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Abstract: Bisphenol A, diglycidyl ether (BADGE) is used in packaging materials, epoxy adhesives, 

additive for plastics but is also a potential industrial wastewater contaminant. The aim of this study was 

to evaluate the adverse effects of BADGE on Rhinella arenarum, by means of standardized bioassays 

at embryo-larval development. The results showed that BADGE was more toxic to embryos than to 

larvae at all exposure times. At acute exposure, lethality rates of embryos exposed to concentrations 

from 0.0005 mg/L BADGE were significantly higher than vehicle control, whereas lethality rates of 

larvae were significantly higher from 10 mg/L BADGE. Then, the toxicity increased significantly, with 

a LC50-96 h of 0.13 and 6.9 mg/L BADGE for embryos and larvae respectively. By the end of the 

chronic period the LC50-336 h were 0.04 and 2.2 mg/L BADGE for embryos and larvae respectively. 

This differential sensitivity was also ascertained by the 24-h pulse exposure experiments, in which 

embryos showed a stage-dependent toxicity, being blastula the most sensitive stage and S.23 the most 

resistant one. The most important sublethal effects in embryos were cell dissociation and delayed 

development, whereas the main abnormalities observed in larvae were related to neurotoxicity, as scare 

response to stimuli and narcotic effect. This article is protected by copyright. All rights reserved 

 

Keywords: Bisphenol A diglycidyl ether, Standardized toxicity bioassays, Stage-dependent toxicity, 

Teratogenesis, Neurotoxicity 
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INTRODUCTION 

Bisphenol A diglycidyl ether (2, 20-bis (4-hydroxyphenyl) propane bis (2, 3-epoxypropyl) 

ether, commonly known as BADGE (CAS No. 1675-54-3), is a synthetic chemical obtained by the 

reaction of one mole of bisphenol A (BPA) with two moles of epichlorohydrin (ECH) [1]. BADGE is 

mainly used in packaging materials such as storage vessels and lacquer coatings on food cans, to 

protect the food from metal contamination and to prevent metal corrosion. Levels of bisphenols and 

their diglycidyl ethers as BADGE were reported in wastewater influents at concentrations from 

0.00096 to 0.0016 mg/L [2]. The total annual production of bisphenol A based epoxy resins grows 

annually implying a concern for public health owing to impurities present in faulty formulations that 

can migrate into canned food, representing a toxicity risk [1]. In fact, BADGE and its derivatives were 

found in concentrations between 1 mg/kg and 12.5 mg/kg in many canned foods [3,4,5]. It is also a 

concern that BPA was reported as an endocrine disruptor by reversing gonadal sex and altering gonadal 

histoarchitecture [6, 7]. However, the estrogenic activity of BADGE is 100 times lower than BPA [8].  

Nevertheless, BADGE can increase the proliferation of MCF7 breast cancer cells [9]. Due to 

this, the European Legislation has established that the sum of the migration levels of BADGE, its 

hydrolysis and chlorohydroxy derivatives to food or food simulants should not exceed 9 mg/kg [10]. 

The Shell Tunstall Toxicology Laboratories [11] reported an increase in the frequency of chromosomal 

aberrations of in vitro rat liver cells exposed to BADGE. In 1986, the Scientific Committee on Food 

(SCF) from the EU evaluated BADGE as a monomer used in the production of plastic food contact 

materials and it was classified into List 4A [12]. Then, in 2000 it was reported that BADGE and its 

hydrolysis products can induce micronuclei in cultured human lymphocytes from 0.0125 mg/mL [13].  

 Because of BADGE´s different uses and its high production worldwide, it is relevant to know 

the risk to the wildlife after epoxy resins reach the environment. Toxicological bioassays can provide 
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information about the potential hazards of synthetic products in living organisms. Amphibians are 

frequently being used for toxicity screening purposes due to their high sensitivity to physico-chemical 

stressors [14]. Moreover, standardized tests employing amphibian embryos are successfully used to 

evaluate the toxicity of hazardous substances and environmental samples [15]. In contrast to bioassays 

that only evaluate acute toxicity of chemicals by a unique endpoint, such as 48 or 96 hours median 

lethal concentration (LC50), AMPHITOX assesses toxicity by using different endpoints (exposure 

times and developmental stages), giving more complete information about the toxicity profile of the 

substance. This test employs Rhinella arenarum (Fam. Bufonidae) embryos and larvae as the 

appropriate biological material to perform toxicity tests [16,17]. Besides its extensive neotropical 

distribution, which includes Argentina, Bolivia, Brazil, Uruguay, and Paraguay, this species is easy to 

handle, produces large clutches (up to 40,000 eggs) and has a short life cycle, reaching the 

prometamorphic stage in about 7–8 days after egg laying [15]. 

The aim of this study was to evaluate the toxic effects of BADGE on Rhinella arenarum 

development by means of the standardized AMPHITOX test at different developmental stages and 

exposure times by characterizing lethal and sublethal effects involving teratogenesis and ethological 

disorders.   

MATERIALS AND METHODS 

Obtaining Rhinella arenarum embryos and larvae 

 Healthy Rhinella arenarum adults weighing approximately 200-250 g were collected in Lobos 

(Buenos Aires Province, Argentina: 35º 11´ S; 59º 05´ W) from a local provider. Ovulation of R. 

arenarum females was induced by means of an intraperitoneal injection of one homologous hypophysis 

in 1 mL of AMPHITOX solution (AS) per female [18], plus 5000 IU human chorionic gonadotropin 

[19]. The AS composition was (in mg/L): Na
+
14.75, Cl

-
 22.71, K

+
  0.26, Ca

2+
 0.36, HCO3

-
 1.45, 

prepared in distilled water. Oocytes were fertilized in vitro using a testicular macerate homogenate 
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suspended in AMPHITOX solution, resulting in a 10% spermatozoid suspension. Embryos were kept 

in this physiological solution at 20±2°C until they reached the stage required for each experimental 

protocol. For early life stage studies, (embryos up till S.17) the jelly coat was dissolved by a 2-min 

treatment with 2.5% thioglycolic acid solution neutralized at pH 7.2-7.4 with 1.35 mL of saturated 

NaOH solution every 100 mL in AS, and then thoroughly washed with AS. Although the jelly coats 

can provide protection against toxics [20] in some cases it is not relevant for protection purposes [21]. 

In our study, we dejellied the embryos to select a homogeneous, high-quality biological material (round 

shape embryos with non-cellular dissociation) both for control and experimental groups. The eggs were 

inspected for quality and fertility. This biological material was considered acceptable if the fertility rate 

was greater than 75% per female, and embryo survival at the neurula stage was greater than 70%. 

Chemicals and test solutions 

 Technical-grade BADGE (99.9%, CAS No 1675-54-3) was obtained from Sigma Chemical Co. 

Stock solutions were prepared in analytical grade acetone to a final concentration of 10 g/L, and 

experimental solutions were prepared by diluting it with AS. Acetone concentrations were always 

lower than 1.1% [22]. Both AS and acetone treatments, were simultaneously maintained as controls 

and they did not differ statistically so both treatments were combined and reported as the ‘control’ in 

the rest of the manuscript.  

Toxicity bioassays  

 Rhinella arenarum embryos and larvae were used in the standardized semi-static bioassays 

following the AMPHITOX protocol [16,17]. Ten embryos were randomly placed  in triplicate 10 cm 

glass Petri dishes containing 40 mL of AS with or without BADGE (controls). The toxicity bioassays 

were performed under the conditions summarized in Table 1. Embryos and larvae were maintained at 

20±2ºC. Experiments were replicated three times. 
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In order to evaluate the stage-dependent sensitivity, different experimental conditions were performed 

as follow: i) continuous exposure of embryos from early blastula stage (S.3-4) and larvae from 

complete operculum stage (S.25) onwards for 336 h; ii) 24-h pulse exposure of embryos starting at: 

early blastula (S.3-S.4), gastrula (S.10-12), rotation (S.15), tail bud (S.17), muscular activity (S.18), gill 

circulation (S.20), open mouth (S.21), opercular folds (S.23) and complete operculum (S.25) stages. 

After exposure, embryos were thoroughly washed, kept in AS and evaluated up to 336 h. The 

developmental stages were defined according to Del Conte and Sirlin [23]. 

Lethal effects were evaluated and dead individuals were removed every 24 h. Larvae were fed 

with 3 granules of balanced fish food TetraColor® per Petri dish every other day. Sublethal effects 

were studied under a stereoscopic microscope (Zeiss Stemi DV4),. Teratogenic effects were identified 

according to the “Atlas of Abnormalities” [24] and organisms were photographed with an Olympus X-

42 digital camera mounted on the microscope objective. A teratogenic index (TI) was calculated as 

LC50/EC50 at 96 h in embryos exposed from blastula. This index reflects the hazard of a test agent to 

produce malformations during embryonic development without significant lethality [22]. Behavioral 

alterations including narcosis, spasmodic contractions, abnormal fast rotations, lateral or dorsal side 

lying, abnormal breathing, feeding and swimming patterns were evaluated as they are typical signs of 

neurotoxic stress [25]. General weakness was defined as lower and slower movements than control 

larvae, Narcosis was particularly evaluated as the lack of sudden swimming response to gentle touching 

with a glass rod compared with control organisms, and finally heartbeat was checked under the 

microscope. Starvation was determined by observing the  granules after 24 hours, while in  control 

larvae, we found the feces instead. Abnormal skin pigmentation was defined as irregular distribution of 

somatic pigmentation compared with normal pigmentation found in the control organism's skin. 

Cellular dissociation was determined by observing detached cells floating in the perivitelline fluid as 

well as in the maintaining media. Delayed development was determined when the developmental stage 
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of each embryo was different from the control in each concentration group. Larvae snout-vent lengths 

were recorded as a measure of the body size.  

 

Data analysis 

 Lethal and sublethal effects were analyzed as LC50 and EC50 respectively with their upper and 

lower 95% confidence limits, by the US EPA Spearman-Karber program version 1.5 [26]. Toxicity 

profile (TOP), or isotoxicity curves [27] were plotted based on LC50 values at different times. The 

LC50 were considered to be substantially different when the higher/lower ratio exceeded the 

corresponding critical value established by the American Public Health Association et al. [28]. We 

conducted generalized linear mixed models (GLMMs) assuming a binomial distribution of the error to 

evaluate the effect of concentration and exposure time on lethality and on the frequency of sublethal 

endpoints. Di Rienzo, Guzmán and Casanoves (DGC) test [29] was used to compare treatment means 

at a significance level of p<0.05. This analysis was conducted using InfoStat statistical software [30]. 

LOAEL (lowest observed adverse effect level) values were determined by the lowest concentration that 

has a statistically significant deleterious effect compared with the control group. 

RESULTS 

Lethal effects 

Continuous exposure of embryos from early blastula stage (S.3-4) and larvae from complete 

operculum stage (S.25) onwards for 336 hours. Following BADGE treatment lethality rates of embryos 

and larvae gradually increased with the concentration and the exposure time (Table 2). Lethality rates 

of embryos exposed from 0.0005 mg/L BADGE and larvae exposed from 10 mg/L were significantly 

higher than vehicle control from 96 h onward.  At 2.5 mg/L BADGE, larvae lethality was significantly 

increased compared with vehicle control at 168 h onward. BADGE toxicity was substantially higher in 

embryos than larvae at all exposure times (Table 2). The toxicity of BADGE in embryos exposed from 
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blastula stage increased considerably from 24 to 48 h with LC50 values of 0.35 (0.25-0.5) and 0.15 

(0.09-0.23) mg/L BADGE respectively (Fig. 1). However from that time forward, toxicity did not 

substantially increase with LC50-336 h of 0.04 (0.02-0.08) mg/L BADGE. In contrast, the toxicity of 

BADGE to larvae did not vary considerably during acute exposure, with the LC50 values at 24 and 48 

h of 11.3 (11.1-12.5) and 10.90 (10.70-11.10) mg/L BADGE respectively. The LC50-96 h decreased 

from 6.9 (6.6-7.1) mg/L BADGE to 2.2 (2.1-2.4) mg/L BADGE at the end of the chronic exposure. 

24-hour pulse exposure. No embryos were affected after being exposed to the lowest 

concentrations: 0.0001 to 0.001 mg/L. The toxicity profile obtained shows a clearly stage-dependent 

sensitivity to the epoxy resin with early blastula (S.3-4) the most sensitive stage, with a LC50-24 h of 

0.58 mg/L BADGE, and S.23 the most resistant one, with a LC50-24 h of 14.9 mg/L BADGE (Fig. 2). 

The remaining developmental stages had LC50s between 8 and 11.9 mg/L BADGE. 

Sublethal effects 

Continuous exposure of embryos from early blastula stage (S.3-4) and larvae from complete 

operculum stage (S.25) for 336 hours. All embryos exposed at 0.5 mg/L BADGE (LOAEL value) and 

above showed at 24 h cell dissociation and delayed development (exposed embryos were in early 

gastrula stage, while controls were in late gastrula or rotation stage). At 96 h the LOAEL remained 

constant but other sublethal effects as reduced body size, hydropsy, acephaly and axial flexure were 

also observed (Table 3a). The EC50-96 h was 0.17, so the teratogenic index was 0.76. At chronic 

exposure the LOAEL dropped to 0.1 mg/L BADGE, and behavioural alterations such as starvation, 

scare response to stimuli and spasmodic contractions were recorded. 

All early larvae exposed from 10 mg/L BADGE exhibited neurological alterations few hours 

after exposure started. These effects were general weakness, spasmodic contractions and shortening, 

erratic or circular swimming. Moreover, all larvae exposed up to 15 mg/L BADGE developed narcosis 

after few hours of exposure followed by death. At 168h all larvae exposed to 5 mg/L showed 
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starvation, abnormal skin pigmentation, scare response to stimuli and tail/axial flexures and then death, 

whereas those exposed to the lowest concentration (1 mg/L) developed hydropsy and abnormal skin 

pigmentation but no neurotoxic effects (Table 3b). By the end of the bioassay the LOAEL was 1 mg/L 

BADGE.  

24-hour pulse exposure. Table 4 summarizes the LOAEL values and the most conspicuous 

teratogenic and neurotoxic effects caused by BADGE in embryos exposed at different developmental 

stages. Blastula was the most sensitive stage to BADGE, whereas S.23 was the most resistant (LOAEL 

= 0.1 and 10 mg/L respectively). The rate of malformations in control embryos was always less than 

10% during all the bioassay. 

Abnormal embryos treated in blastula exhibited several teratogenic effects such as bifid spine, 

oral desquamation, tumors, delayed development, microcephaly, acephaly and axial flexures even at 

BADGE post-exposure (Table 4, Fig. 4).  

All embryos exposed in gastrula developed malformations and delayed on their development 24 

h after being washed from 1 mg/L onwards, highlighting cellular dissociation , and as well as persistent 

yolk plug, but only in 30% of the individuals. 

The main sublethal effects observed in embryos exposed in rotation stage were microcephaly, 

hydropsy, axial flexures and reduced body size, with a LOAEL of 1 mg/L BADGE at 24 h. Those 

effects were also conspicuous in those embryos exposed in S.18 from 5 mg/L. These embryos also 

developed tail flexures. 

Embryos at stages between S.20 and S.25 developed neurotoxic effects such as narcosis few 

hours after the beginning of exposure. This narcotic effect was irreversible for those embryos exposed 

at 7.5 mg/L BADGE in S.20 and S.21 and were dead after a few hours. On the other hand, the LOAEL 

values at 24 h for embryos at S.23 and S.25 were 10 mg/L, but at 336 h these values increased upward 

to 17.5 mg/L and 15 mg/L respectively. This fact points out the recovery capacity from malformations 
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as well as from neurotoxic effects caused by BADGE, because larvae exposed to 10 mg/L BADGE at 

336 h did not show any sublethal effect and were not significant different from control. By the end of 

the bioassay only larvae exposed at S.25 showed reduced body size in 20% of the individuals. No 

control larvae showed neurotoxicity at 336 hours.  

DISCUSSION 

 The present results provide the first description of the lethal and sublethal effects of BADGE 

epoxy resin on the early life cycle of an amphibian species, Rhinella arenarum. In continuous exposure 

bioassays, the beginning of the early development (blastula) was the most sensitive stage to the resin 

with toxicity being highest during the acute period. At chronic period (336 h), only embryos exposed to 

BADGE in concentrations lower than 0.5 mg/L survived, but developed morphological alterations. On 

the other hand, the toxicity profile of BADGE in larvae was time-dependent with LC50 values that 

decreased five times from acute to chronic exposure period. Our findings suggest there may be an 

increased susceptibility as the central nervous system matures rather than a bioaccumulation because it 

is known that BADGE is metabolized to non-toxic substances [31]. The low potency of BADGE to 

cause teratogenicity in larvae is coincident with the slowing rate of morphogenetic changes toward the 

latter developmental stages associated with the higher teratogenic index for embryos than the one in 

larvae. It is well established that a TI higher than 1.5 implies a high risk for embryos to be malformed 

in absence of significant lethality [22]. In our study, embryo lethality occurred above 0.0005 mg/L 

BADGE exposure, concentrations lower than the reported values in wastewater influents (0.00096-

0.0016 mg/L) [2].  

 Even though the 24-hour pulse exposure concentrations were relatively high, this experimental 

design allowed us to simulate environmental emergency conditions such as accidental spills. This 

information has important value in risk assessment analysis of industrial contaminants such as 

BADGE. Our experimental design also allows associating certain effects with characteristic 
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morphogenetic events of the development. According to our findings, early blastula was the most 

susceptible stage whereas S.23 was at least 25 times more resistant. Moreover, the highest incidence of 

malformations was at the beginning of the development, particularly blastula and gastrula stages. In 

this last stage, just 24 h post-exposure sublethal effects as yolk plug persistence were observed in 

embryos exposed to the highest concentrations. It is known that epoxy resins induce cytotoxic action, 

specifically in those tissues with high cellular division rates [32]. Also, Steiner et al. [33] reported that 

glycidaldehyde, a BADGE metabolite, binds to adenine nucleotides. Therefore, all early developmental 

adverse effects might be related to the capacity of BADGE to alter DNA. This has also been identified 

in yeast, rat and in vitro human studies, and even in human workers [13,31,32,34].  

It is noteworthy that morphological abnormalities also affected the swimming ability of larvae, 

which is likely to interfere with their general performance in the natural environment. These 

observations confirm the importance of reporting not only lethality but also developmental disorders, 

which make organisms more vulnerable to predation or other environmental stressors such as infectious 

agents, invasive species, and changes in physical and chemical parameters of the environment, 

influencing the physical condition of animals or their reproductive success [35].  

There is only one previous study on the neurotoxic effects of BADGE but in rodents [36] in which it 

was demonstrated that exposed organisms significantly reduced water and food consumption. In 

present study, embryos exposed to BADGE from S.20 expressed behavioral alterations such narcosis, 

just a few hours after the beginning of treatment. It is noteworthy that these behavioral markers have 

relevance as early warning systems when other toxicity parameters such as lethality are absent.  

 Narcosis is an interesting effect with potential ecotoxicological consequences that might be 

brought about by numerous structurally unrelated chemicals in relation to their high octanol/water 

partition coefficients [37]. Bisphenol A and epichlorohydrin, chemicals used to synthesize the BADGE 

epoxy resin, can also cause induced narcosis on R. arenarum larvae [38,39]. 
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 Developmental effects of BADGE were only previously described in rats receiving oral doses 

[40]. Hence, the results obtained in this study provide real, valuable ecotoxicological information about 

its toxicity as well as details of the main malformations and behavioral alterations of this epoxy resin in 

non-mammal species. 

The increase of industrial wastes is just one of the many factors that can contribute in the 

decline of many amphibian populations [41], Industrial wastewaters containing BADGE, as well as its 

migration substances and metabolites, represent potential sources of aquatic contamination, which may 

disrupt populations of this native amphibian.  
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Figure 1. BADGE Toxicity Profile (TOP) curves based on LC50 and their confidence limits for R. 

arenarum embryos (S.3-4) and larvae (S.25) continuously exposed for 336 h. Note that S.25 was 

significantly more resistant than S.3-4 during the whole bioassay (P<0.05). 

Figure 2. BADGE Stage-dependent sensitivity assessed by 24-h pulse exposure of R. arenarum. 

Different letters indicate significant differences among stages (P<0.05). 

Figure 3. Stereoscopic Microscopy of larvae continuously exposed to BADGE from S.25. (a) Control 

larvae. (b) Larvae exposed to 5 mg/L BADGE at 48 h. (c) Larva exposed to 5 mg/L BADGE at 168 h. 

Scale bar 1 mm. af: axial flexure; asp: abnormal skin pigmentation; cd: cellular dissociation; ud: 

underdeveloped caudal fin.  

Figure 4. Stereoscopic Microscopy of 24-h pulse exposed R. arenarum embryos to BADGE at different 

developmental stages: (a) Control embryo in S.25; (b) S.17 (1 mg/L) at 120 h; (c) S.17 (2.5 mg/L) at 

120 h.;(d) S.17 (5 mg/L) at 168 h; (e) S.18 (5 mg/L) at 96 h; (f) S.18 (5 mg/L) at 96 h; (g) S.21 (15 

mg/L) at 24 hs; (h) S.23 (5 mg/L) at 24 h. Scale bar 1 mm. 

a: acephaly; af: axial flexure; m: microcephaly; h: hidropsy; lgc: lack of gut coiling; od: oral 

desquamation, ssi: skin surface irregularities; t: tumors,  ucf: underdeveloped caudal fin. 
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Table 1. Conditions of BADGE bioassays 

Developmental 
stage 

Treatment 
Exposure concentrations  

(mg/L BADGE) 

Blastula (S.3-S.4) 
Continuous exposure 

0.0001, 0.0005, 0.001, 0.005, 
0.01, 0.05, 0.1, 0.5, 1, 5 

Complete Operculum 
(S.25) 

1, 5, 7.5, 10, 12.5, 15 

Blastula (S.3-S.4) 

24-h pulse exposure 

0.0001 - 10 

Gastrula (S.10-S.12) 
0.5 - 10 

Rotation (S.15) 
1 - 15 

Tail Bud (S.17) 
1 - 15 

Muscular Activity   
(S.18) 

0.1 - 15 

Gill Circulation (S.20)         
0.5 - 15 

Open Mouth (S.21) 
0.5 - 15 

Opercular Folds       
(S.23) 

5 - 17.5 

Complete Operculum 
(S.25) 

10 - 25 
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Table 2. Mortality rates (%) of R. arenarum embryos and larvae continuously exposed to BADGE. 

Data represent the percentage of mortality (mean ± SEM), n = 3. *Significantly different from vehicle 

control by DGC test (p<0.05). 

Developmental stage 
Concentration 

(mg/L BADGE) 

Exposure time (h) 

96 168 336 

Embryos (S.3-4) 

0 3.33  3.33 6.67  6.67 6.67  6.67 

0.0001 3.33  3.33 3.33  3.33 13.33  3.33 

0.0005 23.33  8.82* 26.67  6.67* 30.00  5.77* 

0.001 23.33  8.82* 23.33  8.82* 30.00  10.00* 

0.005 20.00  10* 23.33  8.82* 30.00  5.77* 

0.01 16.67  6.67* 16.67  6.67* 26.67  3.33* 

0.05 16.67  6.67* 16.67  6.67* 30.00  0.00* 

0.10 30.00  10.00* 36.67  6.67* 43.33  8.82* 

0.50 26.67  3.33* 26.67  3.33* 83.33  12.02* 

1.00 100.00  0.00* 100.00  0.00* 100.00  0.00* 

5.00 100.00  0.00* 100.00  0.00* 100.00  0.00* 

Larvae (S.25) 

0 0.00  0.00 0 .00  0.00 0.00   0.00 

1.00 0.00  0.00 3.33  3.33 3.33  3.33  

2.50 3.33  3.33 10.00  10.00* 10.00  10.00* 

5.00 0.00  0.00 93.33  6.67* 100.00  0.00* 

7.50 0.00  0.00 100.00  0.00* 100.00  0.00* 

10.00 100.00  0.00* 100.00  0.00* 100.00  0.00* 

12.20 100.00  0.00* 100.00  0.00* 100.00  0.00* 

15.00 100.00  0.00* 100.00  0.00* 100.00  0.00* 
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Table 3. Frequency (%) of embryos (a) and larvae (b) with sublethal effects after 96 h and 168 h 

BADGE treatment respectively. Data represent the percentage of sublethal effects (mean ± SEM), n = 

3. *Significantly different from vehicle control by DGC test (p<0.05).  

a) 

Sublethal effects 
Concentration (mg/L BADGE) 

0 0.0005 0.001 0.005 0.05 0.10 0.50 

Acephaly - 4.3  4.3 3.8  3.8 4.2  4.2 - - - 

Reduced body size - - - - - - 100.0  0.0* 

Hydropsy - - - 4.2  4.2 8.0  3.7 10.0  4.2 100.0  0.0* 

Axial flexures 6.9  3.5 8.7  4.9 7.7  3.9 - - - - 

Total abnormal embryos (%) 6.9  3.5 8.7  4.9 7.7  3.9 8.3  4.9 8.0  3.7 10.0  4.2 100.0  0.0* 

 

b) 

 

Sublethal effects 
Concentration (mg/L BADGE) 

0 1 5 

Hydropsy 14.3  5.0 51.8  5.3* - 

Abnormal skin pigmentation - 51.8  5.3* 100.0  0.0* 

Tail/axial flexure - - 100.0  0.0* 

Scare response to stimuli - - 100.0  0.0* 

Starvation - - 100.0  0.0* 

Total abnormal larvae (%) 14.3  5.0 51.8  5.3* 100.0  0.0* 
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Table 4. LOAEL values and most common sublethal effects produced by BADGE at different 

developmental stages of Rhinella arenarum. 

Developmental 
stage 

Observation 
time (h) 

Sublethal effects 
LOAEL      

(mg/L BADGE) 

Blastula    
(S.3-S.4) 

24 

Bifid spine                       
Oral desquamation     
Tumors 
Microcephaly/acephaly 
Delayed development     
Axial flexures 

0.1 

96-168 

Tumors 
Microcephaly/acephaly  
Axial flexures                   
Reduced body size 
Scare response to stimuli 

0.1 

336 
Reduced body size  
Scare response to stimuli 

0.1 

Gastrula  
(S.10-S.12) 

24 

Delayed development 
Persistent yolk plug         
Cellular dissociation             
Bifid spine                 
Tumors 
Microcephaly/acephaly 
Reduced body size 

1 

96-168 

Cellular dissociation       
Hydropsy 
Microcephaly/acephaly   
Skin surface irregularities 
Axial flexures         
Abnormal skin pigmentation          
Reduced body size    
Scare response to stimuli 

1 

336 

Hydropsy                       
Axial flexures                   
Reduced body size      
Scare response to stimuli 

1 

Rotation  
(S.15) 

24 

Reduced body size 
Microcephaly  
Hydropsy  
Axial flexures 

1 

96-168 Delayed development 1 

336 Reduced body size 1 

Tail Bud  
(S.17) 

24 Delayed development 1 

96-168 

Cellular disociation       
Hydropsy  
Microcephaly/acephaly 
Mouth malformations  
Scare response to stimuli 

1 

336 
Reduced body size     
Hydropsy 
Scare response to stimuli                   

1 
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Muscular 
Activity   
(S.18) 

24 
Reduced body size        
Axial flexures 

5 

96-168 
Hydropsy               
Abnormal skin pigmentation  
Scare response to stimuli 

5 

336 
Hydropsy               
Abnormal skin pigmentation 
Tail flexures 

5 

Gill Circulation 
(S.20)         

24 Delayed development 0.5 

96-168 Scare response to stimuli 0.5 

336 
Starvation 
Scare response to stimuli 

0.5 

Open Mouth 
(S.21)         

24 
Abnormal skin pigmentation 
Scare response to stimuli     

5 

96-168 
Hydropsy                 
Abnormal skin pigmentation 

5 

336 Reduced body size 5 

Opercular 
Folds       
(S.23)  

24 
Delayed development 
Scare response to stimuli 

10 

96-168 Delayed development  10 

336 -  >17.5 

Complete 
Operculum 

(S.25) 

24 Scare response to stimuli 10 

96-168 Axial flexures 10 

336 Reduced body size 15 

(-) There were no sublethal effects. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 

 


