe for bulk and Hg1−x−yMnxCdyTe for quan-
tum wells. In our calculations we employed a recently
developed formalism which incorporates electronic corre-
lations originated from the exchange sd-coupling. The
main conclusion of our study is that for both bulk and
quasi-two-dimensional systems there can be a strong in-
terplay or competition between the two types of inter-
actions, leading to experimentally detectable signatures
(for example in time-resolved Faraday and Kerr rota-
tion experiments) of the spin-orbit interaction in DMS.
In bulk we find that the spin components parallel and
perpendicular to the net Mn magnetization have rather
different responses to the presence of the spin-orbit (Dres-
selhaus) interaction, the latter being much more affected

by it. Indeed, coherent oscillations—with a frequency
reflecting the precession around a combination of the
Mn magnetization and the Dresselhaus field—develop
as a consequence of the interplay between the two in-
teractions, which are completely absent when the ex-
change interaction dominates. In addition, the decay
rate is greatly enhanced for the perpendicular compo-
nent by the presence of the Dresselhaus interaction in
the studied regime. Regarding quantum wells, we find
that the exchange interaction tends to be more dominant
over the spin-orbit interaction (Rashba coupling in this
case), which led us to consider a family of materials with
large valence-band-splitting spin-orbit constant and tun-
able energy gap. For these DMS materials we obtained
again a strong effect of the spin-orbit interaction, mani-
festing itself in the occurence of oscillations which are not
seen when the exchange interaction acts alone. Remark-
ably, even though the combination of exchange and spin-
orbit interaction leads to clearly visible oscillations, the
decay of the spin polarization is practically unaffected by
the presence of the Rashba interaction. These signatures
should be detectable experimentally in pump-and-probe
experiments. Finally, for both bulk and quantum wells
we find that in the mean-field approximation treatment of
the exchange interaction there is a strong suppression of
the spin-orbit-induced dephasing of the spin component
parallel to the Mn magnetic field. The studied interplay
between the spin-orbit interaction and the exchange cou-
pling could improve spin control and thereby facilitate
potential spintronic applications of DMS.
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