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Abstract 

   Neuroblastoma, the most common extracranial pediatric solid tumor, is 

responsible for 15% of all childhood cancer deaths.  Patients frequently 

present at diagnosis with metastatic disease, particularly to the bone marrow 

(BM).  Advances in therapy and understanding of the metastatic process have 

been limited due in part, to the lack of animal models harboring BM disease.  

The widely employed transgenic model, the Th-MYCN mouse, exhibits 

limited metastasis to this site.  Here we establish the first genetic 

immunocompetent mouse model for metastatic neuroblastoma with enhanced 

secondary tumors in the BM.  This model recapitulates two frequent 

alterations in metastatic neuroblasoma, over-expression of MYCN and loss of 

caspase-8 expression.  Mouse caspase-8 gene was deleted in neural crest 

lineage cells by crossing a Th-Cre transgenic mouse with a caspase-8 

conditional knockout mouse. This mouse was then crossed with the 

neuroblastoma prone Th-MYCN mouse.  While over-expression of MYCN by 

itself rarely caused bone marrow metastasis, combining MYCN 

overexpression and caspase-8 deletion significantly enhanced BM metastasis 

(37% incidence).  Microarray expression studies of the primary tumors 

mRNAs and microRNAs revealed extracellular matrix (ECM) structural 

changes, increased expression of genes involved in epithelial to mesenchymal 

transition, inflammation and down-regulation of miR-7a and miR-29b.  These 

molecular changes have been shown to be associated with tumor progression 
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and activation of the cytokine transforming growth factor beta (TGF-β) 

pathway in various tumor models.  Cytokine TGF-β can preferentially 

promote single cell motility and blood borne metastasis and therefore 

activation of this pathway may explain the enhanced BM metastasis observed 

in this animal model. 

 

Introduction 

 

Neuroblastoma (NB), a peripheral neural crest-derived childhood solid 

tumor, is a major medical challenge (1, 2).  Half of all NB patients have 

metastatic disease at diagnosis which carries a poor prognosis.  Primary 

human NB tumors arise in the paraspinal ganglia or the adrenal medulla, 

while disseminated disease appears in the bone marrow (BM, 71% of 

patients), bones (56%), lymph nodes (31%), lungs (3%) and other internal 

organs (15-45%).  The new International Risk Group classification system of 

the disease divides the patients to 16 risk groups, with the highest risk group 

being the one that presents with metastasis to the BM and has only 40-50% 

survival rate (2, 3).  The most commonly used preclinical transgenic mouse 

NB model, the Th-MYCN model (4) exhibits a limited capacity for metastasis 

to the BM (< 5% incidence).  In an attempt to establish an immunocompetent 

genetic metastatic model for NB we crossed two genetically engineered 

mouse lines, each with a known molecular alteration, common to the 
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aggressive disease, amplification of MYCN and loss of expression of caspase-

8.   

MYCN oncogene amplification is frequently seen in aggressive NB 

and occurs in 25–35% of human patients (5).  Caspase-8 is a cysteine 

endoproteinase that cleaves peptide bonds after aspartic acids (6).  In addition 

to its proapoptotic function as an initiator caspase in the extrinsic receptor-

mediated death pathway (6), caspase-8 plays important roles in mediating 

migration, adhesion, growth, immune response, differentiation, wound 

healing, fibrosis and necroptosis in certain cell types (7-9). Suppression of 

caspase-8 expression by epigenetic silencing occurs in ~70% of human 

neuroblastomas (10).  Loss of caspase-8 has also been associated with 

enhancement of the tumorigenic potential of SV40 T-antigen transformed 

mouse embryonic fibroblasts (11) and with providing an advantage in survival 

and metastasis of engrafted neuroblastoma cell lines (12, 13).  Nevertheless, 

the role of caspase-8 expression has not been tested thus far in vivo in an 

immunocompetent mouse model which could have significance given the 

roles caspase-8 plays in the immune system.   

To circumvent the lethality in CASP8 -/- mice, Salmena and co-

workers developed a conditional knockout mouse in which LoxP sites were 

introduced into the DNA flanking exons 3 and 4 of the mouse caspase-8 gene 

(14).  We mated these mice with Th-Cre transgenic mice, which express Cre 

recombinase only in the peripheral neural crest cells and in the brain 
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catecholaminergic neurons starting on day E9.5 (15), to selectively delete 

caspase-8 in the cells that give rise to neuroblastoma. 

Our preliminary results suggested that conditional knockout of 

caspase-8 alone was insufficient to induce tumor formation. We studied 30 

mice (129X1/SvJ background) harboring two floxed caspase-8 alleles and Th-

Cre for 6-9 months.  Tumors did not develop in any of these mice, suggesting 

that additional genetic alterations are needed.  Thus, we tested the hypothesis 

that the loss of caspase-8 facilitates MYCN–induced tumor formation or 

metastasis by using the Th-MYCN transgenic mouse neuroblastoma model 

(4).  Since mouse genetic background influences tumor penetrance in this 

model (4), we backcrossed all mouse lines at least 6 generations (6–12) to the 

129X1/SvJ background to ensure that differences in tumor formation were not 

due to strain variability. 

 

Materials and Methods 

Mouse strains   

   Th-MYCN hemizygote mice were purchased from NCI mouse repository 

(strain #01XD2) on genetic background 129X1/SvJ and kept on this 

background.  Floxed caspase-8 mice were received from Razqallah Hakem 

(14) on 129X1/SvJ, C57BL6 background and backcrossed 6–12 generations to 

the 129X1/SvJ background.  Th-Cre hemizygote mice were received from Dr. 

Marcello Rubinstein (15) on a B6.CBF2 background and backcrossed 6–12 

generations to the 129X1/SvJ background.  This study was carried out in strict 
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accordance with the instructions in the Guide to Care and Use of Laboratory 

Animals of the National Institute of Health.  The protocol was approved by 

the Institutional Animal Care and Use Committee at St. Jude Children’s 

Research Hospital (IACUC protocol 420).  All efforts were made to minimize 

suffering. 

 

Genotyping of mouse tissues and tumors   

   Caspase-8 primers:   

Sense primer –        5’- CCAGGAAAAGATTTGTGTCTAGC- 3’                                                  

Antisense primer – 5’- GGCCTTCCTGAGTACTGTCACCTGT-3’ 

PCR amplification of the wild-type caspase-8 allele gives a 650-bp band; the 

caspase-8 floxed (exons 3 and 4) produces a band of 850 bp. Thus, the deleted 

cre recombinase digested DNA band is 200 bp.  

Th-Cre primers: 

Sense primer –        5’- ATGTCCAATTTACTGACCTACAC- 3’                                                  

Antisense primer –  5’- CTAATCGCCATCTTCCAG- 3’                                                                 

Th-MYCN primers: 

Sense primer –         5’- CGACCACAAGGCCCTCAGTA- 3’                                        

Antisense primer –   5’ - CAGCCTTGGTGTTGGAGGAG- 3’ 

                              

Quantative RT-PCR for mouse caspase-8.   

   Total RNA was extracted from mouse tumors with Trizol reagent (Life 

Technologies) and reverse transcribed with Superscript II (Life Technologies). 
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Primers for mouse caspase-8 were employed to PCR amplify a 120-bp 

fragment from exon 1 to exon 2 of the transcript, thus recognizing wild-type 

message and floxed caspase-8 message if stable. Primers used:  Sense primer-  

5’ – CCCTACAGGGTCATGCTCTT-3’ antisense primer-  5’ – 

CAGGCTCAAGTCATCTTCCA-3’. 

 

Antibodies and immunohistochemistry.   

   For westerns we used antibodies: mouse caspase-8,Cell Signaling cat. 4927, 

Dil 1:1000, MYCN Cell Signaling cat. 9405, Dil 1:1000, Actin, Santa Cruz 

cat. 1616, Dil 1:2000.  For staining paraffin-embedded formalin fixed tumors 

and tissues we used antibodies: caspase-8 1H11 Abcam cat. ab119892 dilution 

1:200, and anti-Caspase-3, ki67, PGP9.5, synapthophysin, chromogranin A 

and NFP as described previously (16) .          . 

 

Ultrasound imaging.   

   Ultrasound imaging of the mouse tumors was performed as described 

recently (16) using the VisualSonics VEVO-770 High frequency Ultrasound 

system (VisualSonics, Toronto, Canada). 

 

Microarray analysis of neuroblastoma tumor samples 

   Total RNA was extracted from primary mouse tumors using Trizol reagent 

(Life Technologies).  Samples were assayed with the Affymetrix Mouse 

430v2 GeneChip array and the Agilent mouse microRNA v18 array 

on April 27, 2013. © 2013 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on March 27, 2013; DOI: 10.1158/0008-5472.CAN-12-2681 

http://cancerres.aacrjournals.org/


 9

microRNA.  Data was summarized by the RMA protocol (17) using Partek 

Genomics suite 6.6.  Outlier samples were detected and removed by PCA and 

a batch correction corresponding to hybridization date was applied.  The data 

was defined by class and a series of unequal variance t tests were applied to 

compare classes.  Data was visualized and filtered by p value (0.05) and log 

ratio and submitted to Gene Set Enrichment Analysis (GSEA, 

http://www.broadinstitute.org/gsea) to assess Gene Ontology (GO) 

enrichment.  The mRNAs targeted by downregulated microRNAs in the 

primary tumors samples with BM metastasis were predicted using MirTarget2 

(18), and followed by an enrichment analysis using DAVID at NIAID (19).   

All array data have been deposited in Gene Expression Omnibus at NCBI, and 

are accessible through GSE42548 (mRNA) and GSE42254 (microRNA). 

Select array data was validated by qRT-PCR using TaqMan gene expression 

assays as described in Supplementary Fig. S1.  

 

 

Results 

 

Establishing a neuroblastoma mouse model with MYCN amplification 

and caspase - 8 deficiency  

   Neural crest-specific deletion of caspase-8 in mice was achieved by mating 

floxed and/or knockout caspase-8 alleles mice with hemizygous Th-Cre mice 

and then with hemizygous Th-MYCN mice (Fig. 1A).  Four genotypes of 
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mice were established: Caspase-8 fl/fl (flox/flox), Caspase 8 fl/ko 

(flox/knockout), caspase-8 wt/ko (wild type/knockout) and the control caspase-8 

wt/wt (wild type/wild type).  Cre-mediated caspase-8 deletion in the caspase-8 

fl/fl primary tumors was assayed by genomic PCR (Fig. 1B, TU lanes).  

Caspase-8 was deleted in the primary tumors at varying efficiencies ranging 

from a low percentage of cells to complete deletion (Fig. 1B).  Caspase-8 

expression was also assessed in the primary tumors at the mRNA and protein 

levels.  Most Th-MYCN, Th-Cre, Caspase-8 wt/wt (labeled +/+) primary 

abdominal tumors (19 of 20) expressed endogenous caspase-8, as determined 

by RNA protection (data not shown) and immunoblot assays (Fig. 1C).  

Caspase-8 expression in the wt/ko (+/-) tumors was reduced to approximately 

50% of wild type, whereas the Th-MYCN, fl/fl and fl/ko caspase-8 alleles 

tumors (labeled -/-) had lower caspase-8 expression, around 20% average, 

suggesting that the floxed allele is hypomorphic (Fig. 1C and 1D). Levels of 

caspase-8 protein in the primary tumors was also determined by 

immunohistochemistry with anti-caspase-8 antibody and found to be low or 

undetectable (Supplementary Fig. S2). The primary deficient caspase-8 

tumors stained for neuronal markers typical to neuroblastoma as 

synapthophysin and PGP9.5 (Supplementary Fig. S3) and were 

indistinguishable from the wild-type tumors in their incidence, latency, mass 

(Fig. 1E, 2, 3A and Supplementary Fig. S4). In addition, no statistical 

significant differences were found in the number of proliferating cells in the 

primary tumors as determined by Ki-67 staining (both groups had >95% 
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positive cells, data not shown), or in the number of primary tumor cells 

undergoing apoptosis as determined by immunostaining with cleaved caspase-

3 (Supplementary Fig. S5).  MYCN expression comparing primary tumors 

with and without caspase-8 was also not significantly changed 

(Supplementary Fig. S6).  

 

Growth characterization of the primary neuroblastoma tumors in the 

genetically-engineered caspase-8 deficient Th-MYCN mouse model  

   Comparison of overall survival and primary tumor onset between the 

different mouse genetic groups, all on the 129X1/SvJ background, and 

harboring wild- type or deficient caspase-8 yielded no significant statistical 

difference (Fig. 1E and Supplementary Fig. S4) with the limitation that all 

mice had to be sacrificed after 16-17 weeks due to high primary tumor burden.  

To determine if there were any changes in the growth or location of the 

primary tumors prior to this point, we monitored weekly the tumors in both 

caspase-8–expressing and caspase-8–deleted Th-MYCN mice by ultra-sound 

imaging (Fig. 2A). No significant differences were found in the frequency or 

initial location of the tumors.  Primary tumors in all mice groups were located 

in areas surrounding the aorta (81±7% in both groups) or near the adrenal 

gland or kidney (19±7% in both groups) (Fig. 2A). In addition, we examined 

mice at earlier time points (ages 10, 21, and 49 days) to determine whether 

there were variations in the number of initiating preneoplastic hyperplasia 

cells arising during development in the paraspinal ganglia (Fig. 2B). These 
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studies were based on previous work that showed higher frequencies of 

hyperplastic cells in the paraspinal ganglia of heterozygous Th-MYCN mice 

compared to 129X1/SvJ wild-type mice littermates 1–5 weeks after birth (20, 

21).  These experiments as well did not reveal any differences in the 

appearance or incidence of hyperplastic neuroblasts between Th-MYCN mice 

with and without caspase-8 expression (Fig. 2B), Thus, we conclude that 

caspase-8 deficiency does not significantly contribute to initial primary tumor 

formation.  

 

Caspase-8 deficient Th-MYCN mice have preferentially enhanced 

neuroblastoma metastasis to the BM 

   We then screened Th-MYCN mice harboring advanced-stage primary 

tumors (ages 9-17 weeks, Fig. 3A) from the wild-type and caspase-8–deficient 

groups for secondary metastatic tumors to determine whether caspase-8 plays 

a role in metastasis in vivo. Detailed necropsy of all major organs was 

performed (Fig. 3B-3D).  In agreement with the data described above, no 

statistical significant difference was found in the average size of the initial 

primary tumors (Fig. 3A).  We did detect, however, a significant difference in 

the frequency of secondary tumors in the BM (Fig. 3B and Table 1).  Eighty 

sections were cut from various bones of the mice, including the sternum, the 

long bones and the vertebra.  Tumor cells were identified and the number of 

BM tumor foci was determined by H&E staining and immunohistochemistry 

with the NB markers synapthophysin, tyrosine hydroxylase and/or PGP9.5 
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(Table 1).  From 27 mice with deficiency in caspase-8 (16 fl/ko and 11 fl/fl, 

labeled -/-), 10 mice (37%) had metastatic foci in their BM within 10-17 

weeks.  The size of the foci ranged from clusters of 5-10 tumor cells to large 

sheets compromising up to a quarter of the BM cells’ population.  Twenty one 

mice with Caspase-8 wt/wt were screened for BM metastasis and only one 

mouse (4.5% incidence) had BM metastasis at weeks 10-17 (p=0.014, Fig. 3B 

and 3D and Table 1). BM tumor cells were negative for caspase-8 expression 

as determined by immunostaining (Supplementary Fig. S2) and had very low 

apoptosis levels (about 1%) measured by immunostaining for cleaved 

caspase-3 protein (Supplementary Fig. S5). 

   The incidence of metastatic dissemination to other organs of the mice, other 

than the BM (Supplementary Fig. S7) was not significantly enhanced in the 

caspase-8 deficient group (shown for ovaries, Fig. 3C).  The secondary 

metastatic lesions stained positive for neuronal markers typical for 

neuroblastoma (Supplementary Fig. S7 shown for PGP9.5).  Metastatic 

ovaries were stained for cleaved caspase-3 and had 1-2% percent of cells 

undergoing apoptosis, equal to the percentage of cells undergoing apoptosis in 

the matching primary tumors (Supplementary Fig. S5).  

 

Array expression analysis of the caspase-8 deficient primary tumors 

reveals changes in extracellular matrix (ECM) proteins and tumor cell-

ECM interacting proteins 
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  We compared the mRNA and microRNA expression profiles of a group of 

6 primary tumors with wild type caspase-8 levels in animals with no BM 

metastasis to a group of 7 primary tumors with deficient caspase-8 levels in 

animals that had BM metastasis.  Heat map of the top 20 statistically 

significant genes that differ in expression between the two groups are shown 

in Figure 4A.  The list included genes known to have a role in metastasis, 

EMT (epithelial to mesenchymal transition) , cell detachment from the 

ECM, fibrosis, wound healing and inflammation  as Tfpi2 (Tissue factor 

pathway inhibitor-2, a serine proteinase inhibitor (22) , Snai2 (snail 

homolog 2 known also as SLUG, a neural crest transcription factor (23), 

Myct1, myc target 1, a direct c-myc target gene (24),  Serpinh1, a serine or 

cysteine peptidase inhibitor known also as Hsp47, a collagen-specific 

molecular chaperone (25), Emcn, a mucin-like sialglycoprotein that 

interferes with the assembly of focal adhesion complexes and inhibits 

interaction between cells and the ECM (26)  and Fos ( 27, 28).  The 

complete list of genes that are different between the groups and had 

statistical significance above p=0.05 is in Supplementary Table S1.  The list 

included MMP15, matrix metallopeptidase 15 (29), 1.3 fold increase in the 

primary tumors with BM metastasis. The complete list of mRNAs was 

submitted to GSEA and the top enriched gene set was the ECM structural 

constituents with a nominal p-value of 0.008 (Figure 5).  This gene set 

included upregulation in expression of Tfpi2, LAMA4 (laminin alpha 4 (30, 

31)), FBLN2 (fibulin 2), (32), PRELP (ECM protein that functions to 
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anchor basement membranes to the underlying connective tissues (33)), 

COL4A2 (Collagen type 4 alpha 2, (34, 35) (Figure 5).  mRNA analysis was 

done also on a group of 10 deficient caspase-8 mice that did not show 

metastasis to BM by histology (Figure 4B). The top genes that came up are 

in Figure 4B and all the gene changes with p<0.05 are included in 

Supplementary Table S2.  This tumor group had 4 genes that overlapped 

with the metastatic group: Fos (downregulation), Lancl1 (downregulation), 

Emcn (upregulation) and Myct1 (upregulation), suggesting these gene 

expression changes occur before metastasis is observed in the BM.         

  Analysis of microRNA expression was done on primary tumors with wild 

type caspase-8 and no BM metastasis compared to caspase-8 deficient 

primary tumors with detected BM metastasis (Table S3). The top 

microRNAs changes (fold changes > 30%) are shown in figure 6, and 

included downregulation of miR-29b (1.86 fold) and miR-7a (1.43 fold) 

expression in the deficient caspase-8 group. Suppression of miR-29 by TGF-

β1/Smad3 signaling has been shown to promote collagen and other ECM 

components expression and to promote renal fibrosis (36, 37).  MiR-7 was 

shown to be suppressed in human neuroblastoma (38), breast cancer and 

glioblastoma and its downregulation was associated with tumor metastasis 

(38, 39). Its forced expression in tumor cells inhibited EMT transition and 

metastasis of breast cancer cells via targeting focal adhesion kinase (FAK) 

expression (39).   The mRNAs targeted by the downregulated microRNAs 

in the primary tumors with BM metastasis in this study were predicted by 
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MirTarget2 and analyzed by gene ontology enrichment.  Interestingly, this 

analysis showed highly enriched expression (p<10-6) for the identical gene 

set that came up in the mRNA analysis, the gene set of the ECM structural 

components as collagens and laminins. 

 

 

Discussion 

   Tumor suppressor genes are defined as genes whose loss of function in 

tumor cells contribute to the formation and/or maintenance of the tumor 

phenotype.  The findings presented in this report provide proof that caspase-8 

function as a metastatic BM tumor suppressor gene in neuroblastoma.  Loss of 

caspase-8 expression does not affect primary tumor formation in the Th-

MYCN mouse but it does promote selective metastasis formation and 

maintenance in the BM.  These results are in accordance with previous studies 

in mice that showed that a deficiency of TRAIL-R, a protein at the apex of the 

caspase-8 signaling pathway, enhances metastasis of squamous cell carcinoma 

to lymph nodes without affecting primary tumor development (40).  It also 

supports the recent clinical findings that a lack of caspase-8 correlates with 

relapse in human NB patients evident by BM metastatic disease (10). 

   Caspase-8 suppression by epigenetic silencing has also been reported in 

other human tumors including small cell lung carcinoma, primitive 

neuroectodermal tumors, alveolar rhabdomyosarcoma, medulloblastoma, and 
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retinoblastoma (41).  It will be of great interest to investigate whether caspase-

8 loss can also enhance BM metastasis in these tumors.  

   Deletion of caspase-8 in the mouse primary tumor in this animal model was 

a driver genetic event that led to ~7 fold increase in Th-MYCN-induced 

preferential metastasis incidence to the BM (from 5% average incidence to 

37%).  Interestingly, metastasis to other organs including the abdominal and 

pulmonary lymph nodes or lungs was not significantly different.  This is in 

contrast to what we previously found by engrafting human cells in the chick 

embryo or injecting human NB tumor cells deficient in caspase-8 expression 

directly to the blood stream of immunodeficient mice (12).  In these 

experiments, metastasis incidence of cells with decreased caspase-8 

expression was increased to both the BM and to the lungs at the same 

frequency.  In the animal model studied in this work, we concentrated on the 

effect of the developing primary tumors on metastasis and determined the 

transcriptional changes occurring at the primary tumor before and after 

metastasis are detected in the BM. While we did not find statistical 

significance changes in the percentage of cells undergoing apoptosis in the 

primary tumors, we found changes in the ECM structure of the caspase-8 

deficient primary tumors as up regulated expression of collagen 4A2 and 

laminin α4 once metastasis is detected in the BM. These ECM changes are 

likely to cause increased stiffness of the primary tumor and changes in 

mechanotransduction properties which have been shown in different tumor 

types to correlate with advanced stage of disease (42-44). In addition, we see 
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transcriptional changes that would suggest increased motility and migration of 

the caspase-8 deficient tumor cells by upregulated expression of genes 

involved in EMT (as Snai2, Twist1 and TfpI2), enhanced detachment of the 

tumor cells from the ECM (effected by Emcn, PRELP, miR-7), and increased 

fibrosis (accumulation of ECM proteins and downregulation of miR-29b).  

Interestingly, EMT changes have been observed recently in vivo in a breast 

cancer animal model specifically when the oncogene myc was amplified (45).  

ECM constituents changes as accumulation of collagens and laminins has 

been described in fibrosis of tissues and tumors (9, 34, 35, 37) and in wound 

response processes (8).  Caspase-8 down regulation has been linked to wound 

processes in vivo in which accumulation of collagen and other ECM structural 

proteins occur (8) and fibrosis is seen in mice that have deficient caspase-8 in 

their epidermal tissues (9). In addition, caspase-8 has direct interaction with 

the ECM proteins by being in complexes with integrins (12, 46) and as a part 

of the focal adhesion complex (7).  Deficiency of caspase-8 in the primary 

tumors thus could cause changes in the ECM structure and/or possible 

activation of a wound-like process that triggers deposition of ECM proteins by 

fibroblasts in the stroma and can activate production of various cytokines. The 

cytokine transforming growth factor β (TGF-β) is one of the major cytokines 

to be activated in response to wound/injury processes (47), fibrosis (36, 37) or 

as direct changes in the stiffness and mechnotransduction properties of the 

ECM (48).      Importantly for the BM preferential metastasis, TGF-β has been 

shown by intravital imaging experiments to be transiently and locally 
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activated in breast cancer motile cells and switch the cells from cohesive to 

single cell motility (49).  Cells restricted to collective invasion were capable 

of lymphatic invasion but not blood borne metastasis (49).  Thus transient 

activation of TGF-β preferentially in the caspase-8 primary tumors as result of 

ECM remodeling and/or fibrosis can potentially promote single cell motility, 

increase invasion to the blood vessels and enhance BM metastasis.  

Interestingly, we see upregulated expression in the caspase-8 deficient 

primary tumors of genes known to be induced by TGF-β as Tgif2 and Tgfβ1i1 

(Table S1) and downregulation of miR-29b associated with TGF-β activation 

(36, 37).   Intravital imaging experiments in our caspase-8 deficient mouse 

model could shed light if indeed increased blood borne metastasis of single 

cells contributes to the preferred metastasis to the BM. 

       In this work we observed downregulation of microRNA-7 expression in 

the caspase-8 deficient mouse primary tumors which has been described 

recently in human neuroblastoma and was associated with metastatic 

advanced stage (38).   

    Finally, our finding that the loss of caspase-8 in the mouse primary tumor 

cells significantly promotes metastasis to the BM, the most common site for 

metastasis in human neuroblastoma (71% of patients at diagnosis) (1-3), 

indicates that this Th-MYCN/caspase-8–deleted animal model should be 

useful for testing therapies for metastatic neuroblastoma.  Ongoing 

experiments in our laboratory are aimed at purifying the metastatic BM cells 

for gene expression analysis and surgically resecting or debulking the primary 
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tumors to allow even further progression of the metastatic process in the BM.  

Our preliminary experiments also indicate the feasibility of establishing 

orthotopic allograft models using this genetically-engineered model by 

passaging the primary tumor cells from mice to mice and thus establishing 

uniform animal cohorts suitable for drug screenings (16).  Labeling the 

primary and secondary metastatic tumor cells in vivo in this animal system by 

breeding to a fluorescence and/or a luciferase mouse reporter line in which 

expression of the reporter gene is cre-recombinase mediated (50) is currently 

in progress and should facilitate the monitoring of tumor cell growth and 

responses to therapeutic modalities. 
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Figure Legends 

  

Figure 1.  Characterization of the tumors formed in the Th-MYCN, Th-

Cre,caspase-8 deleted mice (fl/fl, fl/ko or wt/ko caspase-8).  

(A) Deficient caspase-8, Th-MYCN mice were obtained by mating floxed or 

heterozygous caspase-8 alleles mice with hemizygous Th-Cre mice and then 

with hemizygous Th-MYCN mice.   

(B) Validation of caspase-8 deletion status in the primary Th-MYCN, Th-Cre, 

caspase-8 fl/fl neuroblastoma tumors using genomic PCR. Tail DNA (TA) 
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from mice with tumors and primay tumor DNA (TU) was amplified using 

primers flanking exons 3 and 4 of mouse caspase-8 gene.  Only the Casp8 fl 

band were detected in the tail samples while the Casp8 fl and the deleted 

caspase-8 bands (Casp8 del) were detected in varying levels in the primary 

tumors. PCR amplification of the casp8fl3-4 allele (Casp8 fl) generates a band 

of 850 bp and the deleted band (Casp8 del) is 200 bp.   

(C) Western blots analysis of primary neuroblastoma tumors with an anti-

mouse caspase-8 antibody.  -/- mice are the Casp8 fl/fl and caspase8 fl/ko 

mice. 

(D) Quantative RT-PCR analysis for mouse caspase-8 was performed on total 

RNA extracted from the primary tumors of the following Th-MYCN, Th-Cre 

mouse genetic groups: wt/wt caspase-8, n=8, wt/ko caspase-8 n=5, P=0.007 

compared to wt/wt, fl/ko caspase-8, n= 6, P=0.003 compared to wt/wt, P 

values determined by t test. 

 (E) Kaplan-Meier survival curves of the Th-MYCN, Th-Cre mice with wt/wt 

caspase-8 (n=85) or fl/fl caspase-8 (n=90, P=0.12 compared to wt/wt), or fl/ko 

caspase-8 (n=90, P=0.30 compared to wt/wt), or caspase-8 heterozygous 

wt/ko (n=43, P=0.21 compared to wt/wt).  P values were determined by 

Gehan-Breslow-Wilcoxon log-rank test. 

  

Figure 2.  Caspase-8 deficiency does not change the incidence, latency, 

location, or growth rate of the mouse primary neuroblastoma tumors.  
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(A) Primary tumors could be identified by ultrasound imaging starting at 

mouse age 6-7 weeks. Tumors (red) arose in Th-MYCN, Th-Cre, wt/wt 

caspase-8 or Th-MYCN, Th-Cre, caspase-8–deficient mice (fl/ko and fl/fl 

caspase-8) in the paravertebral ganglia, either surrounding or near the aorta 

(purple) (81±7% of the cases) or near the kidney (green) and adrenal gland 

(19±7% of the cases), n=28 for the wt caspase-8 group and n=41 for the 

caspase-8–deficient group.   

 (B) Typical examples of preneoplastic islets observed in mice with caspase-8 

wt/wt, Th-MYCN (n=10) or deficient caspase-8, Th-MYCN (n=9) at ages 10, 

21, and 49 days are shown (H&E). No preneoplastic islets were observed in 

mice without MYCN. Arrows point to- LN- lymph node, PN- preneoplastic 

lesions, BM- BM, A- aorta, VE- vertebra, GN- ganglia. Scale bar represents 

50μm. 

 

Figure 3.  Deficiency of caspase-8 in the Th-MYCN mouse model 

enhances metastasis preferentially to the BM.   

(A) No significant difference in the mean mass of the primary neuroblastoma 

tumors of the Casp8 wt/wt, Th-MYCN, mouse group and the caspase-8 

deficient (Casp8 fl/ko and Casp8 fl/fl  mice, labeled -/-), Th-MYCN mice at the 

time interval metastasis was assayed (14±6 wks old mice). Data are expressed 

as mean ± s.e.m (n=12 for both mouse groups).  

(B) A significantly higher incidence of metastatic neuroblastoma was found in 

the BM of the caspase-8–deficient mouse group compared to the wt caspase-8 
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group (n=21 wt caspase-8 mice and n=28 caspase-8–deficent, * P=0.014, P 

determined by Fisher’s exact test). 

(C) Metastatic incidence to the ovaries did not differ statistically between the 

wt caspase-8 group and the deficient caspase-8 group (n=7 wt caspase-8, n= 9, 

caspase-8–deleted, P = 0.10 by Fisher’s exact test).   

(D) Typical examples of H&E staining of the secondary tumors in the BM of 

caspase-8–deficient mice in long bones such as the femur, tibia, and humerus.  

The BM metastatic tumor cells stained positive for the neuronal markers 

synapthophysin and tyrosine hydroxylase.  Areas of tumor cells in the BM are 

marked with arrows and asterisks indicate bones. Th-MYCN mouse BM with 

no metastasis serves as control. Scale bar is 50μm except in images 1, 3 , 4 

and 6 from left top it is 200 μm. 

 

Figure 4.  Heat map of the top 20 genes that are differentially expressed 

in the primary tumors (p<0.05).  

  

Figure 5.  GSEA enrichment plot of GO term ECM structural 

constituent. 

Genes in the GO term ECM constituent showed significant enrichment in BM 

metastasis versus no BMM samples.  The top portion of the figure plots the 

enrichment score for each gene, and the bottom portion shows the values of 

the ranking metric moving down the list of the ranked genes.  The table 
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indicates that the majority of the genes in the term were significantly enriched 

and upregulated in the caspase-8 deficient BMM samples. 

 

Figure 6.   microRNAs that are differentially expressed in the caspase-8 

deficient primary tumors.  
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Table 1.  Metastasis to the bone marrow in the TH-MYCN deleted caspase-8 mice 
 
 
 

Casp8 
genotype 

Mouse 
Number(s)

Age 
(wks) 

Sternum Long 
bones 

Vertebra 

wt/wt 1-20 10-17 N N N 
wt/wt 21 10 N 2a 1 
fl/ko 1-10 10-17 N N N 
fl/ko 11 10 N N 1 
fl/ko 12 9 N N 1 
fl/ko 13 10 N N 1 
fl/ko 14 17 N 1a N 
fl/ko 15 16 N 1 1 
fl/ko 16 10 N 1 N 
fl/fl 1-7 10-17 N N N 
fl/fl 8 10 N 1a N 
fl/fl 9 11 N N 1 
fl/fl 10 10 1 6a 1a 
fl/fl 11 11 N 1 N 
      
      

 
n=21 for wt/wt casp-8 mice, n=16 for fl/ko casp-8 mice and n=11 for fl/fl casp-8 mice 
Mice with metastasis to BM are labeled in red and were generated from at least 3-4 
mating combinations during a 2 year period.  
N – No tumor cells detected. 
a Neuroblastoma cells were confirmed by immunohistochemistry with synapthopysin, 
tyrosine hydroxylase and/or PGP9.5 antibodies and by morphology after H&E stain.  
Numbers in table indicate independent foci ranging in size from a cluster of 5-10 tumor 
cells to large sheets of cells. 
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