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Abstract

We consider the evolution of electromagnetic fields coupled to conduction currents during the

reheating era after inflation, and prior to the establishing of the proton-electron plasma. We assume

that the currents may be described by second order causal hydrodynamics. The resulting theory is

not conformally invariant. The expansion of the Universe produces temperature gradients which

couple to the current and generally oppose Ohmic dissipation. Although the effect is not strong,

it suggests that the unfolding of hydrodynamic instabilities in these models may follow a different

pattern than in first order theories, and even than in second order theories on non expanding

backgrounds.
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I. INTRODUCTION

The existence of magnetic fields on galactic and larger scales is one of the main puzzles

in present day cosmology [1–3]. Neither of the two major paradigms proposed to attack this

question, namely dynamo amplification and primordial origin, seems to be able to provide

a solution by itself [4]. It therefore seems likely that both mechanisms are at work, i.e., a

seed field is generated early in the cosmic evolution and then subjected to one or several

amplification stages [5]. This calls for a careful analysis of the cosmological history of

magnetic fields [6].

Lots of efforts have been made to understand the evolution of primordial fields in the

proton-electron plasma during the radiation dominated epoch. Special mention deserves the

studies that address turbulent evolution, where fields with non-trivial topology i.e., with

non zero magnetic helicity, would not be washed out by expansion as quickly as those with

null magnetic helicity [6–8].

If we accept the existence of Inflation, then there must be a stage between it and the

establishing of the proton-electron plasma where non-equilibrium processes dominated. That

epoch is known as ‘reheating’. Moreover, electroweak (EW) and quantum-chromodynamic

(QCD) phase transitions could have taken place by the end of it. Little is known of this

epoch, besides the fact that all matter is created by the oscillatory decay of the inflaton.

For example, the typical relaxation times and correlation times of the different interactions

are not known.

In this paper we shall perform a preliminary (see below) analysis of the evolution of

magnetic fields during the reheating era [9, 10]. To this end, we shall consider that, on top

of the two dominant contributions to the energy density, namely the coherent oscillations

of the inflaton [11] and the incoherent radiation field, there is a charged fluid that may

interact non-trivially with the electromagnetic field. We do not identify this fluid with the

usual proton-electron plasma because we consider the evolution during an epoch well before

quantum-chromodynamic phase transition.

Both the coherent electromagnetic fields and the charged fluid could be created as a

side effect of reheating by the parametric amplification of vacuum fluctuations of a massive

scalar field, as it has been discussed elsewhere [7]. A suitable candidate for the massive field

could be the lightest supersymmetric partner, the s-τ [12]. We shall assume that this fluid
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supports both viscous stresses and conduction currents, namely, electric currents without

mass transport. For simplicity, we shall use Maxwell theory to describe the fields, in spite

of the fact that the temperatures involved may be above the electroweak transition.

At those early epochs the temperature and curvature of the Universe are very high and

consequently a generally relativistic treatment is mandatory. The theory of relativistic real

fluids has a long history but only relatively recently it has been put to the test, through its

application to relativistic heavy ion collisions (RHICs)[13]. Simply put, the straightforward

covariant generalization of the Navier-Stokes equations leads to the so-called first order

theories (FOTs), of which the Eckart [14] and Landau-Lifshitz [15] formulations are the best

known. These theories have severe formal problems [16] which may be solved (among several

possible strategies [17]) by going over to the so-called second order theories (SOTs)[18]. The

performance of SOTs with respect to RHICs is analyzed in [19].

There is not a single SOT framework as compelling as the Navier-Stokes equations in

the non-relativistic regime [18, 20, 21]. However, in the linearized regime they all agree in

providing a set of Maxwell - Cattaneo equations [22] for the viscous stresses and conduction

currents, while they differ in the way the transport coefficients in these equations are linked

to the underlying kinetic theory description [23–29]. For this reason in this paper we shall

consider only the linearized regime. This is what makes our analysis preliminary, because it

is likely that the most important effects of the fluid - field interaction will be connected to

nonlinear phenomena such as inverse cascades [30, 31], field - turbulence interactions [8] and

hydrodynamic instabilities [32]. However, as we shall see, already in the linearized regime

there are significant qualitative differences between SOTs and FOTs, and between SOTs on

flat and expanding backgrounds.

There is a large literature on cosmological models based on SOTs [33–36]. This literature

focused for the largest part on homogeneous models, where the interest was in how viscous

effects modified the cosmic expansion and contributed to entropy generation. These analysis

showed that there are meaningful differences between ideal, first and second order theories

even at the largest scales. To our knowledge, the application of SOTs to inhomogeneous

models is less developed than FOTs [37, 38]. This consideration also contributed to make an

analysis such as this paper a necessary first step. We note that a family of exact solutions

for the Boltzmann equation in expanding backgrounds with a well defined hydrodynamic

limit is known, which provides a helpful test bench for the theory [39].
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In summary, we shall adopt the so-called divergence type theory supplemented by the

entropy production variational principle (EPVP) as a representative SOT, but will regard

the transport coefficients as free parameters, rather than attempting to derive them from

an underlying kinetic description [40]. For this reason, our analysis is relevant to any SOT

model.

The equations of the model are the conservation laws for energy - momentum and charge,

the Maxwell equations, and the Maxwell - Cattaneo equations providing closure; for a de-

tailed derivation see [41]. In the linearized regime, these equations decouple in three sets

of modes, sound waves, incompressible shear waves, and electromagnetic waves coupled to

conduction currents. We shall consider only the latter.

We shall model the Universe during reheating as a spatially flat Friedman - Robertson -

Walker (FRW) model , whose metric in conformal time is ds2 = a2 (η) [−dη2 + dx2 + dy2 + dz2],

a (η) being the conformal factor. We shall assume for the fluid an equation of state

p = (1/3) ρ and vanishing bulk viscosity. Under these prescriptions, FOTs lead to con-

formally invariant equations [8]. Therefore the electromagnetic fields are suppressed by

a a−2 factor, on top of the hydrodynamic evolution. We shall consider the evolution of

electromagnetic fields in an environment where the temperature is higher than the QCD

phase transition temperature, i.e. a scenario where SOTs seem to correctly describe the

state of the matter.

Unlike FOTs, the equations derived from SOTs are not conformally invariant: the ex-

pansion of the Universe creates temperature gradients which couple to the fluid velocity and

conduction currents. This leads to a weaker suppression of the magnetic fields than expected

from a FOT framework. This is the main conclusion of this paper. The effect is not large,

but suggests that these SOTs models may be more sensitive to nonlinear effects, such as

hydrodynamic instabilities, than FOTs or even SOTs on non-expanding backgrounds. This

possibility will be investigated elsewhere.

The paper is organized as follows: In Section II we introduce the formalism and the

covariant equations of second order hydrodynamics. We analyze the conformal invariance

of the theory and derive the equations for the fields as well as for the viscous stress and

conduction current, showing that the latter are explicitly non conformally invariant. In

Section III we linearize the equations and propose a simple, toy model, to solve them. In

Section IV we consider the homogeneous case k = 0, that permits to study the electric field
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and conduction current separately from the magnetic field. In section V we consider super-

horizon modes of astrophysical interest, i.e., k ≪ 1, and find that the magnetic fields evolves

in a way clearly different than in FOT’s models. In Section VI we summarize and discuss

our results. We leave for the Appendix A the analysis of sub-horizon modes k ≫ 1 as they

are not as astrophysically interesting as super-horizon modes. In Appendices B and C we

quote some secondary results and technicalities for the reader interested in those details. We

work with signature (−,+,+,+) and natural units ~ = c = kB = 1, thus time and length

have dimensions of energy−1, while wavenumbers, mass and temperature units are those of

energy.

II. GENERAL RELATIVISTIC FLUID EQUATIONS

A. The equations in covariant form and their 3 + 1 decomposition

We consider a system composed by a neutral plasma plus electromagnetic field in a flat

FRW universe, whose metric in conformal time is ds2 = a2 (η) [−dη2 + dx2 + dy2 + dz2],

a (η) being the conformal factor. This form of the metric is obtained from the one written in

physical time t by defining dη = H0dt/a(t), with H0 the Hubble constant during Inflation1.

If for Inflation we consider the de Sitter prescription, aI(t) = exp (H0t), then aI (η) =

1/ (1− η) with η ≤ 0. If for reheating we accept that during that period the Universe evolves

as if it were dominated by matter [11], then aR(t) = (1 + (3/2)H0t)
2/3 and consequently

aR (η) = (1 + η/2)2. Observe that we have matched the two expressions at t = η = 0 such

that aI(0) = aR(0) = 1. As H0 is a fixed, characteristic energy scale, we can use it to build

non-dimensional quantities, as we did with conformal time, e. g. we define dimensionless

lengths and corresponding wavenumbers as l = H0ℓ and k = κ/H0. Magnetic and electric

field units are energy2 so we write B = B/H2
0 and E = E/H2

0 . To complete, we quote the

temperature T = T /H0 and the electric conductivity Σc = σc/H0. We use greek letters

to denote space-time indices, and latin letters when we deal with spatial-only components.

Besides, we use semicolons to express covariant derivatives and commas to denote partial

derivatives; in particular a ’prime’ will denote partial derivative with respect to conformal

time, i.e., A′ = ∂A/∂η To evaluate the different covariant derivatives we need the Christoffel

1 With this definition, η is already dimensionless.
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symbols, Γα
µν whose only non-null components are Γ0

00 = a′/a, Γ0
ij = a′/aδij and Γi

0j = a′/aδij.

Let uµ be the fluid four-velocity. We decompose it as

uµ = γ (Uµ + vµ) (1)

with γ =
√
1− v2. It is satisfied that uµuµ = −1 and Uµvµ = 0. Uµ is the velocity of

fiducial observers and vµ represents deviations from Hubble flow, i.e. peculiar velocities.

Each of these velocities defines a congruence of time-lines, for which there is an orthonormal

space-like surface defined through the projectors

hµν = gµν + uµuν, ∆µν = gµν + UµUν (2)

The matter is described by the energy momentum tensor, T µν , which we decompose as

T µν = T µν
0 + τµν (3)

with

T µν
0 = (ρ+ p) uµuν + pgµν (4)

and

τµν =
2

15
τF4ζ

µν (5)

the viscous stress tensor. In eq. (5), τ is a characteristic relaxation time and ζµν is a

Lagrange multiplier whose evolution equation will be given below; for τ → 0 it reduces to

the FOT dissipative shear viscous tensor. We write the electromagnetic field tensor F µν in

3 + 1 form relative to the fiducial observers as

Fµν = Aµ,ν −Aν,µ = UµEν −EµUν + ηµναβU
βBα (6)

with η0123 = [det (−gµν)]−1/2. For future use, we define εµνα = ηµναβUβ . Observe that the

electric and magnetic fields are obtained from (6) as Eµ = F µνUν and B
µ = (1/2)ηµναβUνFαβ

respectively. The electric current is

Jµ = ρqu
µ +Υµ (7)

with

Υµ =
e2

3
τF2ζ

µ (8)
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where ζµ is another Lagrange multiplier whose evolution equation is also given below, and

that for τ → 0 gives the usual Ohm’s law.

Although we shall regard Fn in eqs. (5) and (8) as free parameters, we observe that these

equations may be derived from a linearized Boltzmann equation [41], in which case they are

seen to be

Fn =

∫

Dp
f0
F

∣

∣−uλpλ
∣

∣

n
(9)

with f0 the one particle distribution function, Dp = (2π)−3/2 2d4pδ (pµpµ −m2) the integra-

tion measure (m is the mass of the plasma particles), and where F is a multiplicative factor

in the linearized collision integral. Common choices for F are Marle’s prescription [42, 43],

i.e. F = const., and the Anderson-Witting proposal [44, 45] whereby F = |uµpµ|.
Observe that in eq. (6) we defined the electromagnetic field relative to fiducial observers.

It is also with respect to this velocity that we shall define the ‘total time derivative’ or ‘dot

derivative’, namely Ȧµ = Aµ;νU
ν . The ‘total spatial derivative’ is accordingly defined as

Aµ;ν∆
ν
α.

The equations we have to solve are the conservation equations (matter coupled to the

electromagnetic field plus charge conservation), Maxwell equations and two equations that

describe the evolution of the Lagrange multipliers ζµν and ζµ. The conservation laws are

T µν
;ν = −JνF µν (10)

Jµ
;µ = 0 (11)

and Maxwell equations in covariant form read

F µν
;ν = −Jµ (12)

ηµνρσFνρ;σ = 0 (13)

To our purposes the best is to rewrite the previous equations in 3+1 form relative to

fiducial observers. This is achieved by projecting each set along Uµ and onto its orthogonal

surface described by ∆µν . The projection along Uµ is defined as [46] T µν
;νUµ = (T µνUµ);ν −

T µνUµ;ν and the one onto the orthogonal surface as T µν
;ν∆

α
µ. For the set (10) we first replace
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expression (1) in eq. (4) and define

ρ̌ = γ2 (ρ+ p)− p (14)

p̌ = = p+
1

3

(

γ2 − 1
)

(ρ+ p) (15)

q̌µ = γ2 (ρ+ p) vµ (16)

π̌µν = γ2 (ρ+ p) vµvν − 1

3

(

γ2 − 1
)

(ρ+ p)∆µν (17)

We thus write eq. (3) as

T µν = ρ̌UµUν + p̌∆µν + Uµq̌ν + Uν q̌µ + π̌µν − 2

15
τT 5ζµν (18)

For eqs. (7) plus (8) we directly obtain

Jµ = ρqγ (U
µ + vµ) +

e2

3
τT 3ζµ (19)

To find the evolution equation for the plasma we assume the equation of state p = ρ/3. For

the projection along Uµ of eq. (10) we have

1

3

[(

4γ2 − 1
)

ρ
]

,ν
Uν +

4

3

(

γ2ρvν
)

;ν
+

4

3

a′

a2
[(

4γ2 − 1
)

ρ
]

+
2

15

(

τT 5ζµν
)

;ν
Uµ

=Eν

(

γρqvν +
e2

3
τT 3ζν

)

(20)

while for the spatial projection we obtain

p,ν∆
µν +

4

3

[

γ2ρvαvν
]

;ν
∆µ

α + 5
a′

a2
q̌α∆µ

α +
1

a
q̌α′∆µ

α

− 2

15
τ ′T 5ζα0∆µ

α − 2

3
τT 4T,νζ

αν∆µ
α − 2

15
τT 5ζαν;ν ∆µ

α

=∆µ
α

[

ρqE
α +

1

a
ε̃ανρB

ρ

(

ρqvν +
e2

3
τT ζν

)]

(21)

For eq. (11) using (19) we have

γρq,µU
µ + γρq,µv

µ + ρq
[

γ2vαvα;µu
µ + γUµ

;µ + γvµ;µ
]

+e2τT 2T,µζ
µ +

e2

3
τT 3ζµ;µ = 0 (22)

As Maxwell equations are already written in terms of Uµ the projection is straightforward.

For the inhomogeneous Maxwell equations (12) we have

Eν
;ν = ρq −

e2

3
τT 3ζµUµ (23)

∆µ
αĖ

α = −2
a′

a2
∆µ

νE
ν +∆µ

αη
ανρσUσBρ;ν −∆µ

αJ
α (24)
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while for the homogeneous ones (13) we obtain

Bβ
;β = 0 (25)

1

a
∆µ

γε
γβ
αE

α
;β + 2

a′

a2
∆µ

γB
γ +∆µ

γḂ
γ = 0 (26)

We now discuss the equations for the Lagrange Multipliers ζµ and ζµν , see [40] and [41]

for details. ζµ and ζµν are transverse with respect to uµ and ζµν is also traceless, i.e. they

satisfy

ζµu
µ = 0 = ζµνu

µ, ζµµ = 0 (27)

Their evolution equations in covariant form are straightforwardly obtained from the corre-

sponding Minkowski expressions given in Ref. [41]. We obtain:

ζµ = 2
A2

A3
Fµνu

ν − τ
F4

A3
hαµζα;βu

β − 1

e2A1
(−Jαuα);β h

β
µ (28)

A4

[

ζµν + τhαµh
β
νζαβ;γu

γ
]

=
A4

T
σµν − τA5

T,βu
β

T 2
ζµν

− A5

7

τ

T

[

uα;αζµν + ζµασ
α
ν + ζανσ

α
ν − 2

3
hµνζ

(0)αβσαβ

]

(29)

with σµν = (1/2) [uµ;ν + uν;µ]−(1/3)uα;αhµν the shear tensor. In the derivation from linearized

kinetic theory the functions An are given by [41]:

An =

∫

Dp |−uαpα|n f0 (30)

We only mention this because it makes it easy to check the dimensions of Fn and An; oth-

erwise we shall regard them as free parameters. The dimensions of the different expressions

under the integrals are [f0] = 1, [Dp] = E2, [uαp
α] = E, with E meaning ’energy’ and

consequently [An] = En+2 and [Fn] = En+1. As the only energy scale of the plasma is its

temperature, we rewrite eq. (4) as

τµν =
2

15
c1τT

5ζµν (31)

and eq. (8) as

Υµ =
e2

3
c2τT

3ζµ (32)

with c1, c2 dimensionless, O(1) coefficients.
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B. Conformal Invariance

To analyze conformal invariance we begin by rewriting the coefficients in eq. (28) and

(29) as
A2

A3

=
b1
T
,

F4

A3

= b2,
1

A1

=
b3
T 3
,

A5

A4

= d1T (33)

where b1, b2, b3, d1 are again numerical, ∼ O(1) coefficients. Therefore the mentioned eqs.

read

ζµ = 2
b1
T
Fµνu

ν − b2τh
α
µζα;βu

β − b3
e2T 3

(−Jαuα);β h
β
µ (34)

1

T
σµν − d1τ

T,βu
β

T
ζµν =

[

ζµν + τhαµh
β
ν ζαβ;γu

γ
]

+
d1
7
τ

[

uα;αζµν + ζµασ
α
ν + ζανσ

α
µ − 2

3
hµνζ

(0)αβσαβ

]

(35)

We now transform the different quantities in the model according to

uµ =
ũµ

a
→ uµ = aũµ hµν =

h̃µν

a2
→ hµν = h̃µν → hµν = a2h̃µν , σµν = aσ̃µν (36)

(and similar rules for Uµ and ∆µν)

ζµ =
ζ̃µ

a2
→ ζµ = ζ̃µ; ζµν =

ζ̃µν

a2
→ ζµν = a2ζ̃µν (37)

Fµν = F̃µν → F µν =
F̃ µν

a4
(38)

and

ρ =
ρ̃

a4
, p =

p̃

a4
, ρq =

ρ̃q
a4
, Jµ =

J̃µ

a4
, T =

T0
a
, τ = aτ̃ (39)

Replacing these transformations in eqs. (18), (7), (31) and (32) we find

T µν
0 =

T̃ µν
0

a6
, τµν =

τ̃µν

a6
, Jµ =

J̃µ

a4
(40)

and the set of eqs. (20)-(21) becomes

1

3

(

4γ2 − 1
)

ρ̃′ +
4

3
γ2′ρ̃+

4

3
ρ̃γ2,j ṽ

j +
4

3
γ2ρ̃,j ṽ

j +
4

3
γ2ρ̃ṽj,j + 5τ̃ T̃ 4T̃,j ζ̃

0j + τ̃ T̃ 5ζ̃0j,j

=Ẽj

[

γρ̃q ṽj +
e2

3
τ̃ T̃ 3ζ̃j

]

(41)

1

3
ρ̃,i +

4

3

[

γ2ρ̃ṽiṽj
]

,j
+

4

3

(

γρ̃ṽi
)′ − 2

15
τ̃ ′T̃ 5ζ̃ i0 − 2

15

a′

a
τ̃ T̃ 5ζ̃ i0 − 2

3
τ̃ T̃ 4T̃,j ζ̃

ij − 2

15
τ̃ T̃ 5ζ̃ ij,j

=

[

ρ̃qẼ
i + ε̃ij kB̃

k

(

ρ̃qṽj +
e2

3
τ̃ T̃ 3ζ̃j

)]

(42)
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while for eq. (22) we have

γρ̃′q + γρ̃q,µṽ
µ + ρ̃qγ

3 [ṽ′α + ṽα,µṽ
µ] ṽα + ρ̃qγṽ

µ
,µ + e2τ̃ T̃ 2T̃,µζ

µ +
e2

3
τ̃ T̃ 3ζ̃µ,µ = 0 (43)

It is a well known result that Maxwell equations are conformally invariant. For the homo-

geneous equations it is a trivial result, and for the inhomogeneous equations it is directly

apparent from the transformation law for F µν and the last of exprs. (40). Therefore trans-

forming eqs. (23)-(26) we have

Ẽi
,i = ρ̃q +

e2

3
τ̃ T̃ 3ζ̃0 (44)

Ẽi′ = εij kB̃
k
,j − ρ̃q ṽ

i − e2

3
τ̃ T̃ 3ζ̃ i (45)

B̃i
,i = 0 (46)

B̃i′ = −εij kẼk
,j (47)

Notwithstanding, when we apply the above conformal transformations to the evolution

equations for ζµ and ζµν conformal invariance is lost. To see this, we replace uµ and F µν

from eqs. (1) and (6), and use the conformal transformations defined above to obtain

ζ̃µ = 2
b1

T̃
γ
[

Ẽµ + ŨµẼν ṽ
ν + ε̃µναB̃

αṽν
]

− τ̃ b2γh̃
α
µ

[

ζ̃α,0 −
a′

a
ζ̃α + ṽβ ζ̃α,β

]

(48)

and
[

1 + τ̃d1γ

(

T̃ ′

T̃
− a′

a

)]

ζ̃µν =
1

T̃
σ̃µν − τ̃hαµh

β
νγ
[

ζ̃ ′αβ + ζ̃αβ,j ṽ
j
]

(49)

−τ̃ d1
7

[

γ′ + γ

(

3
a′

a
+ ṽα,α

)]

ζ̃µν − τ̃
d1
7

[

ζ̃µασ̃
α
ν + σ̃α

µ ζ̃αν −
2

3
h̃µν ζ̃

(0)αβ σ̃αβ

]

In both equations, the terms proportional to a′/a do not cancel out and this fact makes

the two equations non conformal invariant. As the fields evolve coupled to this plasma, the

conservation of the magnetic flux during their early evolution is lost. To have a glimpse of

the effect of this coupling on the amplitude of the magnetic field, we shall solve the equations

in the linear regime.

III. LINEAR EVOLUTION

The system of equations that describe the evolution of the plasma is non linear. We shall

study the linear regime, that is suitable for small amplitudes. We shall also consider that the
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plasma is neutral, i.e., we assume ρ̃q = δρ̃q = 0. First order quantities are ζ̃µ, ζ̃µν, ṽj, δρ̃

and the electromagnetic field. Writing H (η) = a′/a, the linear equations read

δρ̃′ = −4

3
ρ̃0ṽ

j
,j (50)

ṽi,i = − 1

4ρ̃0
δρ̃,i +

1

10

τ̃T 5
0

ρ̃0
ζ̃ ij,j (51)

ζ̃ ′ij =
1

τ̃T0
σ̃ij +

[

4

7
d1H (η)− 1

τ̃

]

ζ̃ij (52)

ζ̃ ′i =

[

H (η)− 1

b2τ̃

]

ζ̃i +
b1

b2τ̃T0
Ẽi (53)

Ẽi′ = εij kB̃
k
,j −

e2

3
τ̃T 3

0 ζ̃
i (54)

B̃i′ = −εij kẼk
,j (55)

where we see that at this level the plasma equations have separated from the electromagnetic

equations, so from now on we concentrate only in the latter as our focus is the electromagnetic

field evolution. Before going on, observe that if we set τ̃ → 0 in eq. (53) we have that ζ̃i =

(b1/T0) Ẽi. Replacing this expression into Ampère law, eq. (54), the factor that multiplies ζ̃ i

in the last term of the r.h.s. becomes (e2/3)τ̃T 2
0 b1E

i, and recalling the constitutive relation

between electric field and density current, J̃ i = σ̃cẼ
i, we can read the expression for the

(commoving) electric conductivity:

σ̃c = b1
e2

3
τ̃T 2

0 (56)

Observe also, that due to the conformal scalings (39) the physical and commoving electric

conductivities are related in the usual way, i.e. σc = σ̃c/a. We then rewrite eq. (54) as

Ẽi′ = εij kB̃
k
,j −

T0σ̃c
b1

ζ̃ i (57)

To go on we change the time dependence from η to u = (1 + η/2), whence d/dη =

(1/2)d/du and H = 1/u. Assuming incompressible evolution and transforming Fourier we

get

dζ̃ i
(

k̄, u
)

du
= −2

[

1

b2τ̃
− 1

u

]

ζ̃ i
(

k̄, u
)

+
2b1

b2τ̃ T̃0
Ẽi
(

k̄, u
)

(58)

dẼi′
(

k̄, u
)

du
= 2iεij kk

jB̃k
(

k̄, u
)

− 2T0σ̃c
b1

ζ̃ i
(

k̄, u
)

(59)

dB̃i
(

k̄, u
)

du
= −2iεij kk

jẼk
(

k̄, u
)

(60)
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We shall not attempt to solve system (58)-(59) numerically, as this would oblige us to

stick to a specific range of parameters. Instead, to have a glimpse of how the system behaves

we assume a simple configuration given by

k̄ = kž, B̃i = B̃yy̌, Ẽi = Ẽxx̌, ζ̃i = ζ̃xx̌ (61)

Defining the matrices

Λ =











ζ̃x

Ẽx

B̃y











(62)

and

Ξ =











1
b2τ

− b1
b2

1
τT0

0

σ̃cT0

b1
0 ik

0 ik 0











, H =











1
u

0 0

0 0 0

0 0 0











(63)

the system of equations for the electromagnetic sector can be written in matrix form as

Λ′ + 2ΞΛ = 2HΛ (64)

where now a ’prime’ denotes derivative with respect to u, i.e., ′ = d/du. In spite of its

simple form, it is rather difficult to solve eq. (64) exactly, except for the homogeneous

mode, k = 0. We begin by solving this case and then consider perturbatively the case

k ≪ 1, that corresponds to modes well outside the particle horizon as e.g., the galactic

scale. The solution for modes k ≫ 1 is given in Appendix A.

To appreciate the features of the SOT evolution, it is convenient to keep in mind their

behavior in the τ̃ → 0 limit, whereby the model reduces to a FOT. In that case system

(58)-(60) plus (56) and model (61) reduces to

Ẽ (k, u)

du
= 2ikB̃ − 2σ̃cẼ (65)

B̃i (k, u)

du
= −2ikẼ (66)

and this (conformally invariant) system can be combined to give a wave equation whose

solutions are the exponentials e−2γ(±)u with γ(±) = σ̃c/2±
√

σ̃2
c/4− k2. Observe that when

k → 0, γ(+) → σc and γ(−) → 0. The second solution describes the “frozen” magnetic field,

and the first the “discharge” of the electric field due to the resistivity of the plasma. If k 6= 0

we have the well known pure exponential decay.
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IV. ANALYTIC SOLUTION FOR THE HOMOGENEOUS MODE K = 0

In the k = 0 case, eqs. (64) may be solved in closed form. We then begin by putting

k = 0 in matrix Ξ and the r.h.s. of eq. (64) equal to zero. Proposing as solution a time

dependence of the form Λi (η) = Λ(0)i exp
(

−2λ(0)u
)

and imposing that the determinant of

the resulting system be zero we obtain the eigenvalue equation:

λ(0)2
(

1

b2τ
− λ(0)

)

− σ̃c
b2τ

λ(0) = 0 (67)

whose solutions are

λ
(0)
(0) = 0 (68)

λ
(0)
(±) =

1

2b2τ̃

(

1±
√

1− 4b2τ̃ σ̃c

)

(69)

Observe that there exists a critical relaxation time, τ̃c = 1/ (4b2σ̃c). Also, and more impor-

tantly, when τ̃ → 0 we have that λ(−) → σ̃c while λ(+) blows out. Therefore λ
(0)
(0) and λ

(0)
(−)

converge to the roots of the FOT model. The corresponding eigenvectors are

Λ
(0)
(0) =











0

0

1











, Λ
(0)
(+) =











1

σ̃cT0

b1λ(+)

0











, Λ
(0)
(−) =











1

σ̃cT0

b1λ(−)

0











(70)

To find the solution of the inhomogeneous equation we propose

Λi = a(0) (u) Λ
(0)
(0) + a(+) (u) Λ

(0)
(+)e

−2λ
(0)
(+)

u
+ a(−) (u) Λ

(0)
(−)e

−2λ
(0)
(−)

u
(71)

and substitute in eq. (64). For a(0) (η) it is straightforwardly obtained that a(0) (η) = const.

Recalling that this coefficient corresponds to Λ(0), and that this eigenvector represents the

magnetic field, this means the obvious result that the commoving field remains constant and

consequently the physical magnetic intensity will decay as ∝ a−2 (η). The other coefficients

satisfy

a′(+) =
λ
(0)
(+)

∆λ(0)
2

u

[

a(+) + a(−)e
2∆λ(0)u

]

(72)

a′(−) = −
λ
(0)
(−)

∆λ(0)
2

u

[

a(+)e
−2∆λ(0)u + a(−)

]

(73)

with ∆λ(0) = λ
(0)
(+) − λ

(0)
(−). System (72)-(73) can be reduced to

a(+) = −
[

∆λ(0)

λ
(0)
(−)

u

2
a′(−) + a(−)

]

e2∆λ(0)u (74)
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plus an equation for a(−):

a′′(−) +

[

2∆λ(0) − 1

u

]

a′(−) + 4
λ
(0)
(−)

u
a(−) = 0 (75)

which through the change of variable z = −2∆λ(0)u can be rewritten as a Kummer equa-

tion, whose solutions are the Confluent Hypergeometric functions [47, 48]. Two linearly

independent solutions of this equation are [47, 48] a
(1)
(−)(u) = U

(

2λ
(0)
(−)/∆λ

(0),−1,−2∆λ(0)u
)

and a
(2)
(−)(u) = e−2∆λ(0)uU

(

−1 − 2λ
(0)
(−)/∆λ

(0),−1, 2∆λ(0)u
)

. For the given parameters, both

functions converge for u → 0 and u → ∞ [48]. Therefore we write a(−)(u) = αa
(1)
(−)(u) +

βa
(2)
(−)(u), with α and β constants to be determined by the initial conditions.

Before analyzing asymptotic behaviors it is important to establish the (conformal) time

interval where the evolution takes place. As said before, we are considering conduction

currents, which are likely to be made of the lightest supersymmetry particle s-τ . This

means that we are considering times before the establishing of the standard electron-proton

plasma, which we can estimate as being the time of the QCD phase transition. Moreover, we

are interested in the final states of the magnetic evolution coupled to this current, because

it would give the initial conditions for the subsequent evolution of the field in the standard

proton-electron plasma. If we take the standard value of the Hubble constant during Inflation

H = 1012 GeV and the Planck mass as mpl ≃ 1019 GeV, we estimate the temperature at

the onset of reheating as Trh =
√

Hmpl ≃ 1015 GeV. This plasma cools down due to the

expansion as a−1
R = u−2. The electroweak phase transition took place at a temperature

scale of TEW ∼ 102 GeV, therefore the dimensionless, conformal time elapsed since the

onset of reheating can be estimated as ∆u(R−EW ) ≃
√

TRH/TEW ≃ 106 ≫ 1. Moreover, if

we consider the QCD phase transition, for which TQCD ∼ 10−1 GeV, then ∆u(R−QCD) ≃
√

TRH/TQCD ≃ 108 ≫ 1. Therefore to find the sought initial values for the subsequent

evolution in the radiation era, we can safely take the limit u≫ 1 ∼ ∞ throughout.

When u → ∞ the Confluent Hypergeometric functions can be always approximated as

[47, 48] U(a, b, z) ∼ z−a, and as e
−2λ

(0)
(+)

u ≪ e
−2λ

(0)
(−)

u
we get

ζ̃ (u → ∞) ∼ α
(

−2∆λ(0)u
)−2λ

(0)
(−)

/∆λ(0)

e
−2λ

(0)
(−)

u
(76)

and

Ẽ (u→ ∞) ∼ α
T0
b1

σ̃c
λ(−)

(

−2∆λ(0)u
)−2λ

(0)
(−)

/∆λ(0)

e
−2λ

(0)
(−)

u
(77)
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We see that ζ ∝ (b1/T0)E. Observe that for τ̃ > τ̃c the solution becomes oscillatory. This

behavior has no analog in FOT’s. However, if we take the limit τ̃ → 0 in eq. (77), where

λ
(0)
(−)/∆λ

(0) → 0 and λ
(0)
(−) → σ̃c, we recover the FOT results.

V. NON-HOMOGENEOUS MODE K ≪ 1

Although the homogeneous mode has the appeal of affording a full analytical solution, it

is clearly not very interesting from the cosmological point of view. In this section we shall

consider the set of modes which are most relevant to cosmology, namely modes which are

far beyond the horizon at reheating, k ≪ 1. Now the magnetic field is no longer decoupled

from the electric field, and we expect to find some feedback from the latter on the former,

eventually reducing the cosmological a−2 suppression and the exponential decay found in

the FOT analysis. We shall not attempt a full solution, but rather analyze the asymptotic

behavior of the magnetic field.

To solve for k 6= 0 we begin by solving perturbatively the eigenvalue equation detΞ = 0.

λ(k)2
(

λ(k) − 1

b2τ

)

+
σ̃c
b2τ

λ(k) = −
(

λ(k) − 1

b2τ

)

k2 (78)

by proposing

λ(k) = λ(0) + λ(2)k2 + · · · (79)

After replacing (79) into (78) and keeping terms up to order k2 we find

λ
(2)
(0) =

1

σ̃c
(80)

λ
(2)
(±) =

λ
(0)
(∓)

λ
(0)2
(±) − λ

(0)
(+)λ

(0)
(−)

(81)

with λ
(0)
(+)λ

(0)
(−) = σ̃c/(b2τ̃ ). To find the eigenvectors we again set to zero the r.h.s. of eq (64),

and propose the new eigenvectors as linear combinations of the k = 0 ones, i.e.,

Λ(k) = a(0)(k)Λ
(0)
(0) + a(+)(k)Λ

(0)
(+) + a(−)(k)Λ

(0)
(−) (82)

The results are shown in Appendix B.

To solve the time evolution we rewrite eq. (64) as

u

[

d

du
Λi + 2Ξi

jΛ
j

]

= 2δi1δ
1
jΛ

j (83)
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In the above equation, upper index in Ξ denotes row while lower index denotes column.

Keeping in mind that the physical range of u starts at u = 1, we Laplace transform Λi as

F i(s) =

∫ ∞

0

du e−suΛi(u) (84)

and so eq. (83) becomes

− d

ds

[

sF i(s)− Λi(0) + 2Ξi
jF

j(s)
]

= 2δi1δ
1
jF (s)

j (85)

As the term involving the initial condition vanishes upon deriving we obtain

d

ds

[

Θ(s)ijF
j(s)

]

= −2δi1δ
1
jF (s)

j (86)

where we have defined

Θ(s)ij = 2Ξi
j + sδij (87)

We now introduce the inverse matrix of Θ(s)ij, M(s)ij , i.e.

Θ(s)ijM(s)jk = δik (88)

and define a new variable K(s)i such that

F i(s) =M(s)ijK(s)j (89)

Replacing in eq. (86) we obtain the following equation for K(s)i:

d

ds

[

Ki(s)
]

= −2δi1M(s)1kK(s)k (90)

We see that for i = 2, 3 the solutions are constants. For i = 1 we have

dK1(s)

ds
+ 2M1

1 (s)K
1(s) = −2M1

2 (s)K
2 − 2M1

3 (s)K
3 (91)

Previously, we have solved the eigenvector equation for the homogeneous system, i.e.,

Ξi
jΛ

(k)j
(α) = λ

(k)
(α)Λ

(k)i
(α) with α = 0, +, − (no sum over greek indices). To avoid cumbersome

notation from now on the label (k) is omitted. There exists the inverse matrix to Λi
(α), Π

(α)
i ,

i.e.

Π
(β)
j Λj

(α) = δ
(β)
(α) (92)

that also satisfies
∑

α

Λi
(α)Π

(α)
j = δij (93)
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Using this result we can write Ξi
j as

Ξi
j =

∑

(α)

λ(α)Λ
i
(α)Π

(α)
j (94)

from where we can write the matrix M i
j as

M i
j(s) =

∑

α

Λi
(α)

(

s+ 2λ(α)
)−1

Π
(α)
j (95)

We now solve eq. (91). The homogeneous solution is straightforwardly obtained and reads

K1
hom(s) =

∏

α

(s+ 2λα)
−2A(α) (96)

with

A(α) = Λ1
(α)Π

(α)
1 (97)

(no sum over α). Observe that using relation (93), A(α) satisfies

∑

(α)

A(α) = 1 (98)

To find the inhomogeneous solution we propose K1
I (s) = L(s)K1

hom(s) and after substi-

tuting in eq. (91) we find the following evolution equation for L(s):

d

ds
L(s) = −2

[

M1
2 (s)K

2 +M1
3 (s)K

3
]

∏

α

(s+ 2λα)
2Aα (99)

Up to here, all the developments have been exact. However, to find solutions that rep-

resent the resulting field after the evolution in the reheating plasma, we must solve (99) in

the asymptotic range s→ 0 (i.e., u→ ∞).

A. Solutions for s → 0 (u → ∞):

We now look into the small s limit. We begin by recalling that one of the eigenvalues,

λ(0) goes to zero as k → 0, while the other two λ(+) and λ(−) remain finite. Therefore for

small enough s we can take s ≪ λ(±), but we cannot assume s ≤ λ(0). Therefore, retaining

this last eigenvalue explicitly, we get (up to an unessential constant)

K1
hom (s) ≈

(

s+ 2λ(0)
)−2A(0) (100)
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and

M (s)ik =
(

[2Ξ]−1)i

k
+ Λi

0Π
0
k

[

(

s+ 2λ(0)
)−1 −

(

2λ(0)
)−1
]

(101)

with

[2Ξ]−1 =











b2τ̃
2

0 − ib1
2kT0

0 0 − i
2k

ib2τ̃T0σ̃c

2b1k
− i

2k
σ̃c

2k2











(102)

The solution of the inhomogeneous equation now reads

L (s) =
−2

2A0 + 1

{[

(

[2Ξ]−1)1

2
− Λ1

(0)Π
(0)
2

(

2λ(0)
)−1
]

K2

+
[

(

[2Ξ]−1)1

3
− Λ1

(0)Π
(0)
3

(

2λ(0)
)−1
]

K3
}

(s+ 2λ0)
2A0+1

− 1

A0

[

Λ1
0Π

0
2K

2 + Λ1
0Π

0
3K

3
]

(s+ 2λ0)
2A0 +K0 (103)

whereby

K1 (s) = L (s)Khom (s)

=
−2

2A0 + 1

{[

(

[2Ξ]−1)1

2
−

Λ1
(0)Π

(0)
2

2λ(0)

]

K2 +

[

(

[2Ξ]−1)1

3
−

Λ1
(0)Π

(0)
3

2λ(0)

]

K3

}

(

s+ 2λ(0)
)

− 1

A(0)

[

Λ1
(0)Π

(0)
2 K2 + Λ1

(0)Π
(0)
3 K3

]

+K0 (s+ 2λ0)
−2A(0) (104)

The different functions then read

F i =M i
j(s)K

j(s) =
(

[2Ξ]−1)i

1
K1(s) +

(

[2Ξ]−1)i

2
K2(s) +

(

[2Ξ]−1)i

3
K3(s)

+

[

1

s+ 2λ(0)
− 1

2λ(0)

]

Λi
0

[

Π0
1K

1 +Π0
2K

2 +Π0
3K

3
]

(105)

Our main interest is F 3 as it is directly related to the magnetic field. The calculations are

long but straightforward and are shown in Appendix C. The result is

F 3 ≃ − Λ3
0Π

0
1

(s+ 2λ0)

1

A(0)

[

Λ1
(0)Π

(0)
2 K2 + Λ1

(0)Π
(0)
3 K3

]

+
Λ3

0Π
0
1

(s+ 2λ0)
1+2A(0)

K0

+
Λ3

0Π
0
3

(s+ 2λ0)
K3 +

Λ3
0Π

0
2

(s+ 2λ0)
K2 (106)

The calculation of elements Πi
j is also rather long but straightforward, here we quote the

one in the term with K0 as this term gives the main contribution. It reads Π0
1 = ikb2τ̃T0/b1,

and we then have

F 3 ≃ b2τ̃T0K
0

b1 (s+ 2λ0)
1+2A(0)

ik (107)
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where A(0) ≃ b2τ̃k
2/σ̃c > 0. The corresponding anti-transformed function is

B(k)
y (u) ∼

[

b2τ̃T0K
0

b1
iku2A(0) +O

(

1

u

)]

exp [−2λ0u] (108)

Observe that due to the presence of the factor u2A(0) the magnetic field decays slower than

the exponential law of FOTs, even at large times.

VI. CONCLUSIONS

In this paper we have studied the evolution of electromagnetic fields coupled to conduction

currents during the reheating era, using second order causal hydrodynamics to describe

the evolution of the currents. The evolution of the magnetic field occurs well before the

EW phase transition, during an epoch where the standard proton-electron plasma is not

established yet; the conduction currents we consider are likely to be made of the lightest

supersymmetric partner s-τ . The main motivation behind the choice of SOTs is the well

known fact that first order theories (as e.g. relativistic Navier Stokes equation) have severe

problems of causality and have no stable equilibrium states. Also, SOTs behave quite well

at describing RHICs [13, 19], where a plasma much like the one in the very early Universe

is supposed to be created. Thus, although there is not a preferred SOT framework yet,

it is important to begin to study different plasma effects in the early Universe using those

formalisms extended to general relativity. We adopted the so-called divergence type theory

plus the entropy production variational principle (EPVP) as a representative SOT, but

regarded the transport coefficients as free parameters, rather than attempting to derive

them from an underlying kinetic description [40]. In this sense our analysis is relevant to

any SOT model. When extended to General Relativity, we found that the resulting theory

is not conformally invariant: the Maxwell-Cattaneo equations that describe the viscous

stresses and conduction currents lost this symmetry. As these equations are coupled to

Maxwell equations, the consequence is that the magnetic flux is not suppressed by the

expansion as quickly as in the Navier-Stokes theory. This might provide higher intensities

as initial conditions for the subsequent evolution during radiation dominance. The physical

explanation is that the expansion of the Universe produces temperature gradients which

couple to the current and generally oppose dissipation.

To pursue the analysis we considered only the linear evolution because in this regime
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all SOTs agree in providing the set of Maxwell - Cattaneo equations. Our goal was to

identify the qualitative differences between FOTs and SOTs, this is the reason why we did

not attempt to give numerical estimates of the resulting amplitudes. We have found that

the field decay in the homogeneous mode may be oscillatory. Even in the purely decaying

regime, for inhomogeneous modes there is a power-like correction to exponential decay, with

a positive exponent. This suggests that the unfolding of hydrodynamic instabilities in these

models follows a different pattern than in first order theories, and even than in second

order theories on non expanding backgrounds. The study of the non-linear hydrodynamic

instabilities is the next step in the research of primordial magnetic fields evolution within

SOTs.
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Appendix A: Large k modes

Although small scales are of little astrophysical interest concerning galactic magnetism,

for completion we devote this appendix to analyze their evolution with the formalism con-

sidered in the paper. Moreover, in this case the mathematics is much simpler. We shall see

that the effect of the relaxation time τ is to add damping, while the effects of conformal

invariance breaking is to add a slight amplification of the magnetic field if the temperature

(and therefore the conductivity) is low enough. The equations were

dζ̃

du
+

[

2

b2τ
− 2

u

]

ζ̃ − 2b1
b2τ̃T0

Ẽ = 0 (A1)

dẼ

du
+ 2ikB̃ +

2σ̃cT0
b1

ζ̃ = 0 (A2)

dB̃

du
+ 2ikẼ = 0 (A3)
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It is convenient to introduce E = Ẽ + B̃ and B = B̃ − Ẽ to get

dζ̃

du
+

[

2

b2τ
− 2

u

]

ζ̃ − 2b1
2b2τ̃T0

(E − B) = 0 (A4)

dE
du

+ 2ikE +
2σ̃cT0
b1

ζ̃ = 0 (A5)

dB
du

− 2ikB − 2σ̃cT0
b1

ζ̃ = 0 (A6)

Now we write

E = E0e−i2ku (A7)

B = B0e
i2ku (A8)

ζ̃ = ζ̃+e
i2ku + ζ̃−e

−i2ku (A9)

with the understanding that the pre-exponentials are all slowly varying functions of time.

Collecting positive and negative frequency oscillations we get

ζ̃+
du

+

[

2ik +
2

b2τ
− 2

u

]

ζ̃+ +
b1

b2τ̃T0
B0 = 0 (A10)

dB0

du
− 2σ̃cT0

b1
ζ̃+ = 0 (A11)

and

dζ̃−
du

+

[

−2ik +
2

b2τ
− 2

u

]

ζ̃− − b1
b2τ̃T0

E0 = 0 (A12)

dE0
du

+
2σ̃cT0
b1

ζ̃− = 0 (A13)

Leading to

d2B0

du2
+

[

2ik +
2

b2τ̃

]

dB0

du
+
σ̃c
b2
B0 =

2

u

dB0

du
(A14)

d2E0
du2

+

[

−2ik +
2

b2τ̃

]

dE0
du

+
σ̃c
b2
E0 =

2

u

dE0
du

(A15)

Let us analyze the equation for B0. Setting the r.h.s. of eq. (A14) to zero, the solutions are

eiωu with

ω2 +

[

2k − 2i

b2τ

]

ω − σ̃c
b2τ̃

= 0 (A16)

The roots are

ω± =
1

2



±

√

(

2k − 2i

b2τ

)2

+
σ̃c
b2τ̃

−
(

2k − 2i

b2τ

)



 (A17)
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The slowly varying solution being ω+. Therefore we postulate

B0 = aeiω+u + beiω−u (A18)

to get

da

du
eiω+u +

db

du
eiω−u = 0 (A19)

ω+
da

du
eiω+u + ω−

db

du
eiω−u =

2

u

(

ω+ae
iω+u + ω−be

iω−u
)

(A20)

which for b≪ a becomes

da

du
=

2ω+

(ω+ − ω−) u
a (A21)

db

du
=

−2ω+

(ω+ − ω−) u
aei(ω+−ω−)u (A22)

whose solution for a is

a = uα with α =
2ω+

ω+ − ω−

(A23)

Therefore we get

B0 ≈ exp

{

iω+

[ −2i

ω+ − ω−

ln u+ u

]}

(A24)

When k is very large we have

ω+ =
iσ̃c
2

1

1 + ikb2τ̃
(A25)

so

Re iω+ =
−σ̃c
2

1

b22τ̃
2k2 + 1

(A26)

and
2ω+

ω+ − ω−

= − b2τ σ̃c

[1 + ikb2τ̃ ]
2 (A27)

therefore

Re
2ω+

ω+ − ω−

= b2τ̃ σ̃c
b22τ

2k2 − 1

[b22τ
2k2 + 1]

2 (A28)

We may write

|B0| ≈ exp {∆ [uc ln u− u]} (A29)

where

uc = 2b2τ̃
b22τ̃

2k2 − 1

b22τ̃
2k2 + 1

(A30)

∆ =
σ̃c
2

1

b22τ
2k2 + 1

(A31)
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B0 grows up to uc with an amplification factor

∣

∣

∣

∣

B0 (uc)

B0 (ui)

∣

∣

∣

∣

= exp {∆uc [ln (uc/ui)− 1 + ui/uc]} (A32)

Of course, provided uc > ui. For all practical purposes, the amplification is

∣

∣

∣

∣

B0 (uc)

B0 (ui)

∣

∣

∣

∣

= exp

{

1

b2τ̃

σ̃c
k2

}

(A33)

Appendix B: Eigenvectors for k ≪ 1

After long but straightforward calculations the eigenvectors for the perturbatively cor-

rected eigenvalues are:

Λ
(k)
(0) =











− b1ik
σ̃cT0

− ik
σ̃c

1











, λ
(k)
(0) =

k2

σ̃c
(B1)

Λ
(k)
(+) =















1− λ
(0)
(−)

λ
(0)
(+)

k2

∆λ(0)2

σ̃cT0

b1λ
(0)
(+)

[

1− k2

∆λ(0)2

]

σ̃cT0

b1λ
(0)2
(+)

ik















, λ
(k)
(+) = λ

(0)
(+) +

λ
(0)
(−)k

2

λ
(0)2
(+) − λ

(0)
(+)λ

(0)
(−)

(B2)

Λ
(k)
(−) =















1− λ
(0)
(+)

λ
(0)
(−)

k2

∆λ(0)2

σ̃cT0

b1λ
(0)
(−)

[

1− k2

∆λ(0)2

]

σ̃cT0

b1λ
(0)2
(−)

ik















, λ
(k)
(−) = λ

(0)
(−) +

λ
(0)
(+)k

2

λ
(0)2
(−) − λ

(0)
(+)λ

(0)
(−)

(B3)

Appendix C: Solving for F 3

Explicitly we have

F 3 =

[

(

[2Ξ]−1)3

1
− Λ3

0Π
0
1

2λ0

]

K1 +
Λ3

0Π
0
1

s+ 2λ0
K1

+

[

(

[2Ξ]−1)3

3
− Λ3

0Π
0
3

2λ0

]

K3 +
Λ3

0Π
0
3

s+ 2λ0
K3

+

[

(

[2Ξ]−1)3

2
− Λ3

0Π
0
2

2λ0

]

K2 +
Λ3

0Π
0
2

s+ 2λ0
K2 (C1)
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Replacing the different expressions we obtain

F 3 ≈
[

(

[2Ξ]−1)3

1
− Λ3

0Π
0
1

2λ0

]

{

−2

2A0 + 1

[(

(

[2Ξ]−1)1

2
−

Λ1
(0)Π

(0)
2

2λ(0)

)

K2

+

(

(

[2Ξ]−1)1

3
−

Λ1
(0)Π

(0)
3

2λ(0)

)

K3

]

(

s + 2λ(0)
)

− 1

A(0)

[

Λ1
(0)Π

(0)
2 K2 + Λ1

(0)Π
(0)
3 K3

]

+
K0

(s+ 2λ0)
2A(0)

}

+
Λ3

0Π
0
1

(s+ 2λ0)

{

−2

2A0 + 1

[(

(

[2Ξ]−1)1

2
−

Λ1
(0)Π

(0)
2

2λ(0)

)

K2

+

(

(

[2Ξ]−1)1

3
−

Λ1
(0)Π

(0)
3

2λ(0)

)

K3

]

(

s + 2λ(0)
)

− 1

A(0)

[

Λ1
(0)Π

(0)
2 K2 + Λ1

(0)Π
(0)
3 K3

]

+
K0

(s+ 2λ0)
2A(0)

}

+

[

(

[2Ξ]−1)3

3
− Λ3

0Π
0
3

2λ0

]

K3 +
Λ3

0Π
0
3

(s+ 2λ0)
K3 +

[

(

[2Ξ]−1)3

2
− Λ3

0Π
0
2

2λ0

]

K2

+
Λ3

0Π
0
2

(s+ 2λ0)
K2 (C2)

To find the corresponding time dependent function, observe that we can write

∫ ∞

0

du uα e−(s+2λ(0))u =
Γ (α+ 1)

(

s+ 2λ(0)
)α+1 (C3)

If α → −n the integral diverges for u → 0. But as we are interested in the late behavior

of the fields it is legitimate to compute the limit when α → −n and discard the divergent

term (that corresponds to times out of the interval of validity of the approximations made

in this paragraph). This we do by adding an ’infrared’ cut-off. We then have

Jn(s) ≡
∫ ∞

0

du u−n+ǫ e−(s+2λ(0))u = Γ (1− n+ ǫ)
(

s+ 2λ(0)
)n−1−ǫ

(C4)

where ǫ a small parameter. Developing in Laurent series around the pole we have

Jn(s) ≃
(−1)n

n!

[

1 + ǫ ln

(

s+ 2λ(0)
µ

)] [

1

ǫ
+ ψ (n+ 1)

]

(

s + 2λ(0)
)n−1

≃ (−1)n

n!

[

ln

(

s+ λ(0)
µ

)

+ ψ (n + 1)

]

(

s+ 2λ(0)
)n−1

(C5)

with µ a renormalization constant and ψ = Γ′/Γ. Finally, for s→ 0 we have

∫ ∞

0

du u−n+ǫ e−(s+2λ(0))u → (−1)n

n!

[

ln

(

2λ(0)
µ

)

+ ψ (n+ 1)

]

(

s+ 2λ(0)
)n−1

(C6)
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To apply this result to eq. (C2) we observe that A(0) ≃ b2τ̃ k
2/σ̃c ≪ 1, and therefore can be

discarded in front of 1. The Laplace anti-transformed different terms that appear in expr.

(C2) can then be approximated as

(

s+ 2λ(0)
)−1 →

[

ln

(

λ(0)
µ

)

+ ψ (1)

]−1

e−2λ(0)u (C7)

(

s+ 2λ(0)
)

→ 2

u2

[

ln

(

2λ(0)
µ

)

+ ψ (3)

]−1

e−2λ(0)u (C8)

const→ −1

u

[

ln

(

2λ(0)
µ

)

+ ψ (2)

]−1

e−2λ(0)u (C9)

and we see that the contribution that gives the slower decay comes from correspondence

(C7). We then keep only those terms, obtaining

F 3 ≃ − Λ3
0Π

0
1

(s+ 2λ0)

1

A(0)

[

Λ1
(0)Π

(0)
2 K2 + Λ1

(0)Π
(0)
3 K3

]

+
Λ3

0Π
0
1

(s+ 2λ0)
1+2A(0)

K0

+
Λ3

0Π
0
3

(s+ 2λ0)
K3 +

Λ3
0Π

0
2

(s+ 2λ0)
K2 (C10)

The calculation of elements Πi
j is rather long but straightforward, here we quote the one in

the term with K0 as this term gives the main contribution. It reads Π0
1 = ikb2τ̃T0/b1, and

we then have

F 3 ≃ b2τ̃T0K
0

b1 (s+ 2λ0)
1+2A(0)

ik (C11)

Leaving aside the constant factor in expr. (C7) the corresponding anti-transformed function

is

B(k)
y (u) ∼

[

b2τ̃T0K
0

b1
iku2A(0) +O

(

1

u

)]

exp [−2λ0u] (C12)
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tic ChapmanEnskog solution of the Boltzmann equation, Physica A 387 (2008) 5073

[arXiv:0708.3252].

[23] A. Jaiswal, Relaxation-time approximation and relativistic viscous hydrodynamics from kinetic

29

http://arxiv.org/abs/0804.4015
http://arxiv.org/abs/gr-qc/9708048
http://arxiv.org/abs/hep-ph/0012375
http://arxiv.org/abs/0708.3252


theory, Nucl.Phys. A 931 (2014) 1205 [arXiv:1407.0837]; Relativistic third-order dissipative

fluid dynamics from kinetic theory, Phys.Rev. C 88 (2013) 021903 [arXiv:1305.3480]; For-

mulation of relativistic dissipative fluid dynamics and its applications in heavy-ion collisions

[arXiv:1408.0867];

A. Jaiswal, R. S. Bhalerao and S. Pal, Complete relativistic second-order dissipative hydrody-

namics from the entropy principle, Phys Rev. C 87 (2013) 021901(R) [arXiv:1302.0666];

C. Chattopadhyay, A. Jaiswal, S. Pal, and R. Ryblewski, Relativistic third-order viscous cor-

rections to the entropy four-current from kinetic theory [arXiv: 1411.2363].

[24] K. Tsumura and T. Kunihiro, Causal Hydrodynamics From Kinetic Theory By Doublet Scheme

In Renormalization-Group Method, [arXiv: 1311.7059].

[25] G. S. Denicol, T. Koide, and D. H. Rischke,Dissipative relativistic fluid dynamics: a new way

to derive the equations of motion from kinetic theory, Phys. Rev. Lett. 105 (2010) 162501

[arXiv:1004.5013];

G. S. Denicol, E. Molnár, H. Niemi and D. H. Rischke, Derivation of fluid dynamics

from kinetic theory with the 14 moment approximation, Eur. Phys. J. A 48 (2012) 170

[arXiv:1206.1554].

[26] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets and M. A. Stephanov, Relativistic viscous

hydrodynamics, conformal invariance, and holography, JHEP 04 (2008) 100 [arXiv:0712.2451].

[27] M. Takamoto, S. Inutsuka, The relativistic kinetic dispersion relation: Comparison of the

relativistic Bhatnagar-Gross-Krook model and Grad’s 14-moment expansion, Physica A 389

(2010) 4580 [arXiv:1006.2663].

[28] X. Huang and T. Koide, Shear viscosity, Bulk viscosity and relaxation times of causal dissi-

pative relativistic fluid-dynamics at finite temperature and chemical potential, Nucl. Phys. A

889 (2012) 73 [arXiv:1105.2483].

[29] M. Martinez and M. Strickland, Dissipative dynamics of highly anisotropic systems, Nuc. Phys.

A 848 (2010) 183 [arXiv:1007.0889];

M. Martinez and M. Strickland, Non-boost-invariant anisotropic dynamics, Nuc. Phys. A 856

(2011) 68 [arXiv:1011.3056];

M. Strickland, Anisotropic hydrodynamics: three lectures, Act. Phys. Pol. B 45 (2014) 2355

[arXiv:1410.5786].

[30] A. Brandenburg, T. Kahniashvili and A. G. Tevzadze, Nonhelical inverse transfer of a decaying

30

http://arxiv.org/abs/1407.0837
http://arxiv.org/abs/1305.3480
http://arxiv.org/abs/1408.0867
http://arxiv.org/abs/1302.0666
http://arxiv.org/abs/1004.5013
http://arxiv.org/abs/1206.1554
http://arxiv.org/abs/0712.2451
http://arxiv.org/abs/1006.2663
http://arxiv.org/abs/1105.2483
http://arxiv.org/abs/1007.0889
http://arxiv.org/abs/1011.3056
http://arxiv.org/abs/1410.5786


turbulent magnetic field, [arXiv: 1404.2238].

[31] A. Berera and M. Linkmann, Magnetic helicity and the evolution of decaying magnetohydro-

dynamic turbulence, Phys. Rev. E 90 (2014) 041003 [arXiv: 1405.6756].

[32] S. Mrowczynski, Plasma instability at the initial stage of ultra-relativistic heavy ion collisions,

Phys. Lett. B 314 (1993) 118;

S. Mrowczynski and M. H. Thoma, What do electromagnetic plasmas tell us about the quark-

gluon plasma?, Annu. Rev. Nucl. Part. Sci. 57 (2007) 61 [arXiv:nucl-th/0701002];

B. Schenke, M. Strickland, C. Greiner, and M. H. Thoma, Model of the effect of collisions on

QCD plasma instabilities, Phys. Rev. D 73 (2006) 125004 [arXiv:hep-ph/0603029];

M. Attems, A. Rebhan, and M. Strickland, Instabilities of an anisotropically expanding non-

Abelian plasma: 3D+3V discretized hard-loops simulations, Phys. Rev. D 87 (2013) 025010

[arXiv:1207.5795];

M. Mannarelli and C. Manuel, Chromohydrodynamical instabilities induced by relativistic

jets, Phys. Rev. D 76 (2007) 094007 [arXiv:0705.1047]; Jet-induced gauge field instabili-

ties in the quark-gluon plasma: a kinetic theory approach, Phys. Rev. D 77 (2008) 054018

[arXiv:0707.3893];

J. Peralta-Ramos and E. Calzetta, Hydrodynamic approach to QGP instabilities, Physical

Review D 88 (2013) 095010 [arXiv:1309.5412].

[33] V. Belinskii, E. Nikomarov and I. Khalatnikov, Investigation of the cosmological evolution of

viscoelastic matter with causal thermodynamics, Sov. J. Exp. and Theor. Phys. 50 (1979) 213.

[34] D. Pavón, D. Jou and J. Casas-Vázquez:, On a covariant formulation of dissipative phenom-

ena, Ann. Inst. Henri Poincaré (A) Phys. Theor. 36 (1982) 79;

D. Pavón, J. Bafaluy and D. Jou, Causal Friedmann-Robertson-Walker cosmology, Class.

Quantum Grav. 8 (1991) 347.

[35] W. Zimdahl and D. Pavón, Fluid cosmology with decay and production of particles, Gen. Rel.

Grav. 26 (1994) 1259;

W. Zimdahl, D. Pavon, and R. Maartens, Reheating and causal thermodynamics, Phys.Rev.

D 55 (1997) 4681 [arXiv:astro-ph/9611147];

Roberto A. Sussman and Diego Pavón, Exact inhomogeneous cosmologies whose source is a

radiation-matter mixture with consistent thermodynamics, Phys. Rev. D 60 (1999) 104023

[arXiv:gr-qc/9907010];

31

http://arxiv.org/abs/nucl-th/0701002
http://arxiv.org/abs/hep-ph/0603029
http://arxiv.org/abs/1207.5795
http://arxiv.org/abs/0705.1047
http://arxiv.org/abs/0707.3893
http://arxiv.org/abs/1309.5412
http://arxiv.org/abs/astro-ph/9611147
http://arxiv.org/abs/gr-qc/9907010


W. Zimdahl, Cosmological particle production, causal thermodynamics and inflationary ex-

pansion, Phys. Rev. D 61 (2000) 083511 [arXiv:astro-ph/9910483];

W. Zimdahl, D.J. Schwarz, A.B. Balakin and D. Pavón, Cosmic anti-friction and accelerated

expansion, Phys. Rev. D 64 (2001) 063501 [arXiv:astro-ph/0009353];

O. F. Piattella, J. C. Fabris and W. Zimdahl, Bulk viscous cosmology with causal transport

theory, JCAP 05 (2011) 029 [arXiv:1103.1328] .

[36] R. Maartens, Dissipative cosmology, Class. Quant. Grav. 12 (1995) 1455.

[37] M. Bastero-Gil, A. Berera, I. G. Moss, and R. O. Ramos, Cosmological fluctuations of a

random field and radiation fluid, JCAP 05 (2014) 004 [arXiv:1401.1149].

[38] S. Floerchinger, N. Tetradis, and U. A. Wiedemann Accelerating cosmological expansion from

shear viscosity [arXiv:1411.3280].

[39] G. Denicol, U. Heinz, M. Martinez, J. Noronha and M. Strickland, Studying the validity of

relativistic hydrodynamics with a new exact solution of the Boltzmann equation, Phys. Rev.

D90 (2014) 125026 [arXiv:1408.7048]; A new exact solution of the relativistic Boltzmann

equation and its hydrodynamic limit, Phys. Rev. Lett. 113 (2014) 202301 [arXiv:1408.5646];

Y. Hatta, J. Noronha and B. Xiao, A systematic study of exact solutions in second-order

conformal hydrodynamics, Phys.Rev. D 89 (2014) 114011 [arXiv:1403.7693];

Y. Hatta and B. Xiao, Building up the elliptic flow: analytical insights, Phys.Lett. B 736

(2014) 180 [1405.1984].

[40] M. Elias, J. Peralta-Ramos, E. Calzetta, Heavy quark collisional energy loss in the quark-gluon

plasma including finite relaxation time, Phys.Rev. D 90 (2014) 014038 [arXiv:1404.7790];

J. Peralta-Ramos, E. Calzetta, Macroscopic approximation to relativistic kinetic theory from a

nonlinear closure, Phys.Rev. D87 (2013) 034003 [arXiv:1212.0824]; Shear viscosity from ther-

mal fluctuations in relativistic conformal fluid dynamics, JHEP 2012 (2012) 085 [1109.3833];

Divergence-type 2+1 dissipative hydrodynamics applied to heavy-ion collisions, Phys.Rev.C 82

(2010) 054905 [arXiv:1003.1091]; Divergence-type theory of conformal fields, Int.J.Mod.Phys.

D 19 (2010) 1721 [arXiv:0912.0673]; Divergence-type nonlinear conformal hydrodynamics,

Phys.Rev. D 80 (2009) 126002 [arXiv:0908.2646];

E. Calzetta, J. Peralta-Ramos, Linking the hydrodynamic and kinetic description of a dissi-

pative relativistic conformal theory, Phys.Rev. D 82 (2010) 106003 [arXiv:1009.2400];

[41] J. Peralta-Ramos, E. Calzetta, Effective dynamics of a non-abelian plasma out of equilibrium,

32

http://arxiv.org/abs/astro-ph/9910483
http://arxiv.org/abs/astro-ph/0009353
http://arxiv.org/abs/1103.1328
http://arxiv.org/abs/1401.1149
http://arxiv.org/abs/1411.3280
http://arxiv.org/abs/1408.7048
http://arxiv.org/abs/1408.5646
http://arxiv.org/abs/1403.7693
http://arxiv.org/abs/1404.7790
http://arxiv.org/abs/1212.0824
http://arxiv.org/abs/1003.1091
http://arxiv.org/abs/0912.0673
http://arxiv.org/abs/0908.2646
http://arxiv.org/abs/1009.2400


Phys.Rev. D 86 (2012) 125024 [arXiv:1208.2715];

E. Calzetta, Non abelian hydrodynamics and heavy ion collisions, AIP Conf.Proc. 1578 (2014)

74 [arXiv:1311.1845].
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