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Abstract

We study the dependence of the entanglement entropy with a magnetic flux, and show that the former
quantity witnesses an Aharonov Bohm-like effect. In particular, we consider free charged scalar and Dirac
fields living on a two dimensional cylinder and study how the entanglement entropy for a strip-like region
on the surface of the cylinder is affected by a magnetic field enclosed by it.

Introduction.— The Aharonov-Bohm effect (AB) is a fundamental quantum phenomenon in which an
electrically charged particle is affected by an electromagnetic potential A, even if the magnetic and electric
components of this field vanish in the region where the particle is confined. The AB effect emerges as a
consequence of the fact that the circulation of A, around a curve C' (® := §, A,dz") can be sensed in the
wave function of a charged particle v (z), which acquires an additional phase factor e“® (z), regardless of
the precise values A, takes on the region where the particle is confined. This phase factor can therefore be
seen in interference experiments of particles traveling in different paths.

This effect has first been noted by W. Ehrenberg and R. Siday in 1949 [I] and Y. Aharonov and D. Bohm
in 1959 [2], and has been observed in the laboratory [3]. The response of the expectation value of certain QFT
operators (on cylindrical geometries) under a magnetic flux were recently analyzed using holography on [4].
In the condensed matter literature, it has been also studied the effect of the magnetic flux on unconventional
superconductors with cylindrical geometry (see for example [5]). In this work, we analyze the AB effect on
the vacuum fluctuations using entanglement entropy.

The entanglement entropy refers to the von Neumann entropy S (V) of the vacuum state reduced to a
region V of the space

S(V) = —tr(pvlogpv) ; (1)

with py the reduced density matrix. It essentially measures the entropy contained in the vacuum fluctuations
inV.

Though it originated in an attempt to explain the entropy of black holes, the entanglement entropy has
nowadays become an exceptional theoretical tool that provides new insights into a variety of topics in physics.
In condensed matter theory, it can be used to distinguish new topological phases or different critical points
[6, [7]. It has also been proposed as a useful probe of phase transitions in gauge quantum field theories [8] and
has brought a new perception on the structure of renormalization group flows [9] [10, [IT], being essential to
prove the c-theorem in three dimensions [12].

In this paper we show that the entanglement entropy exhibits a dependance on the Aharonov-Bohm phase
®, thus becoming an attractive tool to explore related topological phenomena. Specifically, we compute the
entanglement entropy for free charged scalar and Dirac fields in the presence of an electromagnetic potential
in a simple two dimensional example.

The AB effect on entanglement entropy.— We are going to analyze the case of a free scalar field, ¢,
charged with respect to an external gauge field, A,, which is pure gauge in the region of interest. Hence we
start with the Lagrangian

L= — (@ +ieA,) (" — icAM)s — m26 o (2)
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Figure 1: The geometry used in the text. Coordinate z! is compactified in a circle of size D and we look at
the entropy of an annular strip of width L. The external gauge field induces a phase in the x' direction.

for a charged free scalar field with mass m. To keep the calculation as simple as possible we consider the case
of a space compactified in a circle of size D in the 2! direction (see figure[l]) with periodic boundary conditions
for the field, ¢(z°,0,22,....,2%) = ¢(2°, D, 2%, ...,2%). We choose a constant gauge field in the x' direction.
When the pure gauge field A, = 0,(x) is turned on we can eliminate it by a gauge transformation

p(x) — e7ie S WAL () (3)

where the base point Z of the integral is arbitrary. This has the consequence that the scalar field has now the
following boundary condition

(22,0, ...,z = e_iefAldzqu(xO, D,...,z%. 4)

The integral
ej{Aldxl =p=ed (5)

can be thought as proportional to the flux ® of a magnetic field through the circle S*. This magnetic field is
fully outside of the space, and its effect on the scalar field is only through the AB effect. It gives a phase ¢
on the boundary condition of the field ¢ which is now decoupled from any external sources.

We can use Lagrangian () with eA; = ¢/D constant, and decompose it into Fourier modes in the !
direction, ¢ = 3 e~12mma/Dg(n),

oo

2
c= Y <_3ﬂ¢(n)*3u¢(n) _ <m2 N (2””’%90)) ¢<n>*¢<n>) , (©)

n=—oo

where now the space has d — 1 dimensions with coordinates 22, ..., z%.

The entropy of a strip of width L around the cylinder (see figure[I]) will be given by the sum over the different
modes of the entropies of these massive fields living in dimension d — 1. For two spacial dimensions d = 2,
as long as we are interested in evaluating the entropies of annulus around the direction z!, the calculation is
equivalent to the entropy of an interval of size L in one dimension, for an infinite tower of massive fields with
masses given by

M(n, ) = \/m2 ikl (7)

The same dimensional reduction holds for free Dirac fields, where the effective masses for the d = 2 fields
are given again by ([@). Hence, the entanglement entropy of the annulus is

S(Lvmv¢)zzsl(L7M(na 50))7 (8)

where S1(L, M) is the vacuum entropy for the massive d = 1 field of mass M.



This is given by

>~ C
S1(L, M) = —/ dy ﬂ — C(0)log(Me). (9)
LM Y
Here € is a short distance ultraviolet cutoff, M stands for the effective mass of the field, and
C(ML) = L%ﬂi’” (10)

is the entropic C-function [9]. This is positive and monotonically decreasing. For zero ML it takes the value
C(0) given by one third of the conformal central charge in the limit M — 0. This is C'(0) = 1/3 for Dirac
fermions and C(0) = 2/3 for a complex scalar. For large mass C(ML) is exponentially decreasing. More
precisely, the limits of small and large argument for this function are [I3]

2 1 1
C(y) ~ § o2 (1) + ... fory <1, Cly) ~ §yK1(2y) fory>1, (11)
for a complex scalar, and
1 1
C(y)f_vg—gf log?(y) + ... fory<1, C(y)f_v§yK1(2y) fory>1, (12)

for a Dirac field. The expressions for short distances are the leading logarithmic terms. The complete C-
function can be calculated numerically with high precision by integrating the solutions of an ordinary differ-
ential equation [13].

The first term in (@) gives the shape of the one dimensional entropy as a function of L. We have to include
the second term in (@) which only depends on the mass. This gives the dependence on mass of the entropy
saturation constant for large L [7], and will be affected by changes on the mass due to the magnetic flux, eq.
[@. The cutoff dependence in (@) does not play a role because we want evaluate how the entropy changes
with the magnetic flux. It gives a constant overall ambiguity which is independent on the mass and L. For a
scalar field the entropy includes an additional L independent term that depends on the mass

log(log(—Me)) . (13)

This is due to infrared divergences for massless scalars in two dimensions [I3]. However, this mass dependent
term have to be thought as giving an overall infrared constant term because its derivatives with respect to
mass vanish for the limit of small cutoff. Then, we are neglecting this term in the following.

We can focus on the universal part of the change of entropy with magnetic flux by computing the quantity

%]
S(p) = / dw’%s(hm, ¢') = S(L,m,p) = S(L,m,p=0). (14)
0 ¥

The contribution to S(¢) of the second term in (@) is given by

2+ ¢’ B v, C(0) sing’
/ d¢’ Z CO) DEy Grnt o /0 U S cosh(mD) — cos(@))

C(0) cosh(mD) — cos(p)
T2 log ( cosh(mD) — 1 > - (19

This is independent of the width of the strip L, and is always negative.
Hence, setting S(¢ = 0) = 0 in this way we have

o Lt i I EEC R

n=-—00 n=—oo Y LM(n, 0)

This expression is finite, showing the ¢ dependent term is regularization independent. Some general features
of S(p) follow directly from (I8) without further calculation. Evidently, from (8] the entropy S(¢) will be
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Figure 2: S(¢p) for the massless scalar and various ratios of L/D. From top to bottom: L/D =1/10,1/2,1, 2.
We have set the infrared divergent constant v = 2 in this picture. Notice the shape of the fluctuations do not
tend to vanish for small L/D, but slowly get flatter as L/D — 0.

a periodic function of the phase ¢ with period 27. When an integer number of quantum flux ® = e/27 runs
through the cylinder we have S(¢) = 0 and there is no net effect on the vacuum entropy. From (7)) we can
also see the effect is symmetrical under ¢ — —p and p — m — . We can compute S(p) numerically from the
knowledge of the C-function. The result shows S(¢) is always negative; the maximum of |S(p)| is achieved
for ¢ = w. This means the AB effect always decreases the entanglement with respect to the vacuum without
magnetic field.

Various limits.— In order to study the massless case we begin by considering equation () for mD < 1
and mL < 1. Up to first order in mD the third term in (I6) gives

C(0)log (mD) — @ log (2 —2cos(p)) . (17)

We can set m = 0 in the first infinite summation of (I6]) and no divergences will arise (unless ¢ is an integer
multiple of 27). The second sum carries a divergence for the mode n = 0 when we take m = 0, but we can
easily verify that it cancels out with the logarithmic term given by (I7)). We isolate the term with n» = 0 in
this second summation and extract the logarithmic term for mL < 1

/oo dyM ~ —C(0)log (mL) 4+ v, (18)
mL Yy

y=lim < / SN0 1og<yo>> . (19)

yo—0 o

where

For a Dirac field we have v ~ —0.528. On the other hand, for a scalar field, «y is controled by infrared physics
and can be large. If the infrared cutoff for the zero mode is set by a small mass we have v ~ —log(— log(mL)).
This is due to the first subleading term in the small M L expansion of the C function, eq. ([I)). If some other
mechanism set the infrared cutoff this can greatly change. For example, imposing an antiperiodic boundary
condition in the 2? direction we would have v ~ —log(R/L), with R the compact size of the x? direction.

If we write the complete expression for S (¢) the logarithmic terms involving m in (I7) and (I8]) cancel out
and we get the expression for the entropy of the massless field

|(27m+¢)L|

Z/%M' Z(Jy) _/|Z|dy%_@bg@—zcos(@))+7—C(0)1og (%) . (0)

n#0 Yy 2

Naturally this is a function of L/D. Figures (@) and (3] show S(p) for some values of L/D for the scalar and
Dirac fields respectively.
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Figure 3: S(¢) for the massless Dirac field and various ratios of L/D. From top to bottom: L/D =
1/10,1/2,1,2. For large L/D the curves are similar in shape, but half the overall size, as the ones for
the scalar (compare with figure2land formula (21)). For small L/D, contrarily to the scalar case, the function
S(¢) decays to zero.

When L/D > 1 and |L/D ¢| > 1 the first two terms are exponentially small (taking ¢ € (—m, 7)), and the
shape of the oscillations is given by

C(0 L
S(p) :—%log@—2cos(<p))+’y—C(O)log (5) ) (21)
Excepting for a factor of two and an overall additive constant, this is the same for fermions and scalars. The
maximal size |S()| of the oscillations is in this case

sl = W log(4) — 7+ C(0) log <%) . (22)
This can be as large as we want for large L and fixed D. The reason for this large variations is that the one
dimensional massless n = 0 mode has an entropy increasing logarithmically with L, and this is cutoff by the
effective mass provided by the magnetic field. However, it is interesting to note that the dependence on ¢ in
I) includes a coherent contribution of all modes through the term —C(0)log(M) in the entropy, even if for
L/D >> 1 these have large masses.

The effect of the inessential infrared divergence (I3]) reappears in S(p) for the massless scalar field through
the infrared divergent constant v, and the large variations of the entropy for ¢ — 0. The change of entropy
for a massless scalar field with and without magnetic field is infrared divergent for any non zero value of the
flux. This large susceptibility is not present for the fermion fields because it is due to the classical zero mode
of the scalar field. However the large value of v does not affect finite variations of S(p) for different ¢ # 0.
It does not change the shape of the curves away from ¢ = 0 but just displaced them to large negative values
(see figure [2)).

For small L/D < 1 the different modes add incoherently and this cuts the size of the oscillations. In this
limit of small width of the annulus is better to study directly the derivative S’(p). According to (@) and (8]
in the massless limit this is -

S)=35 X 1(pem+e). (23)

n=—oo

where o oo
foy - Clzh - CO)

The function f(x) is antisymmetric and falls to zero exponentially at infinity. If f(z) was analytic we could
use Euler MacLaurin formula in ([23) to conclude that S’(y), and hence S(y), vanish exponentially fast
with L/D for small L/D. However, this is not the case since f(z) is non analytic at the origin, going as

- (24)
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Figure 4: S(m) (giving the maximal size of the change of entropy) as a function of mass for L/D = 1. For
large mass S(m) goes to zero exponentially fast. For m — 0 it tends to a limit for the fermion (curve at the
top) and it gets to —oo for the scalar (curve at the bottom).

f(x) ~ —1/3xlog(|x|)? for fermions and f(x) ~ (xlog(|z|))~! for scalars (see (1)), (I2))). As a consequence,
the amplitude of the oscillations falls as (L/D)?log(L/D) for the fermions in the limit of small L/D, while
the derivative S’(¢) falls only logarithmically, as (log(L/D))~}, for the scalar field (where ¢ is held fixed as
L/D — 0). This difference can be appreciated in the figures [2 and Bl

For massive fields the effect of the magnetic field on the entropy is reduced with respect to the massless

case. For large mL > 1 the first term of (I6]) gives an exponentially small number ~ 1/2(mL)K;(2mL) ~
(mL)Y/?2e=2™L 1In this situation the third term of (I6) gives the leading part of the entropy

C(0) cosh(mD) — cos(p)
S(p) ~ ———=1 . 25
() 2 ¢ < cosh(mD) — (25)
When we also have mD > 1, this last term gives again an exponentially small number
—C(0)e™P(1 —cos (), (26)

this time with a pure sinusoidal form. We show the lowest value of the entropy S(m) for a particular value
L/D =1 as a function of the mass in figure [l

AB effect on mutual information.— Instead of considering the entanglement entropy of an annulus
of size L we could as well think in the mutual information I(A, B) = S(A) + S(B) — S(A U B) between two
semi-infinite half-cylinders A and B separated by a distance L in the 22 direction. This has the advantage of
being regularization independent from the beginning. The calculation proceeds by dimensional reduction in
the same way as for the entropy but we have to use the one dimensional mutual information Iy (ML) for a
field of mass M between two half-lines in one dimension separated by L. This gives

I(L,m, ) Z L(Ly/m2 + (2n7 + ¢)?) . (27)

Taking into account that dI;(LM)/dL = —dS1(AU B)/dL, I; (ML) vanish for large L, and that S;(AU B) is
equal to the entropy of its complement S7(L), we have

o0

C

L(LM) = / ay CW | (28)
LM )

This is just the opposite of the entropy (@), but it does not contain the boundary term log(M) which is

independent of L and cancel in the mutual information. Then we get for the variation of the mutual information

a formula similar to (I6]) but without the last term,

I(p) =I(L,m,p) — I(L,m,0) Z /L

n=—oo

Z /L : (29)

M( nap) ne—_oo Y LM(n, O)



Concavity of the one dimensional entropy gives I}/ (ML) > 0, and this in turn implies that the sum in (29) is
decreasing for ¢ € (0,7), and in consequence I(y) is always negative, achieving its minimum for ¢ = 7. This
shows that the AB effect of the magnetic field always decreases the mutual information.

Notice however that the change of mutual information I(p) with respect to the case of zero flux diverges
in the massless limit m — 0 for any nonzero ¢. This is because the mutual information of the mode n = 0
diverges in one dimension for semi-infinite regions, and this is not the case for nonzero .

Summary and outlook.— The Bohm-Aharonov effect produces changes in vacuum entanglement entropy
periodic in the flux. We studied a simple example in two dimensions where it always decreases the entanglement
in vacuum for non zero holonomies. This can be interpreted as a consequence of the AB interference for the
modes, where the holonomy induces an effective mass for the fields. We found that the precise form of the
effect is model dependent and, for particular cases, the AB oscillation of the entropy can achieve very large
values.

Other scenarios where the AB can be computed are higher dimensional analogs of our calculation for free
fields, amenable to dimensional reduction, or the case of a magnetic flux vortex in two dimensions using the
numerical technique of Srednicki [14]. In higher dimensions one has to use mutual information in order to
eliminate spurious divergences of the change on the entropy with the magnetic flux due to the change in the
mass induced area terms [15]. For two regions on both sides of an annulus on a plane the variations with
magnetic flux of the mutual information is not expected to diverge in the massless limit, unlike in the example
discussed in this paper. This is because this quantity is finite for the zero magnetic field case. It would also
be interesting to explore this effect in the context of holography.
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