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ABSTRACT. A Robust Data Reconciliation strategy provides unbiased variable estimates in the 

presence of a moderate quantity of atypical measurements. But estimates get worse if systematic 

measurement errors that persist in time (e.g., biases, drifts) are undetected and the break down 
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 2

point of the robust strategy is surpassed. The detection and classification of those errors allow 

taking corrective actions on the inputs of the Robust Data Reconciliation that preserve the 

instrumentation system redundancy while the faulty sensor is repaired. In this work, a new 

methodology for variable estimation and systematic error classification, which is based on the 

concepts of Robust Statistics, is presented. It has been devised to be part of the real-time 

optimization loop of an industrial plant, therefore it runs for process operating under steady state 

conditions. The Robust Measurement Test is proposed in this article and used to detect the 

presence of sporadic and continuous systematic errors. Also the Robust Linear Regression of the 

data contained in a moving window is applied to classify the continuous errors as biases or drifts. 

Results highlight the performance of the proposed methodology to detect and classify outliers, 

biases and drifts for linear and nonlinear benchmarks. 

 

1. Introduction. 

Measurements are subject to errors that generate inconsistencies with the plant conservation 

equations. To reduce the detrimental influence of random measurement errors on variable 

estimates, Classical Data Reconciliation (DR) methodologies have been proposed. They provide 

variable estimates that minimize the Weighted Least Square (WLS) estimator of the observation 

adjustments and satisfy the set of constraints that represent the process operation. Because 

inferences are based on the idea that random errors are drawn from a normal distribution, the 

presence of systematic errors (e.g., outliers, biases, drifts, etc.) leads to inaccurate estimates. 

Therefore diverse strategies have been developed to deal with that problem. They detect, identify 

and estimate the magnitudes of the systematic errors. A review of those methodologies can be 

found elsewhere.
1,2
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 3

Contrary to classical statistical approaches, Robust Statistics aims at providing good estimates 

when data are extracted from a neighborhood of a probability distribution model. Therefore, if a 

robust estimator is used as objective function of the DR problem instead of the WLS one, 

unbiased estimates can be calculated even in the presence of a moderate quantity of atypical 

observations.
1,3

 

Atypical measurements may be sporadic. Their errors, called outliers, are due to poor electrical 

connections and electromagnetic interferences, or instantaneous loads associated with slamming 

waves or slippage of a mechanical fixing. In contrast, other atypical observations persist in time. 

For instance, biases and drifts are time-continuous measurement errors caused by sensor 

calibration failures. While the bias magnitude is constant in time, the drift one varies in 

accordance with a certain function of the time. 

Many researchers have proved the advantages of using robust M-estimators when measurements 

are only contaminated with outliers. In this sense, the Contaminated Normal,
4
 Cauchy, Logistic, 

Lorentzian, Fair
5
 and Hampel

6
 functions were applied to five benchmarks and two industrial 

plants operating at steady state.
7
 For comparison purposes, the objective functions were tuned to 

obtain the same relative efficiency for the ideal distribution. Promising results were attained 

using the Cauchy and Hampel estimators. Furthermore two procedures, which combined the 

strengths of redescending and monotone M-estimators,
8
 were presented. They were called The 

Simple Method (SiM) and the Sophisticated Method (SoM), and their computational costs were 

low in comparison with the requirements of the Hampel estimator. Also, the Quasi Weighted 

Least Square (QWLS) function
9
 was presented and successfully applied to interesting industrial 

examples. Recently, a comprehensive study about the performance of robust DR methodologies 

showed the efficiency of SiM.
10 
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 4

Furthermore the improvement in the accuracy of estimates obtained using the Correntropy (CO), 

QWLS, Fair and Hampel functions as M-estimators was analyzed
11

. In this study measurements 

were corrupted with outliers or biases. Also, the advantages of using the Hampel function plus an 

advanced step moving window for the resolution of dynamic DR problems was recently 

studied.
12

 Measurements were only contaminated with biases or drifts. 

All the aforementioned works were related to the robust estimation of measurements, but they 

did not consider the detection and classification of systematic errors that persist in time (SEPT), 

e.g., biases and drifts. This is an important issue because the early detection of SEPT avoids that 

the variable estimates get worse when the break down point of the robust strategy is surpassed. 

This is related to the maximum amount of atypical observations that the data may contain to still 

give some information about the distribution of the typical measurements.3
 Furthermore, the 

categorization of a SEPT as a bias and the calculation of its magnitude allow estimating the bias-

free observation. Also the results of the continuous error classification are helpful for the 

instrumentation maintenance group. 

Up to the present time, only two works have dealt with the robust classification of SEPT, but 

comprehensive performance analyses were not provided. Regarding the first one,
13

 the 

estimation problem was formulated using the Welsch M-estimator and solved applying the 

Particle Swarm Optimization algorithm. The strategy coped with the identification of outliers 

and biases. A cut-off value
 
of the standardized observation adjustment

7
 was used to determine 

the presence of outliers. Biases were identified as a sequence of outliers of the same sign. The 

number of time intervals of that sequence was fixed using the 95% confidence level of the 

binomial distribution. 
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 5

The methodology proposed in the second work
14

 coped with the identification of outliers, biases 

and drifts and used the CO estimator as objective function. It was proposed to calculate a statistic 

for each measurement as function of its standardized adjustment and weight, and declare the 

presence of a non-random error if that statistic was greater than a critical value. A distance-time 

step criterion was introduced to distinguish between outliers and SEPT. A threshold of the 

sample variance of the observation adjustments was used to discriminate between biases and 

drifts, but no advice about how to fix that threshold was provided. 

In this work, a new methodology for variable estimation and systematic error classification is 

presented. It has been devised to take part of the real-time optimization loop of an industrial 

plant, therefore it runs for process operating under steady state conditions. The Robust 

Measurement Test is defined in this article and used to detect the presence of outliers and SEPT. 

Also the Robust Linear Regression of the data contained in a moving window is applied to 

classify the SEPT as biases or drifts. A comprehensive analysis of the strategy performance is 

provided in terms of the Percentage of Total Detection of SEPT, the Percentage of False Alarms 

of SEPT, the Percentage of Total Detection of Systematic Errors, the Mean Square Error, and the 

Percentages of Detection and Correct Classification of the aforementioned systematic errors for 

linear and non-linear benchmarks. 

The paper is structured as follows. In Section 2, the estimation problem is formulated. The new 

strategy is presented in Section 3. Next, the performance results of the proposed methodology are 

presented and discussed. A Conclusion section closes the article. 
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 6

2. Problem Formulation 

Measurements are subject to errors that generate inconsistencies with the plant conservation 

equations. The unavoidable presence of random errors from unknown sources can be represented 

by the following measurement model, 

 ij i ijy x e= +
, (1) 

where xi is the unknown true value of the i-th variable, 
ijy  stands for its observation at the j-th 

time period, and 
ije  symbolizes the unobservable independent random error of that observation. 

It is commonly assumed that it follows the normal distribution function and has zero mean and 

known standard deviation iσ . In addition to random errors, measurements may be contaminated 

with systematic errors. In this work, the possible presence of outliers, biases and drifts is 

considered. If they occur once at a time, the previous measurement model can be reformulated 

by adding the corresponding systematic error. 

Frequently atypical observations are sporadic, but there are others which persist in time until the 

faulty sensor is repaired. The first ones are contaminated with systematic errors called outliers, 

whose magnitudes are many times bigger than iσ . Their presence affects the tails of the error 

density function, which tend to zero more slowly than the corresponding ones to the normal 

distribution. In this case the measurement model can be reformulated as follows 

 ij i ij ijy x e O= + +
, (2) 
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 7

where ijO  indicates the magnitude and sign of the outlier at the j-th time interval, which is 

expressed as o

ij ij iO K σ= , where o

ijK is a constant. 

Regarding the atypical observations that persist in time, their errors may follow different 

deterministic behaviors
2
. Some abnormal measurements are contaminated with systematic errors 

of constant magnitude called biases. In this case, the observation accuracy is deteriorated but its 

precision remains equal to iσ . The measurement model is represented by the following equation 

 
ij i ij ijy x e B= + + , (3) 

where ijB  is the bias magnitude, which is usually formulated as b

ij i iB K σ=  and b

iK  is a constant.  

Other atypical observations that persist in time are corrupted by systematic errors called drifts. 

Equation 4 shows the model of this type of observations, where 
driftm  and ( )f t  are a constant 

and a function of time, respectively. Recently, linear
14

 and quadratic
12

 functions have been used 

to characterize the time dependence of that measurement error. It has non zero mean and its 

variance becomes greater than iσ when time increases. 

 
( ).ij i ij drifty x e m f t= + +

,  (4) 

Diverse model-based methodologies have been developed to reduce the detrimental effect of 

systematic errors on variable estimates. Among them, performance studies have demonstrated 

the efficiency of robust DR when a fixed amount of outliers are contained in a moving data 

window.
7
 That methodology comprises the statement and resolution of the following 

optimization problem
1
 

Page 14 of 50

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 8

 

( )

( )

1 1

ˆ ˆ[ , ]

                 . .

                  , 0

j

j I
R R

j j ip
x

p j N i

x u Min a

s t

f x u

ρ
= − + =

=

=

∑ ∑
, (5) 

where  

 
ip ij

ip

i

y x
a

σ

−
= , (6) 

and vectors ˆ ˆ[ , ]R R

j jx u  represent the state of the process at the j–th time interval. This is defined as 

the solution of the optimization problem that minimizes the loss function ρ of the standardized 

observation adjustments aip for a data window of length N and satisfies the process model  

f(x,u)=0, where x  and u are the vectors of measured and unmeasured variables of dimension I 

and U respectively.  

Furthermore, the derivative of the loss function ρ with respect to the standardized observation 

adjustment a is called Influence Function (IF), and it is represented by ψ , i.e., 'ψ ρ= . The 

weight function W is related to the IF as follows 

 
( ) / if 0

( )
'(0) if 0

a a a
W a

a

ψ
ψ

≠
= 

=
 (7) 

In general the following types of M-estimators have been used as loss functions for Problem 5: 

a) Monotone: ρ  is a convex function, therefore it is unbounded; ψ  is an increasing function 

(Huber, Fair, QWLS) 
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 9

b) Redescending with unbounded ρ : ψ  tends to zero at infinity (Cauchy, Logistic, Lorentzian, 

Welsch, CO) 

c) Redescending with bounded ρ ; ψ =0 for values greater than a threshold (Hampel and 

Biweight, which is denoted as BW) 

Monotone estimators have the advantage that the solution of Eq. 5 has a unique local minimum. 

Therefore the values used to start the iterative solution procedure may influence the number of 

iterations but not the final outcome. On the other side, they are sensitive to very large outliers, 

and therefore may have a low efficiency for heavy-tailed error distributions
3
, i.e., distributions 

whose density tails tend to zero more slowly than the normal density tails. Redescending 

estimators (b and c) can be made very efficient for heavy-tailed data, but Problem 5 may have 

several local minima, which requires a good starting point to ensure attaining the “good” 

solution. Estimators with bounded ρ (c) completely reject large outliers. 

The breakdown point of an estimate should be taken into consideration when robust 

methodologies are applied. Roughly speaking, “the breakdown point of an estimate θ
)

 of the 

parameter θ is the largest amount of contamination (proportion of atypical points) that the data 

may contain such that θ
)
 still gives some information about θ , i.e., about the distribution of the 

typical points”.
 3

 Let us analyze what happens if a robust M-estimator is used for DR and SEPT 

are present. A well-known benchmark 
15

 is used with this purpose, whose flowchart is 

represented in Figure 1. It comprises 4 units and 7 streams, and only mass balance equations are 

considered as constraints of Problem 5. Therefore, the number of variables of the optimization 

problem is I=7. 
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 10

 

Figure 1. Case Study Flowsheet 

Different types of M-estimators and measurement models are used. The efficiencies of the 

estimators are fixed at 95.5% for the ideal distribution by properly tuning their parameters. 
7,8

 

The following measurement models are examined: 

1) Model without systematic errors. It is assumed that random errors follow the standard normal 

distribution (Eq. 1) 

2) Model with outliers. With probability ε = 0.05, an outlier of magnitude  o

ij ij iO K σ=  ( 10o

ijK = ) is 

added to the random error (Eq. 2). The total number of generated outliers is 3457. 

3) Model with SEPT. They are added to the random errors during 100 time intervals. The total 

number of simulated atypical observations is 3600, which is a similar amount to the one used for 

the previous model. The probability of occurrence of biases and drifts is the same. The 

magnitude of the biases is fixed at 6b

iK =  (Eq. 3). A linear time dependent behavior is considered 

to simulate the drifts and mdrift=1(Eq. 4). 

Furthermore, the standard deviations of the measurements are 2.5% of the true mass flowrate 

values, ten thousand simulation runs of the estimation problem are performed given an initial 
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 11

data window, and the length of the data horizon is N=20. The Mean Square Error (MSE) is 

estimated as follows 

 

2

1 1

ˆ1
 = ,

 

RJ I
ij i

j i i

x x
MSE

I J σ= =

 −
 
 

∑∑  (8) 

where J is the number of simulation runs. The MSE values obtained using different M-estimators 

and measurement errors are displayed in Table 1. It can be seen that all M-estimators overcome 

the detrimental effect of outliers on variable estimates; but the presence of SEPT degrades the 

estimation accuracy. Therefore, the application of a new strategy devoted to detect systematic 

errors, classify them, and take appropriate corrective actions when SEPT are present is 

worthwhile to enhance the accuracy of the estimates. That strategy is presented in the next 

section. 

Table 1. MSE for different M-estimators and measurement models 

MSE 

M-estimators Random Outliers SEPT 

 Huber  0,03114  0,03596  0,51394 

 CO  0,03111  0,03596  0,51396 

 Welsch  0,03118  0,03596  0,51406 

 BW  0,03118  0,03592  0,51392 

 Hampel  0,03118  0,03595  0,51392 

 

3. Data Reconciliation and Systematic Error Classification 
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 12

The proposed strategy interconnects three main procedures: robust DR, RMT, and RLR. In this 

section, they are described at first. The rationale of their interconnections is explained then. 

3.1 Robust Data Reconciliation 

In the last decade different strategies have appeared to solve the robust DR problem. A recent 

comparison among their performances
10

 showed that SIM
8
 can be applied for measurement 

adjustment in real time optimization loops, because it provides a good balance between the 

estimates accuracy and the computational load. Therefore, SIM is one of the main procedures of 

the proposed methodology. 

The SIM is made up of two sequential steps which take advantage of the main features of 

redescending and monotone M-estimators: 

Step 1: At the j-th time interval, a robust median of the i-th variable, 
R

ijy% (i=1: I), is estimated 

using the measurements contained in a data window of length N { }, 1,...,ipy p j N j= − + . In this 

way, the redundancy supplied by the repeated observations allows to down weight the effect of 

atypical observations. The BW function is used to formulate the estimation problem 

 
- 1

-
ˆ

ij

j
ip ijR

ij BW
y

p j N i

y y
y Min ρ

σ= +

 
=  

 
∑  (9) 

where 

 

3
21 1 ( / )

1

BWBW
BW

BW

if a ca c

if a c
ρ

 ≤ − −  = 
>  (10) 
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 13

The iterative procedure is initialized using the solution of the previous DR problem. 

Step 2: The state of the system at the j-th time interval is obtained by solving the following 

optimization problem using the solution of Step 1 as initial point 

 

( )

1

ˆ -
ˆ ˆ[   ]

                      . .

                       , 0

j

RI
ij ijSIM SIM

j j H
x

i i

j j

y x
x u Min

s t

f x u

ρ
σ=

 
=   

 

=

∑

 (11) 

where Hρ  corresponds to the Huber family 

 

2

22

H

H

HH H

if a ca

if a cc a c
ρ

 ≤
=  >−  (12) 

Because Problem 11 is defined in terms of a monotone estimator, its solution ˆ ˆ[ , ]SIM SIM

j jx u  is 

unique. Furthermore the computation time of the iterative procedure is reduced because a good 

starting point is used. 

Even though robust DR strategies are able to manage a moderate quantity of outliers, the 

presence of SEPT deteriorates the accuracy of estimates, as it was shown in the previous section. 

Therefore, it is worthwhile to detect and classify SEPT, and perform adequate corrective actions 

that enhance estimates quality. 

3.2 Robust Measurement Test 

The testing of statistical hypothesis has been widely used for the detection of atypical 

observations
 
in DR problems.

 1,2
 In particular, the Measurement Test (MT)

16
 was used in the past 

to point out the observations which may be corrupted by systematic errors. To briefly review its 
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 14

application, let us consider that the mass flowrates of a process are all measured, and their 

observation adjustments are obtained using the data contained in a data window of length N. The 

vector of adjusted flowrates at the time interval j, ˆWLS

j
x , is the solution of Problem 13, which uses 

the WLS estimator as loss function: 

 

2

1 1

ˆ ,

          . .

          0

j

j I
ip ijWLS

j
x

p j N i i

y x
x Min

s t

Gx

σ= − + =

− 
=  

 

=

∑ ∑

 (13) 

where G represents the process incidence matrix. In consequence, the vector of measurement 

adjustments 
WLS

j
a  is defined as 

 ( ) 1

ˆ ( ) ( ) ( )WLS LS T T

j j j j j j j j j j ja y x y y G G G G y y y Z y y Z y
−

= − = − −Σ Σ = − − = − ℑ−  (14) 

where jy  is the average of the measurement vectors { }, 1,...,py p j N j= − + , Σ  is the known 

diagonal covariance matrix of the observations, and ℑ  stands for the identity matrix. If only 

random errors are present (0, )WLS

j
a N Q�  where  

 

( ) ( ) ( ) ( ) ( )
2

1 1 1
T

TN Z N Z N
Q Z Z

N N N

− ℑ+ − ℑ+ −     
= ∑ + ℑ− ∑ ℑ−     
       (15)  

Using the previous results, the univariate statistic ,

WLS

i jt  was defined for testing the i-th observation 

at the j-th time interval.
16

 

 ,

WLS

ijWLS

i j

ii

a
t

Q
=    (16) 
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 15

It follows the standard normal distribution N(0,l) if no atypical observations are present in the 

data window. The occurrence of a systematic error for the i-th observation is pointed out if the 

absolute value of the statistic is greater than a threshold. 

Because the breakdown point of the WLS estimate is close to zero, even a single measurement 

with systematic error is enough to invalidate the basis of the methodology causing smearing.
3,7

 

To take better decisions regarding the occurrence of a systematic error, the RMT is proposed in 

this work. 

The statistic of the RMT is defined as follows 

 ,

R

ijR

i j
R

ii

a
t

Q
=   (17) 

where the vector of robust measurement adjustments is stated as 

 ˆR SIM

j j ja y x= −   (18) 

and RQ is its covariance matrix. If typical observations are present in the data window and the 

process operation can be represented by a linear set of equations, 
R

ja  follows approximately a 

N(0, RQ ). This occurs because ˆSIM

j
x  is estimated using a linear transformation of the robust 

median, and the asymptotic normality of this M-estimate of location has been rigorously 

demonstrated. 
3
 The distribution of 

R

j
a is unknown if the process model is nonlinear. It will be 

explained later how to proceed in this case. 

Since RQ is unknown, a robust estimation of this matrix, ˆ R

j
Q , is calculated at time j. First, the 

matrix 
R

j
A  is formed containing the last 

R

p
a vectors (p=j-N+1,…, j), 
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 1 2[ , ,... ]
R R R R

j j N j N jA a a a− + − +=   (19) 

Then, the normalized median absolute deviation about the median, MADN( R

ia ), is estimated 

using the i-th row of 
R

j
A as follows 

 ( ) ( )( ,:) ( ,:)R R R

i j jMAD a Med A i Med A i = −    (20) 

 
( ) ( )

0.675

R

iR

i

MAD a
MADN a =

  (21) 

and the square of MADN( R

ia ) (i=1…I) is included into the scale estimate vector  ���
� . Next the 

matrix ˆ R

j
Q is evaluated 

 
( )

2

a2

a 2

a

ˆ( ) /
ˆ ˆ

ˆ'( / )

T

R

jR

j
R

j

ave A
Q

ave A

ψ σ
σ

ψ σ

    =  
    

  (22)  

where ψ is the derivative of ρBW and ave represents the sample average. 

The statistic of the RMT, ,

R

i jt , is reformulated using ˆ R

j
Q  as follows  

 ,
ˆ

ˆ

R

ijR

i j
R

j
ii

a
t

Q

=   (23) 

It follows the Student distribution with a number of degree of freedom df=N-1 if 
R

j
a  is 

asymptotically normally distributed, i.e. , 1
ˆR

i j Nt t −� .
3 

In this case, the critical value of ,

R

i jt  for a level 

of significance of the test α is 1, /2N
t α− . If the distribution of 

R

ja  is unknown, the following 

procedure is recommended to estimate the statistic critical value. At first, it is assumed that 
Ra  

follows an asymptotic normal distribution. This is a working hypothesis that allows calculating 
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 17

1, /2N
t α− . Then this assumption should be validated using a sample of 

Ra . If the working 

hypothesis is rejected, i.e. the experimental probability of 1, / 2{ }R

i Nt t α−> is different from α, the 

sample is used to calculate the critical value of the statistic. For example, kernel density 

estimation techniques can be applied with this purpose. 

3.3 Robust Linear Regression 

Regression analysis is a statistical tool for estimating the relationships between 2 or more 

variables. Let us consider fitting the following straight-line regression model 

 0 1y xβ β= +  (24) 

to the data set {(xm, ym): m=1…M}, where xm and ym are the predictor and response variable 

values, respectively. The regression model can be posed in compact form as follows 

 
y X β=

 (25) 

where: [ ]0 1 'β β β= , and each row of matrix X is formed by the vector Xm=[1 xm] (m:1…M). 

Robust regression methods provide estimates 0β̂  and 1β̂  that aim at giving a good fit to the bulk 

of the data without being perturbed by a small proportion of atypical measurements. The vector 

of regression M-estimates 0 1
ˆ ˆ ˆ[ ]β β β=  is defined as the solution of the following optimization 

problem: 

 
( )

1

ˆ

,
ˆ

M
m

m r

r
Min

β
ρ

σ=

 
 
 
 

∑   (26) 

where 
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 18

 ( )0 1
ˆ ˆ ,m m mr y xβ β= − +   (27) 

and σ̂ is its scale estimation, that may be calculated as: 

 
( )1

ˆ 0
0.675

m mMed r rσ = ≠
  (28) 

The necessary and sufficient condition for solving Problem (26) is: 

 1

ˆ
0

ˆ

M
m

m

m r

r
Xψ

σ=

 
= 

 
∑

  (29) 

Using Eq. (7), ψ  can be substituted by the weight function W as follows 

 1

ˆ
ˆ 0

ˆ

M
m

m m

m r

r
W r X

σ=

 
= 

 
∑

  (30) 

From Eq. (30), the following expressions are obtained for the regression model parameters
3
: 

 

( )1

1

0

1

ˆ ˆ
ˆ

ˆ

ˆ

ˆ

M
m

m m

m r

M
m

m r

r
W y x

r
W

β
σ

β

σ

=

=

  
−  

  =
  
  

  

∑

∑
  (31) 

 

( )0

1

1

2

1

ˆ ˆ
ˆ

ˆ

ˆ

ˆ

M
m

m m

m r

M
m

m

m r

r
W x y

r
W x

β
σ

β

σ

=

=

  
−  

  =
  
  

  

∑

∑
  (32) 

The variance of β̂  is calculated as: 

 ( ) ( ) 1ˆ ˆvar Tv X Xβ
−

=   (33) 
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where: 

 

2

2

2

ˆ
ˆ ˆ

2
'

ˆ

m

r

m

r

r
ave

M
v

Mr
ave

ψ
σ

σ

ψ
σ

  
  
   =

−   
         (34)  

3.4 New Robust Data Reconciliation Methodology 

For each time j the strategy comprises three stages. In the first one, the robust DR problem is 

solved. The second stage is related to the classification of the errors, and the third one updates 

the inputs for the next DR problem if it is necessary.  

The experimental probability that four consecutive ˆR

it  surpass the critical statistical value for 

α=0.025 when measurements are drawn from the normal distribution is zero for any N when ten 

thousand observations are generated. This fact is used to distinguish between sporadic and 

continuous systematic errors. Therefore, if the RMT detects this event for the i-th variable, the 

sensor is considered faulty. Its measurements are replaced during the next time intervals by the 

values generated using the DR solution obtained for the last normal observation. This avoids the 

contamination of the data window with atypical observations while other corrective actions are 

executed. 

When N/2 unusual measurements of the i-th variable are available, the RLR is applied to classify 

the previously detected SEPT as a bias or a drift, and the problem is reported to the maintenance 

group. If the SEPT has been classified as a bias, its magnitude is estimated when N atypical 

measurements are collected. The following estimation problems use the bias-free measurement 

until the sensor is repaired.  

Page 26 of 50

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 20

Figure 2 is the flowchart of the proposed strategy. Let us define a vector s of faulty sensors that 

includes the instruments for which a SEPT have been detected. In the first stage, the new 

observation vector yj is incorporated into the measurement matrix Y(I,N) by dropping the oldest 

vector of observations out of the matrix and appending yj as the last column. If s=[ ], that matrix 

is used as input of the DR problem. If it is not the case, Y is modified as it will be explained later, 

and the measurement matrix Y* results. Then the SIM is run to obtain ˆ SIM

jx . 

As can be seen in Figure 2, the tasks involved in the second and third stages depend on the 

values of the indexes Li and Pi. (i =1,…, I). The first one summarizes the results obtained during 

the previous time intervals regarding the classification of a systematic error for the i-th variable. 

The second one is a binary variable that indicates if the sensor has been repaired (Pi =1) or not 

(Pi =0). In Table 2, the initial variable values are displayed. 

Table 2. Initial variable values 

Variable Value 

s [ ] 

Li 0 

Pi 1 

 

For Li in the range [0 1 2], the statistic ,

R

i jt  is evaluated after the reconciliation stage. If Li =0, an 

outlier is detected for the penultimate measurement when , 1

R

i jt −  is greater than the critical value 

but ,

R

i jt  does not exceed this limit. In contrast, if both , 1

R

i jt −  and ,

R

i jt  go beyond the critical value, 

there is not enough information to classify the set of two atypical observations, and Li is set equal 
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to 1. Because the presence of one or two atypical observations does not affect the results of the 

robust DR for the values of N commonly used, it can be run next without changing its inputs. 
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If Li =2 and ,

R

i jt  is not greater than the critical value, the presence of three consecutive outliers is 

identified, and Li =0. In contrast, it is considered that the sequence of four unusual observations 

is part of a SEPT. In this case, the i-th variable is included in vector s and Li is set equal to 3. 

Also N observations are generated using the adjusted value of the i-th variable obtained before 

the beginning of the SEPT ( , 4
ˆ SIM

i jx − ) plus random errors. These will form the i-th row of the matrix 

Y* used for the next run of the DR procedure, denoted as *

iy . Figure 3 illustrates a temporal 

sequence of observation vectors and shows how the presence of one outlier or consecutive ones 

is distinguished from the occurrence of a SEPT. The statistics whose values are smaller than the 

critical one are represented by a dot, otherwise they are symbolized using ⊗ . 

 

Figure 3: Detection of systematic errors 

Once the presence of a SEPT has been declared for the i-th variable, their new measurements are 

not used for DR, and it makes no sense to calculate its statistic. These observations are saved 

until M consecutive atypical values are collected. At this moment, the RLR technique is run, and 

the estimate of the slope of the straight line is used to decide if the systematic error is a bias or a 

drift. The quantity of measurements used to estimate the straight-line regression model is 

controlled by N and the experimental break down point (bdp) of the estimate.
3
 The following 

relation is considered: 

1 outlier 

2 outliers 

3 outliers 

1SEPT 
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 2

N
M bdp≤ =

  (35) 

Model parameters are estimated iteratively using the WLS solution as the initial value. 

To classify the SEPT, the following statistical hypotheses are confronted: 

 H0:  1
ˆ 0β =  

 H1:  1
ˆ 0β ≠  

and the statistic 
1Tβ , which considers the relation between 1

β̂  and its variance, is defined as 

 
( )1

1

1/2

1

ˆ

ˆvar

R

df
R

T tβ

β

β
=
 
 

�

 (36) 

It follows the Student Distribution with df=M-2. If 
1 1,cT Tβ β< , where 

1,cTβ is the critical value of the 

statistic for α=0.05, the SEPT is a bias, the parameter 0
β̂  represents its magnitude ,1i

B , which is 

saved, and Li is set equal to 4. On the contrary, the SEPT is a drift, and Li is fixed at 5. When the 

classification of the SEPT finishes, an alert is sent to the instrumentation maintenance group 

changing the value of the binary variable Pi to 0. When the sensor is repaired, Pi will be equal to 

1 as in the initial condition. No other tasks can be performed if a drift has been identified because 

measurements may follow diverse deterministic behaviors in time.  

If the SEPT has been classified as a bias, new measurements are saved until a complete data 

window of observations corrupted by this error is available. At this moment, a new estimation of 

Bi, ,2i
B , is calculated as the difference between the robust median of the measurements and the 

reconciled value of the variable, then Li=0. The vector ,2
ones( )

i i
b B N= is sent as input of the DR 

problem to correct the i-th row of Yj+1 as follows 
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*

1 1
( ,:) ( ,:)

j j i
Y i Y i b+ += −

  (37) 

until the sensor has been repaired. When this happens, Pi =1, then s=[ ], and Li=0.  

In Figure 2 the variables out, bias and drift are used to quantify the classification of the different 

systematic errors. Furthermore, the variable and time in which the algorithm performs the 

classification are informed. For example, Oei,j-1 refers to the presence of an outlier in the i-th 

variable at the (j-1)-th time interval.  

4. Performance Analysis 

A performance analysis of the developed methodology has been performed to quantify its 

capabilities for the detection and classification of systematic errors, and how these capabilities 

impact on the quality of the reconciled estimates. 

Two benchmarks are studied: the Steam Metering Network (SMN) 
17

 and the Heat Exchanger 

Network (HEN)
18

. For each benchmark, four case studies are proposed that involve different 

values of the parameters N, Bi and mdrift, for a fixed magnitude of the outlier ( 10)o

iK = . Table 3 

displays the parameter values and indicates if the proposed methodology has been applied or not. 

Case I shows the application results of the technique when only random errors are simulated. In 

contrast, Case II presents its behavior when measurements are corrupted with outliers, biases and 

drifts. Case III is the worst condition for testing the methodology because the magnitudes of 

biases and drifts are smaller than those set for Case II. Also, it should be remarked that no 

articles in the literature have shown the behavior of techniques, which have the same purpose, 

when error magnitudes are so small. Regarding Case IV, it shows the estimation results when the 

proposed strategy is not applied and parameters are set as in Case II. 
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Table 3. Description of the case studies 

Case 
o

iK  Bi mdrift Method 

 I  0  0  0  Yes 

 II  10  6  1  Yes 

 III  10  4.5  0.75  Yes 

 IV  10  6  1  No 

 

Fifty thousand moving windows are considered for each case study. Most of the simulated 

observations are corrupted by random errors (Eq. 1). With a probability of occurrence p=0.02, 

the remaining measurements are randomly contaminated with systematic errors. This random 

procedure allows simulating the presence of consecutive outliers, as well as their simultaneous 

occurrence with biases or drifts. The 95% of the simulated systematic errors are outliers that last 

one time interval, and the rest of them are biases and drifts in the same proportion. When these 

appear, they persist during 100 time intervals, therefore 10% of the simulated observations are 

atypical values. Once a SEPT is detected, the corrective action lasts during 100 time intervals, 

after which it is considered that the sensor is available again. The procedure was executed using 

a Processor Intel ® Core (TM) i7 CPU 930 @ 2.80 GHz, 8GB RAM, using the Successive 

Quadratic Programming code of MatLab Release 7.12 (R2011a) to solve the nonlinear 

benchmark. 

Global and individual performance indexes are proposed. The former ones are the Percentage of 

Total Detection of SEPT (%TDSEPT), the Percentage of False Alarms of SEPT (% FASEPT), the 

Percentage of Total Detection of Systematic Errors (%TD) and the MSE. The first three 

measures are defined as follow: 
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( )
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biases drifts

+

+
 (38) 

( ) ( )
( )

# #
 %FA = 100

#

Detected Simulated and Correctly Detected

SEPT

Detected

SEPT SEPT
x

SEPT

−
 (39) 

 
( )

( )
# # #

 %TD= 100
# # #

Simulated and Detected

Simulated

outliers biases drifts
x

outliers biases drifts

+ +

+ +
 (40) 

 

The %TDSEPT indicates the percentage of simulated SEPT that are detected. Wrong detections of 

SEPT cause false alarms because the instrumentation maintenance group receives a message 

each time a SEPT is detected. These events are quantified using the %FASEPT. The %TD 

represents the percentage of simulated systematic errors that are detected. 

As it was shown in Section 2, the MSE takes into account the difference between the reconciled 

and true variable values. Even though a robust estimator is able to reduce the effect of a 

moderate amount of atypical observations, the presence of a SEPT biases the results of the robust 

DR problem if it is not detected, and the MSE grows. Therefore, it is useful to analyze the 

overall influence of the detection and classification procedure of SEPT on the reconciled variable 

values.  

The individual performance indexes for the SEPT are evaluated in terms of their percentages of 

detection and correct and wrong classification. For outliers, just one index is computed. Figure 4 

shows the relationship among those performance measures. 
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Simulated systematic errors are divided into Detected and Not Detected taking into account the 

results of the RMT. If isolated errors are detected, they are directly classified as outliers. In 

contrast, the RLR procedure is applied to categorize a detected SEPT as a bias or a drift. 

Regarding outliers, the total set of detected outliers includes the simulated ones and those 

associated with the Type I Error selected for the RMT. The relation between the outliers which 

are correctly classified and the simulated ones is defined as the Percentage of Outlier 

Classification, %OC. 

 

Figure 4. Relationship among individual performance indexes 

With respect to biases, the detected ones take part of the Percentage of Detected Bias (%BD), 

which is divided into the Percentage of Correctly Classified Biases (%BCC) and the Percentage 

of Wrongly Classified Biases (%BWC). The same measures are defined for drifts. The 

MSE 
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Percentage of Detected Drifts (%DD) is decomposed into the Percentage of Correctly Classified 

Drifts (%DCC) and the Percentage of Wrongly Classified Drifts (%DWC). That is: 

 
(# )

 %OC= 100
(# )

Simulated and Correctly Classified

Simulated

outliers
x

outliers
 (41) 

 
(# )

 %BD= 100
(# )

Simulated and Correctly Detected

Simulated

biases
x

biases
 (42)

 

 

(# )
 %BCC= 100

(# )

Correctly Classified

Simulated

biases
x

biases
 (43) 

 
(# )

 %BWC= 100
(# )

Wrongly Classified

Simulated

biases
x

biases
  (44) 

 
(# )

 %DD= 100
(# )

Simulated and Correctly Detected

Simulated

drifts
x

drifts
 (45)

 

 

(# )
 %DCC= 100
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Correctly Classified

Simulated

drifts
x
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  (46) 

 
(# )

 %DWC= 100
(# )

Wrongly Classified

Simulated

drifts
x

drifts
  (47) 

To test the performance of a method for pointing out which observation is corrupted by a 

systematic error, it is a common practice
15

 to generate an atypical observation vector and run the 

procedure of the strategy. The result of each simulation trial does not depend on the outcome of 

the previous trial. In contrast, the methodology proposed in this work performs different actions 
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that depend on the behavior in time of each “robust” measurement adjustment. Therefore it 

results necessary to develop an ad-hoc testing procedure for the new method.  

Furthermore, information regarding the detection times (Dt) of SEPT is provided. In this sense, 

the median of the Dt for BCC (DtBCC), the number of BCC for which DtBCC>N and the mean of 

DtBCC when DtBCC>N are reported. The same values are presented for the BWC, the DCC and the 

DWC. 

5. Analysis of Results 

Next application results of the methodology to two benchmarks are reported and analyzed in 

detail. 

5.1 Steam Metering Network (SMN) 

The SMN represented in Figure 5 involves 28 streams that interconnect 11 units. The flow rates 

of all streams are measured. Random errors are generated considering that the standard deviation 

of the observations are 2.5% of their true values. 

The performance measures are computed for Cases II and III, except the MSE that is evaluated 

for all the case studies. For Case II, the global and individual indexes are presented in Tables 4 

and 5, respectively, and Table 6 displays the Dt for the SEPT. The same information is reported 

in Tables 7, 8 and 9 for Case III. In Table 10, the MSE values are displayed.  
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Figure 5. SMN Flowsheet 

Table 4. Global Performance Indexes vs N - Case II (SMN) 

N % TDSEPT % FASEPT % TD MSE 

24 92,55 11,10 91,91 126,36 

30 96,58 6,68 95,59 22,11 

40 95,44 15,87 93,06 45,93 

 

 

Table 5. Individual Performance Indexes vs N - Case II (SMN) 

N % OC %BD  %BCC %BWC %DD  %DCC %DWC 

24 91,87 93,28 86,87 6,42 91,80 90,71 1,08 (7) 

30 95,53 97,02 88,96 8,06 96,13 95,67 0,46 (3) 

40 92,93 95,52 90,75 4,78 95,36 94,12 1,24(8) 
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Table 6. Detection times vs N - Case II (SMN) 

N DtBCC DtBWC DtDCC DtDWC 

24 4 11 61 4 1 81 7 2 74,5 57 7 53,6 

30 4 5 50,2 4 0 --- 6,5 1 37 25 1 40 

40 4 5 55,8 4 2 81 6 2 53 36 3 51,7 

 

The occurrence of 1316 SEPT, which last 100 time intervals, is simulated in different 

measurements. For Case II, the results obtained for N<24 are not included because their %TDSEPT 

are lower than 90%. The N values are increased until the performance measure start to 

deteriorate. Next, these are reported and analyzed for three window lengths: 

N =24: The highest MSE is obtained for this N, because the lowest %TDSEPT and the 

highest Dt are achieved. If a SEPT is not detected, no corrective actions are performed, 

variable estimates get worse, then the variances of the measurement adjustments increase, 

and new atypical observations are not detected because their statistic values do not 

exceed the critical one. This has a negative effect on the %OC and the %TD, and they 

decrease. Furthermore the % FASEPT increases because if errors are not detected on time 

they may be noticed when they are finishing; in consequence a non-necessary corrective 

action starts.  

N=30: Best percentages of total detection (% TDSEPT, %TD) and individual detection 

(%OC, %BD, %BCC, %DD and %DCC) are achieved. Regarding the Dt, SEPT are 

detected on time, thus the corrective actions are effective. Therefore the lowest MSE is 

obtained for Case II.  
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N=40: It is known that longer windows favor the increment of false alarms. This increase 

in the %FASEPT reduces the detection performance parameters, which are lower than the 

corresponding ones to N=30. The Dt for BCC, BWC and DWC are worse too. These 

differences cause that the MSE increase for N =40. 

Table 7. Global Performance Measures vs N - Case III (SMN) 

N %TDSEPT %FASEPT %TD MSE 

30 90,18 19,91 92,06 31,08 

40 95,52 8,58 95,13 10,54 

50 95,52 12,34 94,43 14,02 

 

Table 8. Individual Performance Measures vs N - Case III (SMN) 

N % OC %BD %BCC %BWC %DD %DCC %DWC 

30 92,16 87,46 80,15 7,31 93,03 91,80 1,24 

40 95,11 94,03 89,40 4,63 97,06 96,28 0,77 

50 94,37 94,18 89,70 4,48 96,90 95,98 0,93 

 

Table 9. Detection times vs N - Case III (SMN) 

N DtBCC DtBWC DtDCC DtDWC 

30 4  13  55,6 4 0 --- 8 4 68,8 33,5 5 46,8 

40 4 8 58,9 4 2 78,5 7 0 --- 20 2 64,0 

50 4 7 63,7 4 1 61,0 7 1 66,0 54 4 55,0 
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For Case III, the results obtained for N<30 are not included because their %TDSEPT are lower than 

90%. Next, the performance of the strategy is compared considering different values of N, 

denoted as N1 and N2, for N ≥30: 

N1 =30 and N2 =40. The percentages of total detection (% TDSEPT, %TD) and individual 

detection (%OC, %BD, %DD) for N1 are lower than the corresponding ones to N2. The 

contrary happens for DWC. Also all the Dt are worse for N1 in comparison to those 

obtained for N2. In consequence, the MSE and %FASEPT are higher for N1. 

N1 =30 and N2 =50. In general results are similar to those discussed in the previous 

comparison, even though DtBWC is worse for N2. 

N1 =40 and N2 =50. The %TDSEPT are equal for both window lengths, but the %TD is 

slightly lower for N2 because the %OC diminishes due to the increment of false alarms. 

This happens because if a SEPT has been detected the execution of the RMT stops and 

outliers cannot be detected. Also the %DWC and DtDWC for N2 increase with respect to 

the values obtained for N1. This causes that the MSE and %FASEPT increase for N2. 

Table 10. MSE vs N (SMN) 

N I II III IV 

24 0,027 126,355  49.88 4943,537 

30 0,022 22,113  31.08 4940,871 

40 0,016 45,927  10.54 4283,548 

50 0,013 19,834  14.02 3625,971 
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The MSE values obtained for Case I and Case IV can be considered as lower and upper bounds 

for this measure, respectively. Recall that Case I’s observations are not contaminated with 

systematic errors while Case IV’s measurements do. Because the proposed methodology has not 

been used for the last case, the presence of SEPT deteriorates the solution of the robust DR 

problem and the MSE increases. Furthermore, the MSE values for Case II show that variable 

estimates are significantly better than those achieved for Case IV. For Cases in which the 

methodology is used, acceptable performances measures are achieved for N=30.  

5.2 Heat Exchanger Network 

The operation of the HEN; which is illustrated in Figure 6. is represented by 17 mass and energy 

balance equations, which comprise 16 measured variables and 14 unmeasured ones. The standard 

deviation of flowrates and temperatures are 2% of their true values and 0.75K, respectively. 

Global performances measures for Cases II and III are presented at Tables 11 and 14. The 

individual indexes are displayed in Tables 12 and 15, the Dt for different types of SEPT are 

included in Tables 13 and 16, and Table 17 presents the MSE for all the case studies.  

Regarding Case II, satisfactory performance measures for both benchmarks are obtained for 

N=30. It should be noticed that the process model and the redundancy of the sensor network are 

different; this explains the differences on the MSE values attained for the benchmarks.  

For the HEN, the best % TDSEPT is achieved for N =24 and N =30.  However the lowest MSE is 

obtained for N =30 because the % FASEPT, the individual performance parameters and the Dt are 

better for this N. 
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Figure 6. HEN Flowsheet 

 

Table 11. Global Performance Indexes vs N - Case II (HEN) 

N %TDSEPT %FASEPT %TD MSE 

24 96,43 11,70 96,19 6,20 

30 96,43 7,63 96,59 2,12 

40 95,19 13,91 94,77 14,26 

 

Table 12. Individual Performance Indexes vs N - Case II (HEN) 

N %OC %BD %BCC %BWC %DD %DCC %DWC 

24 96,179 96,364 90,909 5,455 96,501 96,210 0,292 

30 96,599 95,325 88,571 6,753 97,668 97,668 0,000 

40 94,746 93,506 87,273 6,234 97,085 96,501 0,583 
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Table 13. Detection times vs N - Case II (HEN) 

N DtBCC DtBWC DtDCC DtDWC 

24 4 4 54.3 4 0 … 7 1 71.0 42 1 42.0 

30 4 --- --- 4 1 54.0 6 --- --- --- --- --- 

40 4 3 50.7 4 --- --- 6 3 50.7 53.5 1 70.0 

 

Regarding Case III, satisfactory performance measures for both benchmarks are obtained for 

N=40. With respect to the HEN, the best MSE is attained for N=40, and this measure decreases 

with the %TD. Some alarms of SEPT are declared just before the beginning of simulated SEPT. 

This increases the %FASEPT and diminishes the %TDSEPT, with respect to the values obtained for 

N=50, but the MSE is not significantly deteriorated because the errors are well classified and 

appropriate corrective actions are taken. Regarding N=50, the MSE increases because the 

number of simultaneous systematic errors contained in the window is larger, and this may reduce 

the accuracy of the estimates. 

 

Table 14. Global Performance Indexes vs N - Case III (HEN) 

N %TDSEPT % FASEPT %TD MSE 

30 89,56 20,68 92,34 60,37 

40 93,41 11,57 95,77 7,47 

50 94,09 8,67 95,39 13,19 
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Table 15. Individual Performance Indexes vs N - Case III (HEN) 

N % OC %BD %BCC %BWC %DD %DCC %DWC 

30 92,481 86,494 80,519 5,974 93,003 90,962 2,041 

40 95,897 90,130 82,857 7,273 97,085 95,918 1,166 

50 95,456 91,169 87,013 4,156 97,376 97,085 0,292 

 

 

Table 16. Detection times vs N - Case III (HEN) 

N DtBCC DtBWC DtDCC DtDWC 

30 4 --- --- 4 1 87 8 --- ---- 20 2 76,5 

40 4 2 53,5 4 --- --- 8 --- --- 44,5 2 61,0 

50 4 1 73,0 4 --- --- 7 --- --- 27 0 --- 

 

 

Table 17 shows the reduction on the MSE values obtained by applying the proposed 

methodology. As for the SMN benchmark, it is observed that longer windows are necessary to 

detect SEPT of small magnitude. 

Table 17. MSE vs N (HEN) 

 

 

N I II III IV 

24 0,037 6,204 102,607 587,777 

30 0,030 2,118 60,367 542,951 

40 0,022 14,257 7,474 693,657 

50 0,018 13,110 13,188 611,044 
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All the simulation studies indicate that if N≤24 the %TDSEPT is low and the SEPT cannot be 

correctly detected and classified. For larger values of N, at least the 90% of the simulated SEPT 

are detected and 80% of the measurements contaminated with biases may be corrected. For 

N=30, an adequate relation between %TDSEPT, Dt and %FASEPT is achieved.  

The proposed methodology has been applied to other case studies. For the sake of space, only 

some comments about the results obtained are included in this work next: 

1. The performance of the strategy to deal with parallel streams is tested for process whose 

operation is represented by linear systems of equations. High percentages of detection 

and correct classification are obtained when SEPT are generated with the same 

probability for each observation. The same behavior is observed if SEPT are only 

simulated for the flowrates of the parallel streams. 

2. The percentage of detection, correct classification, %TDSEPT and MSE are evaluated when 

SEPT are simulated individually for each observation. Bias magnitudes and mdrift are 

changed in the range [0 -10] and [0 - 2], respectively, and f(t) is considered a linear 

function of time. As it is expected, results show that the performance measures for each 

measured variable increase with the Observation Redundancy Index. 
19 

This result 

confirms that DR methodologies provide better estimates when the system redundancy 

increases. 

3. The proposed method can estimate the magnitude of the outlier as the difference between 

the measurement and the adjusted variable value obtained using the robust DR procedure. 

The estimation of the bias is also possible as it is previously explained. Furthermore, if it 

is assumed that the drift can be represented by a linear function of time, the slope can be 

estimated. But if this function is unknown, mdrift cannot be calculated. 

Page 45 of 50

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 39

4. In industrial scenarios process leaks can occur and may degrade the performance of the 

methodology. 

Regarding the testing procedure of the method, it is considered that the occurrence of a moderate 

quantity of outliers does not significantly affect the accuracy of the estimates if robust DR 

procedures are applied. Thus, the false alarms due to the occurrence of outliers are not tested for 

Case I. 

6. Conclusions 

This work presents a new methodology for the detection and classification of systematic 

measurement errors. Its appropriate integration with a robust DR procedure significantly 

enhances the accuracy of variable estimates. The efficacy of the proposed algorithm is analyzed 

using two well-known benchmarks. In contrast to previous works, the type of systematic error 

and the time in which it occurs are randomly simulated. Furthermore, small error magnitudes are 

considered in this work. 

The analysis of performance global measures indicates that the MSE diminishes with the 

increment of the %TD because appropriate corrective actions are taken to reduce the detrimental 

effect of systematic errors on variable estimates. Furthermore the occurrence of false alarms has 

an adverse effect on the detection of systematic errors and increases the MSE. Therefore, there is 

a tradeoff between the %TD and N  because in general the %FASEPT increases with N. 

The analysis of individual indexes demonstrates the importance of the right classification of 

SEPT. Their wrong categorization affects the MSE, especially if they are drifts. In these cases, 

erroneous corrective actions are taken and wrong information is provided to the DR procedure. 

This increments the false alarms, because once the corrective action ends, the RMT is applied 

Page 46 of 50

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 40

again to data windows containing measurements that present very different values. Some of them 

come from drifts wrong corrected and the other ones generally just contain random error. On the 

other hand, when biases are wrongly classified as drifts, the corrective action completely rejects 

the systematic error and good previous observations are considered as inputs of the robust DR; 

thus less error is introduced. 

The individual percentages of detection and classification are useful to show the performance of 

the RMT and RLR procedures, respectively, while the MSE represents the accuracy of the 

attained variable estimates. However, all these performance measures are linked, because the 

MSE gets worse under the presence of undetected or wrongly classified SEPT. For this reason, 

not just the detection of SEPT is important, the correct classification is also necessary to reduce 

the MSE. 

In this work, robust bias magnitudes are calculated. Therefore an 80% of the rectified 

observations of faulty sensors can be available until the sensor is repaired. As bias magnitudes 

are higher than those corresponding to the drifts, their estimates are more accurate and in 

consequence, the corrective action is more effective. 

For the benchmarks and cases studies under analysis, high values of the percentages of detection 

and classification are obtained for N values in the range [30- 40]. Based on this results, it can be 

concluded that N=30 is an appropriated window length to apply quick corrective actions and 

achieve high performance measures.  

The implementation issues of the method will be addressed in future works. 
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