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ABSTRACT 17 

Plants compete for photosynthesis light and induce a shade avoidance syndrome (SAS) 18 

that confers an important advantage in asymmetric competition for light at high canopy 19 

densities. Shade plasticity was studied in a greenhouse experiment cultivating Arabidopsis 20 

thaliana plants from 15 populations spread across an altitudinal gradient in  the Northeast 21 

area of Spain that contain a high genetic variation into a reduced geographical range. 22 

Plants were exposed to sunlight or simulated shade to identify the range of shade 23 

plasticity. Fourteen vegetative, flowering and reproductive traits were measured along to 24 

the life cycle. Shade plasticity in flowering time and dry mass was significantly associated 25 

with the altitude of population origin. Plants from coastal populations showed higher 26 

shade plasticity indexes than those from mountains. The altitudinal variation in flowering 27 

leaf plasticity adjusted negatively with average and minimum temperatures, while dry 28 

mass plasticity was better explained by negative regressions with the average, maximum 29 

and minimum temperatures, and by a positive regression with average precipitation of the 30 

population origin. The lack of an altitudinal gradient for the widest number of traits 31 

suggests that shade light could be a driver explaining the distribution pattern of 32 

individuals in smaller geographical scales than those explored here.  33 

 34 

Key words: Light, phytochromes, phenotypic plasticity, shade avoidance syndrome, 35 

Arabidopsis thaliana, altitudinal gradient, structured populations, local adaptation. 36 
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A brief summary statement (3-4 sentences maximum) highlighting the importance of the work. 38 

Low red/far-red (R/FR) ratio of the light environment provides an early and unambiguous warning 39 

of the presence of competing vegetation. This paper focuses on the study of the shade avoidance 40 

syndrome in structured populations of Arabidopsis thaliana originated in an altitudinal gradient of 41 

the Northeastern of Spain. Plasticity to shade of two important fitness traits, like flowering and 42 

aerial dry biomass, were associated with the altitudinal gradient of population origin being plants 43 

collected in the coast more plastic than those from the mountains. The clinal variation of the 44 

shade plasticity index was negatively associated with temperature for both traits and positively 45 

with precipitation for dry biomass, suggesting that these climatic parameters could be relevant for 46 

light adaptation in these populations. 47 

48 
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INTRODUCTION 49 

Plants need resources such as water, nutrients and light to grow. Under dense vegetation, 50 

light is a limiting resource and competition for light can strongly influence the success of a 51 

plant (Pierik and de Wit, 2013). Plants have evolved sophisticated mechanisms mediated 52 

by phytochromes that allow them to detect the early presence of neighboring plants and 53 

to initiate developmental adaptive developmental strategies that avoid shading before the 54 

canopy is closed (Ballaré et al., 1990). The most significant changes in the red/far-red 55 

(R/FR) ratios occur when daylight is reflected or transmitted by green vegetation. 56 

Absorption of red (R) and blue photons by chlorophyll and carotenoids results in a 57 

selective enrichment of far-red (FR) photons, reducing the R/FR ratios perceived by the 58 

plant tissues. As a result of changes in the light spectrum, plants display the shade 59 

avoidance syndrome (SAS), a set of physiological responses that increase vegetative 60 

structures like stems, petioles and hypocotyls, accelerates flowering, and reduce seed 61 

number and size (Casal, 2012).  62 

In Arabidopsis thaliana and other species, phytochrome B (phyB) is the main 63 

phytochrome, and phyD and phyE contribute secondarily, mediating the SAS. In open 64 

environments, the Pr, the inactive form of the phytochromes located in the cell cytoplasm, 65 

migrates to the nucleus when it absorbs photons of R light and photo-transforms to Pfr. In 66 

the nucleus, the accumulated Pfr form interacts and degradates PIFs (Phytochrome 67 

Interacting Factors) through the proteosome leading to growth inhibition by the 68 

deactivation of gene expression (Lorrain et al. 2008). In opposition, the shade light 69 

converts Pfr to Pr form that no longer interacts with PIFs. These proteins will thus rapidly 70 A
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re-accumulate promoting the expression of early shade genes such as PIL1, ATHB2, HFR1, 71 

and PAR1 inducing cell elongation responses (Lorrain et al., 2008, Hornitschek et al., 72 

2012). In addition, the full expression of SAS requires other photomorphogenic regulators 73 

like  COP1 (McNellis et al., 1994, Pacín et al., 2013), SPA (Rolauffs et al., 2012) double B-74 

Box proteins (Crocco et al., 2010; Gangappa et al., 2013)  and bHLH/HLH transcription 75 

factors (Hao et al., 2012).   76 

The hypothesis of adaptive plasticity predicts that the phenotype of shade avoidance 77 

induced by low R/FR ratios has a better fitness in dense canopies but is penalized  at low 78 

densities (Schmitt et al., 1995). Because the light is a critical resource for plants, the SAS 79 

confers an important advantage in asymmetric competition for light at high densities. 80 

However in the absence of competition, allocation of resources to height at the expense 81 

of leaves, roots and branches may reduce growth and reproduction, and elongated stems 82 

may have a greater risk of mechanical damage (Casal and Smith, 1989; Schmitt and Wulff, 83 

1993). Natural variation is a pre-requisite for the evolution of phenotypic plasticity (Via, 84 

1985). At molecular level, nucleotide polymorphism at photoreceptor genes underlying 85 

natural variation in light responses (Aukerman et al., 1997; Balasubramanian et al., 2006; 86 

El-assal et al., 2001; Maloof et al., 2001). PhyB is the principal photoreceptor responsible 87 

for red light and shade avoidance responses, and is proposed to be the gene responsible 88 

for several QTL found when plants grow under shade (Borevitz et al., 2002; Botto et al., 89 

2003; Botto and Coluccio, 2007; Kasulin et al., 2013). By the analysis of the phyB sequence 90 

in 33 A. thaliana accessions, Filiault et al. (2008) found 14 non synonymous 91 

polymorphisms with at least one of them responsible for the phenotypic variation 92 A
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observed in seedlings exposed to red light. PIF4 polymorphisms are also supposed to be 93 

associated with internode length of inflorescence and reproductive timing and fitness 94 

under shade (Brock et al., 2010). Natural variation at ELF3, a gene involved in the circadian 95 

clock, was clearly associated with a function for shade avoidance in A. thaliana. In fact, a 96 

single amino acid change in the ELF3 gene is responsible for the natural variation 97 

mediating cell elongation growth (Coluccio et al., 2011) and flowering time (Jiménez-98 

Gómez et al., 2010) between two contrasting accessions originated in Bayreuth (Bay, 99 

Germany) and Shahdara (Sha, Tajikistan). Genetic diversity and structure analysis in more 100 

than 6000 wild genotypes from different world regions, at global and regional scales, 101 

suggest several major events in A. thaliana demographic history in Europe (Nordborg et 102 

al., 2005; Platt et al., 2010). In particular, high diversity has been described in the 103 

Mediterranean Peninsulas compared to Central and Northern Europe (Beck et al., 2008; 104 

Picó et al., 2008). The largest diversity has been found in the Iberian Peninsula, whose 105 

strong geographic structure has prompted the hypothesis of multiple Iberian glacial 106 

refuges with differential contribution to the colonization of Europe (Picó et al., 2008). The 107 

structure of northeastern Iberian populations is important and contains huge genetic 108 

variation across an altitudinal gradient suggesting that they may be locally adapted 109 

(Montesinos-Navarro et al., 2009; Montesinos-Navarro et al., 2011; Wolfe and Tonsor, 110 

2014). These A. thaliana populations grow in two contrasting climatic environments: 111 

maritime lowland coastal area characterized by cool temperatures and moderate rainfall 112 

in the winter, low rainfall and high maximum temperatures in spring and summer; and 113 

higher altitude in mountainous areas, with higher rainfalls and lower minimum 114 A
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temperatures in winter and a prolonged cool and wet spring. Interestingly, Montesinos-115 

Navarro et al. (2011) found that the phenotypes of these populations are associated with 116 

a climatic gradient defined by altitudinal clines. Working with northeastern Iberian 117 

populations, Tonsor´s group showed that biomass, leaf number, flowering time, and seed 118 

weight increase, whereas translocation of resources to the root, vegetative growth and 119 

number of seeds decrease with the altitude of the genotype origin. These life strategies 120 

favor the selection of individuals for rapid life cycle in Mediterranean regions near the sea 121 

avoiding typical warm dry summer periods, and long life cycles in individuals growing in 122 

the mountains that help to maximize growth, cold tolerance in the winter and late 123 

flowering.  124 

The eco-physiological basis of the shade plasticity variation remains obscure. Some studies 125 

have found a significant correlation between light sensitivity (Maloof et al., 2001; Stenøien 126 

et al., 2002) and shade elongation  response (Kasulin et al., 2013) with the latitude of 127 

accession location, suggesting that light phenotypic variation could be a result of genotype 128 

adaptation  to a latitudinal gradient. Stenoien et al. (2002), working with 10 Norwegian 129 

populations of A. thaliana collected in a narrow geographic range, found a latitudinal cline 130 

in response to light: the northern genotypes are more responsive than southern 131 

populations to R or FR continuous light during seedling de-etiolation. Furthermore, the  132 

hypocotyl elongation response to a FR pulse at the end of the day, a laboratory treatment 133 

that simulates shade avoidance, was positively associated with the increase of latitude for 134 

European accessions collected between 15 and 65° (Kasulin et., 2013). However, in other 135 

studies, hypocotyl and flowering shade response correlations with latitude are missing 136 A
cc

ep
te

d 
A

rti
cl

e



8 

This article is protected by copyright. All rights reserved. 

(Botto and Smith, 2002; Filiault and Maloof, 2012). The strong structure of northeastern 137 

Iberian populations, containing a wide range of genetic diversity within a narrow 138 

geographical range, is an ideal system for testing hypotheses associated with the SAS. To 139 

have a better understanding about the drivers of shade avoidance plasticity, we designed 140 

a greenhouse experiment using the northeastern Iberian populations of A. thaliana.   We 141 

evaluated the range of variation of vegetative, flowering and reproductive traits in 142 

response to simulated shade to answer the following questions:  143 

a) What is the range of phenotypic variation to R/FR ratios in structured populations?  144 

b) Is the expression of shade plasticity traits associated with an altitudinal gradient?  145 

c) If the previous question is yes, what are the climatic drivers explaining this variation?     146 

 147 

MATERIALS AND METHODS 148 

Genetic material 149 

Sixty genotypes from 15 populations of A. thaliana originated from the Northeast area of 150 

Spain were used in this study. These populations were collected  in different locations  151 

defined by an altitudinal gradient (Montesinos-Navarro et al., 2009). In this area of 152 

collection, the rainfall increases and high spring temperatures and minimum winter 153 

temperatures decrease with the altitude (Montesinos-Navarro et al., 2011). 154 

 155 

Culture conditions and light treatments 156 

Seeds were sown in transparent plastic boxes on an agar solution of 0.8%. The boxes were 157 

placed in darkness at 5 °C for one week to break dormancy. After that, the boxes with 158 A
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seeds were placed in a chamber with continuous white light for another week to induce 159 

uniform germination and the development of seedlings with well-developed green 160 

cotyledons and radicle. Then, seedlings were vernalized for two weeks in a light chamber 161 

under non-inductive short-day conditions (8+16h light, dark) at 5 °C before transplanting. 162 

The seedlings were transplanted on 27th August of 2011 to 7 x 4 cm pots (height x 163 

diameter) with a substrate of vermiculite, perlite and peat in a ratio of 30:30:10. After 164 

that,  the plants were grown with natural radiation and controlled temperature in a 165 

greenhouse at IFEVA, Faculty of Agronomy, University of Buenos Aires (34º35’S, 58º29’W), 166 

Buenos Aires, Argentina. The pots with plants were watered with Hoagland solution (20 167 

milliliters of Hakaphos Compo Red solution in 5 liters of water).  168 

 After a week of transplanting, the plants were exposed to sunlight or simulated shade, a 169 

treatment that consisted in  sunlight plus lateral FR light mimicking neighboring plants 170 

(Rondanini et al. 2014). The FR light was provided by two banks equipped with 9 171 

incandescent reflector lamps of 40W each, and a red acetate filter with two filters of blue 172 

acrylic Paolini (1 x 0.25 m long x wide) of 2 mm thick placed in front of the plants. To avoid 173 

the increase of temperature by the lamps, transparent bottles with water were placed 174 

between lamps and filters along with two fans that allowed ventilation. Plant grown in 175 

simulated shade received R/FR ratios ranged between 0.07 and 0.12 (Suppl. Table 1). Two 176 

lines of plants were located in front of the Paolini filters. The pots with plants were 177 

rotated every week to randomize light differences into the treatment. The sunlight 178 

treatment consisted of a similar experimental design without the addition of FR light. The 179 

lateral R/FR ratio was 0.65 (Suppl. Table 1). The sunlight on the top of the plants was 180 A
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similar between both light conditions: the average photosynthetically active radiation 181 

(PAR) was near to 500 µmol m-2 s-1 at noon for sunny days and the R/FR ratios ranged 182 

between 0.94 and 1.02 (Suppl. Table 1). During the experiment, the daily average 183 

temperature ranged between 20.5 °C and 30.4 °C (Suppl. Fig. 1). PAR and R/FR ratios were 184 

measured with a model Spectroradiometer SPECTROSENSE2 / 2 + Meter, Skye Instruments 185 

Ltd (UK). The temperature was measured with a digital maximum and minimum 186 

thermometer (Thermometer, Germany).  187 

 188 

Traits and shade plasticity index  189 

Fourteen vegetative, flowering and reproductive traits were measured during the 190 

experiment: length and width of leaf, petiole length, leaf angle, rosette diameter and 191 

height, flowering time as number of leaves or days at flowering, length and diameter of 192 

primary axis, number of basal axes, number of secondary axes on the primary 193 

inflorescence, seed weight (100 seeds) and above-ground dry mass. The leaf angle was 194 

taken in the first and second week after starting the light treatments with a goniometer 195 

consisting of a protractor and a weight to mark the normal. The angle formed between 196 

the normal and the tallest petiole leaf was estimated. Vegetative traits were measured 197 

every week during the 28 d after the beginning of light treatments. Above-ground dry 198 

mass was assessed at the end of the trial (23/12/11) by placing the harvested aerial parts 199 

(including flowering axes) in an oven at 80 °C for 72 hours and then dried material was 200 

weighed with a precision balance. Seed yield, as the total weight of seeds, was not 201 

included in the analysis because heat stress increased towards the end of the experiment 202 A
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(Suppl. Fig. 1) producing higher flower mortality at the extreme of inflorescences in the 203 

late flowering individuals compared with the earlier flowering individuals. 204 

A shade plasticity index for each individual and trait was estimated as the difference 205 

between sunlight and simulated shade relative to sunlight as follow: 206 

Shade plasticity index = 1+ [(simulated shade – sunlight)/sunlight]  207 

Shade plasticity indexes higher than 1 indicate that simulated shade increases the 208 

response, and values lower than 1 indicate that simulated shade reduces the response 209 

with respect to sunlight. Values close to 1 mean that the individuals have low shade 210 

plasticity in opposition to higher or lower indexes that mean the individuals display strong 211 

shade plasticity.     212 

 213 

Experimental design and statistical analysis 214 

The experimental design was a randomized-block factorial design of two factors: 215 

population (P) consisted in 15 populations distributed along an altitudinal gradient, and 216 

light (L) consisted in two light conditions: sunlight and simulated shade. For each light 217 

condition, 8 replicates for population were established and each population was 218 

represented by 4 genotypes. Data were statistically analyzed by two-factor ANOVA 219 

including P, L, P x L and B (block) factors.  Paired comparisons by Bonferroni test were 220 

included when the P X L interaction factor was significant.  Genetic correlations for 221 

vegetative and reproductive traits within and between light treatments were estimated. 222 

Univariate regression analyses were done to evaluate clinal population differentiation 223 

between shade plasticity indexes and altitude or climatic parameters.  224 A
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Because the SAS includes several morphological and developmental traits rather than any 225 

single factor, multivariate analysis was done. The suite of SAS traits were treated as a 226 

group testing the effect of light of all the measured traits (F= 14.57, P < 0.0001). The 227 

overall clinal population differentiation between shade plasticity indexes and altitude was 228 

evaluated using a multivariate analysis of variance MANOVA of all the measured traits as 229 

dependent variables and altitude of population origin as the independent variable (F= 230 

1.96, P < 0.0001). In addition, a principal component analysis (PCA) was conducted to 231 

represent the complexity of data matrix in two principal axes. All measured traits for each 232 

individual were included in the analysis as dependent variables. For graphical 233 

representation, population and light were introduced as classification factors. Statistical 234 

analyses were performed using the statistical program Infostat 235 

(http://www.infostat.com.ar/). 236 

 237 

RESULTS 238 

Time-course responses to simulated shade for vegetative traits  239 

Six vegetative traits (length and width of lamina, petiole length and leaf angle, and 240 

diameter and height of rosette) were measured during the four weeks after the beginning 241 

of light treatments to study the effect of simulated shade on the time-course of vegetative 242 

growth. To increase the robustness of the analysis, the average response was estimated 243 

for the 15 populations in each light condition and date. The time-course growth was 244 

affected by simulated shade in four traits: leaf angle, petiole length, and height and 245 

diameter of rosette (Fig. 1). Simulated shade increased the erect position of the young 246 A
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leaves and rosette height at the starting of the experiment (Fig. 1, first and second weeks). 247 

Furthermore, the shade light increased significantly the petiole length and rosette 248 

diameter during the first month of the experiment (Fig. 1). The length and the width of the 249 

leaves also increased systematically during the first month but no significant differences 250 

were found between light treatments (Fig. 1).  251 

 252 

Reaction norms to simulated shade   253 

The average expression of the six vegetative traits with the exception of leaf length 254 

differed significantly among populations and light treatments (Fig. 2, Suppl. Table 2, see 255 

population and light factors). Simulated shade altered the vegetative phenotype in 256 

different intensities increasing the petiole length and the rosette height, and reducing the 257 

leaf angle with respect to the normal. In addition, simulated shade reduced marginally the 258 

leaf width and increased the rosette diameter in most of the populations (Fig. 2, Suppl. 259 

Table 3). No significant effects were detected for the population by light interaction factor 260 

in any of the six vegetative traits (Fig. 2, Suppl. Table 2). 261 

Flowering was affected by population and light factors. As expected, the simulated shade 262 

accelerated flowering. The light factor was more sensitive for the number of leaves than 263 

for the number of days at flowering (Fig. 3, Suppl. Table 2). The population by light 264 

interaction effect was not significant for leaves and days at flowering. After flowering, six 265 

reproductive traits were measured. Population and light effects were significant for the 266 

number of basal axes, length of the principal axis, above-ground dry mass and seed 267 

weight. The population by light interaction factor was significant for the length of principal 268 A
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axis and seed weight (Fig. 3, Suppl. Table 2). In these traits, plants from the ARU 269 

population showed significantly longer axes under simulated shade compared with 270 

sunlight (45.6 vs. 31.4 cm, respectively), and the individuals from the VDM population 271 

produced significantly lighter seeds under sunlight compared with simulated shade (2.7 272 

vs. 3.6 mg/100 seeds, respectively). These differences disappeared in other populations, 273 

suggesting different light sensitivities to the same light signal (Suppl. Table 3). Although 274 

the population factor was significant for the principal axis diameter and the number of 275 

secondary axes, the light factor did not affect significantly these reproductive traits (Fig. 3 276 

and Suppl. Table 2).    277 

 278 

Genetic correlations for traits within and between light treatments 279 

Least-squares means of vegetative, flowering and reproductive traits were used to 280 

estimate Pearson´s product correlations and genetic variance-covariance matrices within 281 

each light environment. Independently of the light factor, stronger positive correlations 282 

were found among leaf length with other vegetative traits like as leaf width, petiole length 283 

and rosette diameter ; and also between flowering time (leaves or days) with leaf angle, 284 

number of secondary axes and above-ground dry mass  (Table 1). Some positive 285 

correlations were only found in plants cultivated in simulated shade. For example, plants 286 

with higher above-ground dry mass produced wider flowering axes and heavier seeds 287 

(Table 1). 288 

A lower number of negative correlations were also found. For both light conditions, the 289 

rosette height showed a negative correlation with flowering (days or leaves) and 290 A
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inflorescence length (Table 1). Interestingly, the rosette height was negatively correlated 291 

with fitness traits such as dry biomass and seed weight, specifically in plants cultivated 292 

under simulated shade (Table 1).  293 

 294 

Population origin is the principal driver of the phenotypic variation  295 

Multivariate analysis was applied for all the measurements of individuals corresponding to 296 

15 populations and 14 traits in sunlight and simulated shade. The principal component 297 

analysis (PCA) reduced the variability of the data in a lower dimensional space than the 298 

original space of variables. The first and the second dimensions of the PCA analysis (CP1 299 

and CP2) explained 34 % and 19.6 % of the data variability (Fig. 4). The first axis ordered 300 

the cases following a pattern that was very similar to the geographical gradient of the 301 

population origin. The biplot representation allowed the identification of the variables 302 

(arrows in the graph) that determine the location of the cases in this gradient: with some 303 

exceptions, vegetative traits and coastal populations were grouped together on the left 304 

side of the first axis, and flowering and reproductive traits together with populations 305 

originating from the mountains were grouped on the other side. Light was the secondary 306 

factor explaining the observations principally on the second axis. On the upper side of the 307 

graph appeared the cases associated with plants cultivated in simulated shade while in the 308 

bottom were grouped the cases of plants exposed to sunlight with the exception of BOS 309 

population (see 8: shade). .  310 

 311 

Shade plasticity for flowering and dry mass is associated with an altitudinal cline 312 A
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The shade plasticity was estimated in six vegetative and eight flowering and reproductive 313 

traits for each population as the average response of the individuals. To test whether the 314 

shade plasticity is associated with the altitude of the place of population origin, regression 315 

analyses were done for each trait. In those traits associated significantly with an altitudinal 316 

pattern, climatic parameters were examined in order to explain this variation. Number of 317 

leaves or days at flowering and above-ground dry mass plasticity indexes showed a clear 318 

and significant regression with the altitude of origin (Fig. 5). The distribution of shade 319 

plasticity indexes adjusted to a regression line that differed from the horizontal (Fig. 5, P = 320 

0.003 for leaves at flowering, P = 0.037 for days at flowering and P= 0.001 for above-321 

ground dry mass). Individuals from coastal areas showed a higher plasticity to shade than 322 

those plants from mountain locations that displayed null or reduced shade plasticity (Fig. 323 

5). Shade plasticity indexes for other vegetative and reproductive traits were not 324 

associated with the altitude of population origin (Suppl. Fig. 2 and 3). Furthermore, 325 

flowering leaf plasticity index showed a significant regression with average and minimum 326 

temperatures (Fig. 6), but not with maximum temperature neither average precipitation 327 

of the place of population origin (Suppl. Fig. 4). In other words, individuals from coastal 328 

areas that experience higher average and minimum temperatures showed higher 329 

flowering shade plasticity than those individuals from mountains sites. The shade 330 

plasticity of above-ground dry mass showed a negative regression with temperatures 331 

(average, minimum and maximum) and a positive regression with the average 332 

precipitation (Fig. 6), but not with the distribution of precipitations in autumn and spring 333 

(Suppl. Fig. 4).  It means that higher dry mass plasticity index was associated with plants 334 A
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from coastal areas growing with higher temperatures and lower average precipitation 335 

than those from mountainous areas. No significant regressions were found for the 336 

flowering day plasticity index and the six climatic parameters evaluated (Suppl. Fig. 5).  337 

 338 

DISCUSSION 339 

Shade response in vegetative, floral and reproductive traits was studied in 15 populations 340 

of A. thaliana spread across an altitudinal transect in the northeastern area of Spain. These 341 

populations contain a high genetic diversity and are characterized by a strong population 342 

structure (Montesinos-Navarro et al., 2011; Picó et al., 2008). Vegetative traits such as 343 

petiole length, leaf width, diameter and height of rosette, and angle of insertion of the 344 

leaf were significantly affected by changes in R/FR ratios. The simulated shade produced 345 

plants with narrower lamina, larger petioles and rosette diameter, and also more erected 346 

leaves at early developmental stages compared with those plants cultivated under 347 

sunlight (Fig. 1 and 2). In other species close to Arabidopsis, like rapeseed plants, it has 348 

also been observed that low R/FR ratios induce dramatic shade avoidance responses. 349 

Shade signals increase the leaf length but not the leaf width, and produce elevated leaf 350 

angles  in early stages of the development of a spring rapessed hybrid (Rondanini et al., 351 

2014). It is well known that the low R/FR ratios of the reflected light provide early 352 

warnings of the presence and proximity of neighboring plants, allowing the initiation of 353 

development adaptive strategies to avoid shading before the canopy is closed (Ballaré et 354 

al., 1990). Furthermore, a huge  natural variation for shade avoidance responses was 355 

documented in  a representative panel of Arabidopsis accessions (Botto and Smith, 2002). 356 A
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Interestingly,  natural variation at the ELF3, a circadian clock gene, is responsible for the 357 

shade avoidance variation for hypocotyl length elongation, leaf angle movement (Coluccio 358 

et al., 2011) and flowering response (Jiménez-Gómez et al., 2010) between Bay and Sha 359 

accessions of A. thaliana. The altered shade elongation response and leaf movement in 360 

Sha accession was associated to a rare Alanine by Valine substitution that alters ELF3-Sha 361 

circadian rhythms of leaf movements and clock gene expression (Coluccio et al., 2011, 362 

Anwer et al., 2014).  363 

Shade light accelerates flowering response in A. thaliana plants. Some studies show that 364 

the number of leaves at flowering is a more sensitive trait than bolting time (Fig. 3, 365 

Callaghan and Pigliucci, 2002, Botto and Coluccio, 2007). In Arabidopsis, low R/FR ratios 366 

accelerate flowering by enhancing the expression of FLOWERING LOCUS T (FT), the gene  367 

involved in the induction of flowering by long days (Halliday et al., 2003). Callaghan and 368 

Pigliucci (2002) found that flowering time was accelerated by shade under field 369 

conditions, but not when Arabidopsis plants where grown in a greenhouse with the 370 

presence of grass neighbors. However, working with a wide range of natural variation, 371 

flowering time in response to low R/FR ratios was accelerated either when plants were 372 

cultivated in a light chamber (Botto and Smith, 2002) or in a greenhouse (Botto and 373 

Coluccio, 2007).  374 

Reproductive traits were also affected by shade. Low R/FR ratios produced taller 375 

inflorescences and reduced the number of flowering axes, plant biomass and seed weight 376 

(Fig. 3). The effect of light on the inflorescence length was dependent on the population. 377 

Interestingly, the ARB population produced longer axes under simulated shade (P X L 378 A
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interaction, P= 0.0022) but these differences disappeared in other populations suggesting 379 

that shade sensitivity depends on the origin of the population. Although cell elongation is 380 

stimulated by shade, Brock et al. (2010) found that most of the accessions of A.thaliana 381 

cultivated in low density in a greenhouse developed taller inflorescences than those 382 

growing in crowded stands. The authors interpreted these odd results as a limitation of 383 

translocation resources from leaves to fruits. Furthermore, branching is inhibited by low 384 

R/FR ratios. Loss of phyB function leads to a reduced branching by a down-regulation of 385 

the expression of auxin genes (Reddy and Finlayson, 2014; Su et al., 2011). Molecular and 386 

pharmacological assays suggest that the active form of phyB suppresses auxin signaling to 387 

promote branching (Reddy and Finlayson, 2014). Furthermore, in the present study, the 388 

simulated shade reduced above-ground dry mass and seed weight (Fig. 3), and these 389 

results are in accordance with previous evidence demonstrating that environments with 390 

resource limitation, such as low R/FR ratios, reduce plant growth and productivity (Sultan, 391 

2000).  392 

It is well known that climatic variables have important consequences for the geographical 393 

distribution of individuals and species. Shade plasticity indexes of flowering time and 394 

above-ground dry mass were significantly associated with the altitude of collection place 395 

(Fig. 5). However, other plasticity indexes of vegetative and reproductive parameters did 396 

not show clinal variation associated with the altitude (Suppl. Fig. 2 and 3). Interestingly 397 

plants from coastal populations showed higher plasticity to shade than mountainous 398 

populations, suggesting different light sensitivities according with the population origin. In 399 

fact, low R/FR ratios accelerated flowering and reduced the plant biomass more 400 A
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dramatically in coastal populations than in mountainous populations. Furthermore,  some 401 

climatic parameters were significantly associated with shade plasticity indexes of some 402 

traits. For example, the flowering leaf index showed a significant correlation with the 403 

average temperature and the minimum temperature of population origin, while the shade 404 

plasticity index for dry mass was better explained by the pattern of variation in 405 

temperatures and the average precipitation (Fig. 6). Northeastern Iberian populations of 406 

A.thaliana show strong demographic and genetic patterns defined by the altitude of 407 

origin, with mountain populations less genetically diverse than coastal populations 408 

(Montesinos-Novarro et al., 2009; Picó, 2012). The drivers of this altitudinal cline are 409 

associated with colder winter temperatures and wetter and longer springs in mountain 410 

areas (Montesinos-Navarro et al., 2009; Gomaa et al., 2011). Accordingly, the patterns of 411 

evolutionary diversification in these structured populations can be influenced by the 412 

plasticity to light. As predicted by the ecological theory, adaptation through natural 413 

selection will not occur as readily for genetically distinct coastal populations because 414 

individuals are more plastic and produce phenotypes more appropriate to different local 415 

environments. Conversely, mountain ecotypes, in which individuals express limited 416 

plasticity, would be predicted to show greater response to local selection regimes and 417 

therefore greater genetic divergence (Sultan, 2000).  418 

The altitudinal patterns in shade plasticity found for flowering leaf and biomass were 419 

obtained from plants cultivated in optimal growth conditions. We should be cautious in 420 

generalizing the conclusion of this work to other suboptimal environmental conditions. In 421 

fact, the expression of the shade avoidance plasticity can be limited by 422 A
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microenvironmental variation in water availability in seedlings from natural populations of 423 

Impatiens capensis (Huber et al., 2004). The authors found that local seedling density was 424 

a poor predictor of selection on shade-avoidance traits as a consequence of the 425 

unpredictability of water availability, particularly in dry microsites that may affect the 426 

costs and benefits of expressing shade avoidance (Huber et al., 2004).  427 

The results of this work illustrate clearly that the shade plasticity for flowering and dry 428 

biomass show clinal variation associated with altitude in structured populations of 429 

Arabidopsis originating in the Northeast area of Spain. Ecotype differences in response to 430 

shade signals were also documented for Stellaria longipes adapted to two ecological 431 

environments. In concordance with the results showed here, the prairie ecotype responds 432 

quickly to low R/FR ratios elongating their ramets as an adaptation to growth in dense 433 

vegetation stands, in contrast to the alpine ecotype that displays dwarf phenotypes with 434 

resistance to wind but unresponsive to shade signals allowing adaption to areas of sparse 435 

vegetation where abiotic stresses predominate (Sasidharan et al., 2008). Furthermore, the 436 

shade light, changing also across a micro-environmental context, may be a driver 437 

explaining the distribution patterns of individuals in smaller geographical scales than those 438 

explored here. New experimental approaches should be undertaken to test this 439 

hypothesis. To evaluate this idea it is necessary to work with a bigger collection of 440 

populations correctly described both in their geographical positions and types and 441 

environments (woodland, scrubland, anthropic, prairie, etc.); as well as having detailed 442 

descriptions of the environmental conditions of the collection site (radiation, light quality, 443 

etc.). The atlas of ecological and climatic information along with genetic databases of each 444 A
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individual and their corresponding phenotype may help to identify the underlying genes 445 

that express the enormous plasticity documented in the SAS. Deciphering the genetic and 446 

molecular basis of phenotypic plasticity is a challenge to understand how plants function, 447 

and it is essential to understand the evolutionary forces operating in the adaptation of 448 

species to a changing environment (Alonso-Blanco and Méndez-Vigo, 2014). 449 
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Figure legends 602 

Fig. 1: Time-course response to simulated shade for vegetative traits.  603 

Response to R/FR ratios was calculated as the average of 15 Iberian populations at each 604 

date. The lines outside the box plot graphs indicate the minimum and maximum values for 605 

sunlight and simulated shade between 7 and 28 days after the starting of light treatments. 606 

Means were compared by Tukey test (P < 0.05) after analysis of One-Way ANOVA.  607 

 608 

Fig. 2: Reaction norms to simulated shade for vegetative traits. 609 

Each point represents the average response in the control and low R/FR treatments for 610 

each population. On the top of each graph is indicated the output of the ANOVA analysis 611 

for each independent variable (L= light, P= population) and the interaction between L x P. 612 

*, ** and *** indicate P < 0.05, 0.01 and 0.001, respectively. ns: not significant.  613 

 614 

Fig. 3: Reaction norms to simulated shade for flowering and reproductive traits.  615 

Each point represents the average response in the control and low R/FR treatments. On 616 

the top of each graph is indicated the output of the ANOVA analysis for each independent 617 

variable (L= light, P= population) and the interaction between L x P. *, ** and *** indicate 618 

P < 0.05, 0.01 and 0.001, respectively. ns: not significant.  619 

 620 

Fig. 4: Multivariate analysis for all the traits from plants of 15 populations cultivated in 621 

sunlight and simulated shade.  622 A
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Principal component analysis (PCA) was conducted to reduce the complexity of the data 623 

matrix in two eigenvectors. All the measured traits for each individual were included in 624 

the analysis as dependent variables and population and light as classification factors. 625 

Numbers indicate populations as 1: PIN, 2: RAB, 3: SAL, 4: BAR, 5: HOR, 6: ARU, 7: COC, 8: 626 

BOS, 9: MUR, 10: VDM, 11: ALE, 12: PAL, 13: BIS, 14: VIE, and 15: PAN. For additional 627 

references on traits names see Table 1. 628 

 629 

Fig. 5: Clinal variation associated with altitude for flowering and above-ground mass 630 

plasticity to simulated shade.  631 

Regression fitted between plasticity shade indexes for flowering and above-ground mass 632 

and altitude of the population origin. Fitting regression lines are presented with R2 and P 633 

values indicating significant regression with respect to zero. Each point represents the 634 

average plasticity response estimated as the difference between simulated shade and 635 

sunlight relative to sunlight. Values closed to 1 mean that the population has null or low 636 

plasticity in opposition to higher or lower indexes than 1 indicating that populations 637 

display strong shade plasticity.     638 

 639 

Fig. 6: Climatic parameters associated with clinal variation for leaf flowering and above-640 

ground mass plasticity to simulated shade.  641 

Plasticity traits are represented as function of the climatic parameters associated to each 642 

population. Fitting regression lines are presented with R2 and P value indicating significant 643 

regression with respect to zero. For other references see Fig. 5. 644 A
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Suppl. Fig. 1: Average, minimum and maximum temperature during the experiment.  645 

Daily temperatures (minimum, maximum and average) measured during the experiment 646 

into the greenhouse. The experiment started on 28th of August and finished on 23rd of 647 

December 2011.  648 

 649 

Suppl. Fig. 2: Shade plasticity in vegetative traits regressed with altitude. 650 

Plasticity traits are represented as function of the altitudinal gradients. Each point 651 

represents the average plasticity response estimated as the difference between simulated 652 

shade and sunlight relative to sunlight. Values closed to 1 mean that the population has 653 

null or low plasticity in opposition to higher or lower indexes than 1 indicating that 654 

populations display strong shade plasticity.     655 

 656 

Suppl. Fig. 3: Shade plasticity for flowering and reproductive traits regressed with 657 

altitude.  658 

Plasticity traits are represented as function of the altitudinal gradients. For other 659 

references see Suppl. Fig. 2. 660 

 661 

Fig Suppl. 4: Climatic parameters not associated with clinal variation for leaf flowering 662 

and above-ground dry mass to simulated shade.  663 

Plasticity traits are represented as function of the climatic parameters associated to each 664 

population. 665 
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Fig Suppl. 5: Climatic parameters not associated with clinal variation for flowering day to 667 

simulated shade.  668 

Plasticity traits are represented as function of the climatic parameters associated to each 669 

population. 670 
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Table 1: Genetic correlation matrix of vegetative, flowering and reproductive traits from A. thaliana plants exposed to solar and low R/FR 671 

ratios. Sunlight (above the diagonal) and low R:FR conditions simulating foliar shade (below the diagonal). Significant correlations are indicated 672 

by *** (P<0.001), ** (P<0.01) and * (P<0.05). LL, leaf length; LW, leaf width; PL, petiole length; LA, leaf angle; RD, rosette diameter; RH, rosette 673 

height; FD, flowering in days; FL, flowering in leaves; PAL, principal axe length; PAD, principal axe diameter; SAN, secondary axe number; AN, 674 

basal axe number; DW, above dry weight; and SW, seed weight. 675 

 676 

 LL LW PL LA RD RH FD FL PAL PAD SAN AN DW SW 

LL ---- 0.55*** 0.51*** -0.16 0.78*** 0.4*** -0.23* -0.08 -0.18 0.2* -0.11 0.31** 0.42*** 0.15 

LW 0.69*** ---- 0.37*** -0.09 0.44*** 0.16 0.001 0.03 -0.19 0.19* -0.01 0.12 0.16 0.2 

PL 0.64*** 0.59*** ---- -0.06 0.58*** 0.05 0.1 0.14 -0.21* 0.12 0.009 0.31** 0.28** 0.07 

LA -0.08 -0.01 0.05 ---- -0.13 -0.58*** 0.34*** 0.39*** 0.1 -0.02 0.28*** -0.31*** 0.03 0.13 

RD 0.91*** 0.71*** 0.82*** -0.05 ---- 0.29** -0.04 0.06 -0.15 0.15 0.004 0.22* 0.42*** 0.1 

RH 0.06 0.09 -0.16 -0.46*** -0.03 ---- -0.57*** -0.48*** -0.2* -0.04 -0.31*** 0.27** -0.01 -0.08 

FD -0.13 -0.11 0.06 0.38*** -0.06 -0.47*** ---- 0.9*** 0.17 0.15 0.66*** -0.34** 0.34*** 0.3* 

FL -0.02 -0.04 0.12 0.4*** 0.04 -0.43*** 0.92*** ---- 0.18 0.25** 0.67*** -0.26** 0.42*** 0.35*** 

PAL 0.04 -0.1 0.14 0.17 0.11 -0.28** 0.16 0.21* ---- 0.22* 0.25** -0.11 0.21* -0.08 

PAD 0.13 0.13 0.3** 0.09 0.25** -0.19 0.24* 0.3** 0.4*** ---- 0.31** -0.06 0.018 0.03 

SAN -0.08 -0.01 0.13 0.09 0.01 -0.11 0.55*** 0.54*** 0.2* 0.46*** ---- -0.23* 0.34*** 0.26* 

AN 0.2 0.13 0.28** -0.02 0.25** -0.04 -0.1 -0.1 0.04 0.02 -0.22* ---- 0.28** -0.15 

DW 0.1 0.09 0.14 0.19 0.17 -0.35*** 0.68*** 0.68*** 0.28** 0.34*** 0.39*** 0.19 ---- 0.18 

SW -0.17 -0.19 -0.16 0.44*** -0.15 -0.49*** 0.35** 0.35** 0.29* 0.17 0.22 0.09 0.39*** ---- 
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