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Abstract

This research work evaluates the performance of a Fluid Structure Interaction
(FSI) solver, which is created using a generic interface to couple two indepen-
dent software packages. The basic idea is to combine the advantages of the two
independent codes to create a powerful FSI solver for two and three dimensional
FSI analysis using the concept of modular programming. A detailed description
about the implementation of an interface to couple a three-field system involved
in the analysis is given, and this developed interface can be generalized to others
codes. Since solving complex FSI problems is very time consuming, the focus
of this work is placed on the performance of the coupled solver, for which a FSI
benchmark will be solved on a computer cluster in order to measure speed up and
efficiency.
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1. Introduction

Nowadays, the design of many engineering systems has to consider fluid struc-
ture interactions, for instance aircraft, turbines and bridges, but also medical prod-
ucts like artificial heart implants. If effects of oscillatory interactions of fluid and
structure is not considered during the design process, it can lead into catastrophic
failure of the system. One of the probably most referenced examples of large-
scale failure is the Tacoma Narrows Bridge which collapsed in 1940. In aircraft
wings and turbine blades when the FSI is strong enough can produce the instabil-
ity system, which is known as flutter. Other important areas in which FSI plays
a fundamental role are, for instance, in biomedical engineering, where the pulsat-
ing blood flow can cause the rupture of an abdominal aortic (AAA) or cerebral
aneurysm, implying a great risk for the patient. In all these examples it is very
difficult to determine a priori the effects of the fluid over the structure. When the
interaction is known to be strong enough to produce important deformation on
the structure, intensives experimental tests has to be carried out, which are very
expensive and time consuming. Numerical solution of different FSI problems can
be found in [5, 11, 12, 17, 33].

In this context is where the possibility to perform a numerical simulation of the
whole system has a significant importance, allowing to test a wide number of de-
sign parameters and having as result a detailed description of the fluid (velocities,
pressure, turbulence intensity, etc.) and the structure (stress, strain, displacements,
etc.). But the governing equations of the fluid and the structure has to be coupled
in some way, one of the possibilities is to combine in a single formulation the fluid
and the structural governing equations as it was done in the works of [14] and [19],
but this monolithic scheme, in some cases, can be mathematically unmanageable
or its implementation can be a laborious task. Furthermore, the monolithic cou-
pled formulation would change significantly if other fluid and/or structure models
were considered.

Another possibility is to use specialized codes in order to obtain reliable pre-
dictions in FSI problems, considering a staggered fluid-structure coupling algo-
rithm based on a modular programming technique. But the coupling of two differ-
ent codes is a challenging task because it implies the design of an interface in order
to carry out the exchange of information and the synchronization of these codes.
Also, when using this approach, the resulting large system of non-linear equations
can be solved using (iterative) specifics solvers for each subsystem. Usually, this is




done with Block-Jacobi, Block-Gauss-Seidel or related relaxation methods [3, 8].
The solution of this subsystem requires high among of computational power and
it is required that both codes are prepared for parallel computation on distributed
memory systems, like computer clusters. In this work, in order to evaluate the de-
veloped interface and the capabilities of the modular programming, the fluid part
and the mesh movement are computed by the solver PETSc-FEM which is a soft-
ware being developed at Centro de Investigaciones de Métodos Computacionales
(CIMEC), Santa Fe, Argentina [37], hereafter called CFD (Computational Fluid
Dynamics) and CMD (Computational Mesh Dynamics) respectively. It is a gen-
eral purpose, parallel, multi-physics finite element method (FEM) program for
CFD applications based on PETSc [42]. It is written in the C++ language with
an object oriented programming (OOP) philosophy, keeping in mind the scope of
efficiency. CFD and CMD may run in parallel using the MPI standard on a variety
of architectures and comprises both a library that allows the user to develop FEM
(or FEM-like, i.e. non-structured mesh oriented) programs, and a suite of ap-
plication programs. These suite of applications allows to deal with compressible
[45] and incompressible [39] fluid flows with Streamline Upwind Petrov-Galerkin
(SUPG) and for Pressure Stabilizing Petrov-Galerkin (PSPG) stabilization tech-
niques, shallow water [45], free surface [46] and electrokinetic flows [43, 44].
Additionally, these programs can be coupled with mesh refinement [47] and mesh
relocation algorithms [40, 41] to improve the quality of the solution or to use when
solving FSI problems [11, 15, 33]. The problems can be solved using structured
and non-structured mesh with a wide variety of elements types (i.e. hexaedral,
tetrahedral, pyramid, wedges, triangle, quadrangle) and boundary conditions (i.e.
pressure inlet/outlet, velocity inlet, mass flow inlet, absorbing [45]).

The structural part is computed by the research in-house-code elementary Par-
allel Solver — ELPASO of the Institut fiir Konstruktionstechnik, Technische Univer-
sitdt Braunschweig [34] , hereafter called CSD (Computational Structure Dynam-
ics). It is a FEM based research code written in C++ with an OOP philosophy,
which may run in parallel using PETSc and the MPI standard on various archi-
tectures. It has been under constant development for many years. It is designed
for structural analysis and has been applied to different types of problems in time
and frequency domain like structural analysis, eigenfrequency analysis, acoustics,
soil-structure interaction and topological optimization [26, 27, 28, 29, 34]. To
address these very different types of problems various material models (linear-
elastic, visko-elastic, poro-elastic) and 1D (spring and beam), 2D (disc, plate and
shell) and 3D (tetrahedron and hexahedron) elements using linear or higher oder
shape functions are implemented. Hence for some problems in acoustic analysis
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and soil-structure integration it is necessary to consider an infinite free-field or
infinite half-space, boundary element method (BEM) and scaled boundary finite
element method (SBFEM) are implemented as well, since this methods are able
to fulfill Sommerfelds radiation condition exaclty.

Due to the high time consuming when solving complex FSI problems, the
focus of this work is placed on the performance of the coupled solver, for which
a FSI benchmark will be solved on a computer cluster, with an increasing number
of degree of freedom (DoF), evaluating in each case the strong scalability and the
efficiency.

2. Coupling strategy

The coupling process between the CFD, CMD and CSD codes has been car-
ried out using a partitioned technique [15, 16, 48]. When such kind of procedure
is used, a three-field system is involved in the analysis: the structure, the fluid
and the moving mesh solvers. The mesh movement is performed by using a nodal
relocation, maintaining the topology unchanged. There are several strategies to
perform the nodal relocation of the mesh, for instance, a linear elastic or pseudo-
elastic problem is used in order to propagate the boundary motion into the volume
mesh, obtaining thereby the mesh deformation. By solving an optimization prob-
lem, a mesh with higher quality can be obtained [18]. Another mesh moving
technique can be found in [31].

In order to solve FSI problems the fluid dynamic equations must be rewritten
in an Arbitrary Lagrangian Eulerian (ALE) framework. Here a geometric con-
servation law (GCL) compliant scheme based on an Averaged ALE Jacobians
Formulation (AJF) [36] is used, which is a new formulation applied to the theta-
family of time integration methods and to the three-point Backward Difference
Formula (BDF). This scheme was developed in order to satisfy the discrete ver-
sion of the GCL without needed of change the time integration scheme and with
very little modification at elementary level. Several researchers has shown that
satisfying the GCL in its discrete version (DGCL) is neither necessary nor suffi-
cient condition for an ALE scheme to preserve on moving grids its time-accuracy
established on fixed grids and there is a general consensus to use schemes that
satisfy the DGCL when solving FSI problems.

The interaction process is carried out through the exchange of information
at the fluid/structure interface in a staggered way. In broad terms, the structural
solver establishes the position and velocity of the interface, while the fluid solver




provides the pressure and shear stresses on the interface. The principal advan-
tage of the partitioned treatment is that existing optimized solvers can be reused
and coupled. Furthermore, the systems to be solved are smaller and better con-
ditioned than in the monolithic case. However, this approach requires a careful
implementation to avoid serious degradation of the stability and accuracy. From
this approach, either a weak (explicit) or a strong (implicit) time coupling scheme
can be developed. Next, these schemes will be described in detail.

During the iterative process three computer codes, CFD, CSD and CMD are
run synchronously to complete the following procedure:

i) Transfer the motion of the wet boundary (interface) from solid to fluid problem.
ii) Update the position of the boundary and bulk fluid meshes accordingly.
iii) Advance the fluid flow solution to update the pressures at the interface.
iv) Convert the new fluid pressures (and stress field) into a structural load.

v) Advance the solution of the structural system with updated structural loads.

Taking into account the previous description, two different coupling schemes
can be derived depending on how the prediction of the structural displacement for
updating the position of the fluid boundary and the computation of the updated
pressures are done. To proceed with the explanation of the scheme, the following
variables are defined: w” is the fluid state vector (p, v, p), z" is the vector with the
nodal displacement of the structure, z" is the structure velocity vector and x" is a
vector with the fluid mesh node positions, at time %,,.

In the weak (explicit) coupling the fluid flow solution is advanced first, using
the previously computed structure state z" and a current estimated value z;”rl. In
this way, a new solution for the fluid state wtl s computed. Next, the structure
is updated using the forces of the fluid from states w" and w"*.

The state zg“ is predicted by using a second or higher order approximation
given by,

Zén+1) = z" —+ aoAtin + alAt (Zn - inil) . (1)

were « and «; are two real constants. The predictor (1) is trivial if g = a1 =
0, first-order time-accurate if oy = 1 and second-order time-accurate if o = 1
and a; = 1/2. This coupling scheme has been proposed in [9, 25], with good
results in the resolution of aeroelastic problems.
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Once the coordinates of the structure are known, those of the fluid mesh nodes
are computed with a CMD code, which is symbolized as

X"t = CMD (z"*). (2)

Alternatively, the strong (implicit) coupling can be adopted [49, 50, 51], which
has benefits in terms of stability and is comparable with a monolithic coupling. In
this algorithm, the time step loop is equipped with an additional inner loop called
“stage”, thus if the “stage loop” converges the monolithic solutions is obtained.
When using the strong coupling strategy [52, 53] the computational cost increases
proportionally to the number of stages needed to achieve the desired error between
the states, but large time steps can be used. A more detailed description about the
implemented algorithm can be found in [15].

If a slip boundary condition is applied to the interface, at the beginning of each
fluid stage a computation of skin normals and velocities are performed. This is
necessary because the geometry of the interface I' is time dependent, whereby

((v[r = z[r) -0 =0), 3)

If a non-slip boundary condition is used, the interface has the velocity of the
moving solid wall

V|r = i’r- 4

The load vector p applied to the structure is updated at each time step n. It is
composed by the sum of predefined loads applied on the structure pg and forces
acting on the structure due to the surrounding pressure field of the fluid pg.

Prn = Ps + Pr- (5)

2.1. Limitations of the coupling strategy

As mentioned above the weak coupling partitioned scheme is more efficient,
since it only requires one solution of each subsystem per time step. However the
employment of sequentially staggered schemes in FSI problems, where incom-
pressible flows are considered, yields inherent instability [10]. This instability
can be overcome by using iteratively staggered partitioned schemes (strong cou-
pling scheme). Because of the high complexity and non-linearity of FSI problems,
only few mathematical explanations of the stability or convergence conditions are
available (see [6, 10]). In general it has been stated that the convergence depends




on the fluid and structure densities and on the geometry of the domain, i.e. when
the structure density overtakes a certain threshold or when the domain length is
greater than a certain value instability occurs. These unstable computations are
mostly due to the so-called artificial added mass effect, since the fluids acts as an
extra mass on the structural degrees of freedom at the coupling interface. In the
weak coupling the fluid forces depend upon the structure displacements and con-
tain thereby incorrect coupling forces. In [23] a threshold for the time step size
for staggered analysis on acoustic FSI depending on the ratio of the structural and
fluid mass has been obtained. In the incompressible case neither the time step size
nor the accuracy influence the instability.

In this work the instability coming from the added mass effect in the weak
coupling is avoided because the structure density is greater than the fluid density,
whereby a stable scheme is obtained.

2.2. Interface to manage the bi-directional information transfer

The coupling of structure and fluid is arranged by an interface. Therefore both
computational codes CFD and CSD are executed simultaneously. The interface
ensures the bi-directional information transfer between these codes. The struc-
tural solver applies nodal forces generated by the surrounding fluid to the structure
and returns velocities and displacements to the fluid and mesh movement solvers.
Different input-files are to be provided to the software by the user in order to per-
form the FSI analysis. CFD and CMD are used to solve the fluid dynamic and the
mesh movement problem, thus two files, one containing the nodal coordinates and
one containing the connectivity of the mesh are needed. Additionally, a file with
the setup of the boundaries conditions has to be generated, in the case of the fluid
problem velocity inlet, pressure inlet/outlet, wall (slip or non-slip) can be used and
for the mesh move problem has to be defined the fixed and one moving boundary
in order to be coupled with structure. A more detailed description can be found in
[37]. CSD is used to solve the structural dynamic, thus a file containing the nodal
coordinates, element connectivity, material parameters and also the boundaries
conditions and loads is needed. The other group of files are specific to the cou-
pling interface and has information about the moving boundary. One of these file
include a node mapping table (fluid node - structure node) at the moving boundary
in order to exchange the information and the other two files include the pressure
at the moving boundary to be transferred to the structure and the displacement of
the moving boundary to be transferred to the mesh move solver.

In order to permit the information transfer in both directions four independent
pipes are created. The concept of named pipe or FIFO — first in first out — is used
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to let the communication and consequently the data transfer between the different
codes happen. Named pipes are an extension to the traditional pipe concept on
Unix and Unix-like systems, it is one of the methods of inter-process communica-
tion. Instead of a conventional, unnamed, shell pipeline, a named pipeline makes
use of the file system. It is explicitly created to allow two separate processes to
access the pipe by name, thereby one process can open it as a reader, and the other
as a writer. To use named pipes for the communication, the communicating parts
of the two programs have to be executed on the same physical machine. Here the
communication is done by the first MPI process rank0. It has to be ensured, that
the instances of rankO are located in the same physical computer and share the
same physical memory. Otherwise the communication via named pipe will fail.
In the present case, the four different pipes which permit the bi-directional
coupling are named adv2str.fifo, str2adv.fifo, advZmmyv.fifo and mmv2adyv.fifo. The
data transfers of the nodal forces from CFD to CSD is controlled by the first pipe
adv2str.fifo, the transfer of nodal velocities and displacements from CSD to CFD
is controlled by the the second pipe str2adv.fifo. In order to synchronize the CFD
code with the CMD code the pipes advZmmy.fifo and mmv2ady.fifo are used.

Coupled time domain analysis CSD

Data: timestep At¢, CFD data
Result: timestep At, CSD data

initialize interface to communicate with CFD;
open file adv2str.fifo to read on rank0;
open file str2adv.fifo to write on rank0;
forn =1,2,..., Ny do
send structure state —1 massage to str2adv.fifo;
if adv2str.fifo traces fluid state At then

‘ receive fluid forces p;
end
perform n-th time step for ¢t = (n + 1)At;
send structure state At massage to str2adv.fifo;
if adv2str.fifo traces fluid state —1 then

‘ send nodal velocities v and displacements d;
end

end
close pipes and destroy interface
Algorithm 1: Linking from CSD to CFD
Algorithm 1 summarizes the coupling procedure of both codes from CSD
view to perform the coupled analysis of fluid and structure and link CSD to CFD.




If a coupled analysis is going to be carried out, an interface is initialized, which
opens two FIFOs on rankO only. When time stepping scheme is performed, the
interface is attached to it to organize the communication and synchronization of
the two solving processes. The synchronization is organized by sending the cur-
rent state of the computational processes. After the CSD code receives new nodal
forces from CFD the structure state variable is set to —1 and the next time step is
performed. As the structural computation is done the structure state variable is set
to the current time step At and velocities v and displacements d are send to CFD.
This procedure is running until the last time step has been computed. Afterwards
CSD closes the pipes, deletes the interface and free the memory to exit the process

properly.

Coupled time domain analysis CFD & CMD

Data: timestep At, CSD data
Result: timestep At, CFD data

initialize interface to communicate with ELPASO ;
open file str2adv.fifo to read on rank0;
open file adv2str.fifo to write on rank0;
open file adv2mmv.fifo and mmv2adv.fifo on rank0;
forn=1,2,..., Ny do
send fluid state —1 massage to adv2str.fifo;
if str2adv.fifo traces structure state At then

‘ receive velocities v and displacements d;
end
run CMD and update the moved mesh (using advZ2mmvy.fifo and mmv2adv.fifo);
perform n-th time step for ¢t = (n + 1)At;
send fluid state At massage to adv2str.fifo,
if str2adv.fifo traces structure state —1 then

‘ send nodal fluid forces p;
end

end
close pipes and destroy interface

Algorithm 2: Linking from CFD to CSD
Algorithm 2 shows the steps to perform on the opposite side by CFD. Here
everything acts in the opposite way - velocities and displacements are received and
forces are send via the already mentioned pipes. In this particular case the mesh
movement has been performed within CFD, hence the CMD is called internally.




3. Validation of fluid and structure solvers

Prior to validate and evaluate the parallel performance of the coupled algo-
rithm, both solvers have to be validated individually.

3.1. Fluid solver validation

To evaluate the overall performance of CFD solver, the fluid flow around a
bluff body (square cylinder) with a thin plate aligned to the flow direction, which
is attached to its backward face is solved. The problem assumes an incompress-
ible Newtonian flow, hence the following system of equations is solved with the
Navier-Stokes module,

p(g—?JruVu)—Va:O inQ x (0,7) (6)
and
V-u=0 inQx (0,7) @)

with p and u as the density and velocity of the fluid respectively, while o is the
stress tensor given by

o = —pl + 2ue(u) (8)

e(u) = % (Vu n (Vu)T) : )

where p and 4 are the pressure and dynamic viscosity, respectively, and I rep-
resents the identity tensor. Initial and boundary conditions must be also defined.
Details about the discretization of the Navier-Stokes equations using the Finite El-
ement Method (FEM) and its implementation are described in [35, 37]. A sketch
of the problem to with geometrical dimensions and boundary condition is shown
in Fig. 1. The same problem, but using an elastic cantilever beam, was first pro-
posed by [32] and then by [13] as an FSI benchmark.

The material properties Density and viscosity of the fluid are given by p =
1.18 x 1073 [g/cm3] and p = 1.82 x 10™* [g/cm s], respectively. The boundary
conditions are no-slip on the bluff body and plate surfaces, slip at the top and
bottom surfaces of the domain and a reference pressure is set at the outlet. Also,
a normal velocity condition is set at the inlet, with a prescribed constant value
V., = 31.5 [cm/s|. Hence a Reynolds number of Re = 204 is obtained if the
length of the square cylinder is used as reference. In this fluid dynamic problem, a
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Figure 1: Geometrical description (left) and spatial discretization. Fluid Mesh fl. M1 (right).

vortex shedding is periodically released from the edges of the square. The vortex
shedding frequency reported by [13] is fr = 3.7 [Hz|, whereby the Strouhal
number referenced to the length of the square is St = 0.117. Also, different flow
regimes and Strouhal numbers as a function of the relation between the splitter
plate length and the length of the square edge are reported in [1]. For the particular
case under analysis a St &~ (.12 is measured. Another important parameter to
verify the accuracy of the results is the mean drag coefficient (C'diyean), Which is
reported in [1] for different mesh sizes and temporal schemes, ranging between
1.406 < Cdpean < 1.507.

Table 1: Number of nodes, elements, and DoF of the fluid meshes 1 to 4.

Fluid Mesh  fl. M1 iM2 fiM3 flM4

# nodes 13672 34262 67045 207410
#elements 13320 33700 66446 206092
# DoF 40027 101217 198719 618669

In order to solve the numerical problem the fluid domain is discretized using
quadrilateral elements and four different structured meshes are generated. to eval-
uate the mesh convergence and later the strong scalability of the software. The
number of nodes and elements for the different meshes are detailed in Table 1.
The time step adopted was At = 0.002 [s] for a Crank-Nicolson time integration
scheme. Two Newton loops were used for the non-linear problem convergence
and an iterative Domain Decomposition Method (DDM) with an interface strip
preconditioner was used [24].

The results computed with the different meshes for (fr, St, C'dyean) are sum-
marized in Table 2. To get the vortex shedding frequency a Fourier transforma-

11




Table 2: Fluid dynamic results.

Fluid Mesh iMl fiM2 fiM3 flM4
Vortex shedding freq. (fr) 3.86 3.79 375 3.73

Strouhal Number (St) 0.122 0.120 0.119 0.118
C'dmean 1.508 1.469 1.453 1422

tion was applied to the lift force. The result of the transformation is plotted in
Fig. 2, which shows that they are in very good agreement with the values reported
by [1, 13].

g 10} ’7 AMIL - M2 AM3—— M4 |
2 i ]
-1 | -
F 0T
ol L. i
Q
= 1072 F E
< F E
g E y
8 o | .
2 107 | | \ | | E
0 2 4 6 8 10 12

Frequency

Figure 2: Fourier analysis of the lift force.

3.2. Structural solver validation

ELPASOis a FEM-based research code that provides the structural part of the
coupled computation. The structure is represented by finite elements for the time
domain analysis. At an arbitrary time step the displacement-based finite element
method can be written as

Ma+ Cv+Kd=p (10)

where vector d represents the nodal displacements, v the nodal velocities,
a the nodal accelerations and p denotes the applied nodal forces. Here, M is
the mass matrix, C is the damping matrix and K denotes the stiffness matrix.
Rayleigh damping is introduced by setting up the damping matrix as a linear com-
bination of the stiffness and mass matrices

C =K + ecuM, (11)
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where cx defines the structure equivalent damping cy the mass equivalent
damping.

Consider the time period 7" divided into n time steps with duration At = %
and known initial values for ¢t = 0

d(t=0) = do and (12)
v(t=0) = vy (13)

The equation of motion can be solved using the Generalized-o scheme [7].
The state variables of the next time step are evaluated with

1
dn_;,_l - dn + Atvn + (5 - B) AtZan + /BAtQanJ,_l 9 (14)

Vi1 = v + (1 — ) Ata,, + vAta, 4 (15)

and

(1 —am)Ma, 1 + apnMa, +
(1 —am)Cvpy +anCv,, + (16)
(1 - O4f) Kdn+1 2 aden = Pn+1— OéfAtan .

The parameters ay,, af, 3, and ~ are used to control the method. They should
be defined as follows

1
Oy S O[f§§ (17)
1 1
g > -+ =(¢—ay) and (18)
4 2
1
Y= §—Ofm+04f' (19)

If o, and oy are both chosen to be zero, the Generalized-o scheme is equal
to Newmarks time integration scheme [22]. Further details about ELPASO can be
found in the user manual [4].

The structure solver is validated individually, in a similar way to the fluid flow
solver. With this objective in mind, a cantilever beam is discretized with bilinear
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quadrilateral finite elements. To demonstrate the convergence of the numerical
scheme, different meshes with increasing number of nodes are used. Table 3
summarizes relevant data of the meshes: number of nodes, elements and the cor-
responding number of degrees of freedom.

Table 3: Number of nodes, elements, and DoF of the structure meshes.

Mesh st M1 stM2 stM3 stM4 stMS5S stM6 stM7 stMS
# nodes 136 405 804 1340 2010 2807 3744 4806
# elements 67 268 600 1068 1670 2400 3269 4264
# DoF 272 810 1608 2680 4020 5614 7488 9612

The material parameters Young’s modulus, Poisson’s ratio and density of the
elastic beam, are given by £ = 2.0 x 10° [Pa], » = 0.35 and p,; = 2000 [kg/m?],
respectively. Considering the Euler-Bernoulli beam theory with the appropriate
boundary conditions (clamped on the left side and free on the right side, which is
loaded), the natural frequency (f,,) of the cantilever beam can be determined

k2| EI

o\l p AL 20

fTL

where I = 1.8 x 107" [m%], A = 6 x 1077 [m?], L = 0.04 [m] are, respec-

tively, the area moment of inertia, the area and the longitude of the beam. Con-

sidering the constant k, = {1.875; 4.694; 7.885}, the first three approximated

natural frequencies f; = 0.606 [Hz|, fo = 3.798 [Hz] and f; = 10.717 [Hz] are
obtained.

The numerical computation is carried out in time domain for 1 x 10° time steps
with a time step interval At = 0.0001 [s]. Newmarks time integration scheme
with # = 0.25 and v = 0.5 is used, so that no numerical damping is applied to the
analysed structure. To compare the numerical results with the natural frequencies
computed with Eq. (20), a point on the neutral axis, at the very right (free) end of
the beam, is observed. Applying a Fourier transformation on this time depending
recorded data yields the natural frequencies of the numerical model. The number
of time steps and the chosen time step lengths lead to a frequency interval of
0.001 [Hz].

Fig. 3 shows the numerical approximation of the three natural frequencies
given by Eq. (20), which matches very well. It is clear that the numerically com-
puted frequencies converge to the given natural frequencies when increasing the
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Figure 3: Mesh dependent eigen frequencies f; = 0.606 [Hz|, fo = 3.798 [Hz] and f5 =
10.717 [Hz] of the cantilever beam.
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number of degrees of freedom. For a better survey of the numerical results, the
relative errors in the natural frequencies

fn_.fn
e

€n =

1)

are summarized in Table 4, where f, is the nth natural frequency of the nu-

merical model.

Table 4: Mesh dependent computed eigen frequencies and corresponding relative errors e,,.

Mesh st M1  stM2 stM3 stM4 stMS stM6 stM7 stMS
w1 [Hz] 0.741 0.642 0.623 0.615 0.612 0.610 0.609 0.608
we [Hz] 4.638 4.021 3.899 3853 3.831 3.819 3.812 3.807
ws [Hz] 12.973 11.242 10.897 10.767 10.706 10.673 10.654 10.642
€1 2228% 594% 281% 149% 099% 0.66% 0.50% 0.33%
€9 22.12% 587% 2.66% 1.45% 087% 0.55% 037% 0.24%
€3 21.05% 490% 1.68% 047% 0.10% 041% 0.59% 0.70%

3.3. Evaluation of the coupled solver

In order to evaluate the numerical solution and the performance of the cou-
pled solver a well-known 2D benchmark with moving interfaces is solved. The
benchmark involves the solution of the moving interface, the unsteady fluid flow
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and structural mechanics. Also, a strategy to deform the mesh is adopted. The
test was proposed in [38] in order to evaluate the accuracy and robustness of FSI
methods, then several researchers [13, 30] used or adapted this test in different
ways. The geometry and boundary conditions are those shown in Fig. 1. The fluid
parameters, time integration scheme and time step size for CFD are the same as
those described in §3.1. Also, the structure discretization, material parameters and
time integration scheme used are the same as those described in §3.2, so that no
structural damping is considered.

In this particular case the interface between the fluid and the structure is con-
formal, so that fluid and structure have the same discretization, wherewith the
load from the fluid to the structure and the displacement from the structure to the
fluid mesh are directly transferred without any interpolation or tracking. Using a
matching interface all the quantities are trivially conserved.
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Figure 4: Comparison of tip displacements with [13].

In this simulation the beam starts with an initial deflection u, ~ 0.02[m],
which is produced by a temporary load applied at the tip. Then, the load is re-
moved and the beam starts to oscillate, reaching a periodic stationary solution.
The vibration frequency of the coupled system is f. = 0.8 [Hz] with an amplitude
at the tip of the beam u, ~ 0.02[m] [13].

When the problem is solved using the described coupling algorithm the am-
plitude at the tip of the beam is u, ~ 0.0195 [m]. The resultant tip displacement is
plotted in Fig. 4. Applying a Fourier transformation to the tip displacement yields
a frequency of f; = 0.809 [Hz] ~ f. and f, = 5.016 [Hz], which are in accor-
dance to the results reported in [13], which is solved using a monolithic solver.
The results shown were computed with the fluid mesh fl M3 (see Table 2) and the
structure mesh st_M3 (see Table 3).
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Also, it is interesting to analyze the pressure around the body to compare it
with the results obtained by [13]. In Fig. 5 it is shown a good correlation between
the pressure field around the body during the beam deformation, which is very
important since this pressure field generates the forces exerted by the fluid onto
the structure.

== Pressure [g/cm s

Pressure (Pa)
0.15

0.12

0.08
_0 04

Figure 5: Pressure field around the body. Reprinted figure from [13] with permissions.

After the fluid, structural and coupled solvers are validated, the next step is to
measure the performance and scalability of the coupled solver. To carry out these
performance measurements, it is chosen to evaluate first the scalability of the fluid
solver. This evaluation will be used as reference, since the fluid part dominates
the coupled process in the sense that it is the most time consuming.

4. Parallel performance

In a previous work [35] it has been described in detail how CFD solver works
and the overall parallel performance of the code, but due to changes in the cluster
software and hardware, a new general analysis is accomplished by using a flat
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MPI parallelization, i.e. not using hybrid parallelism with OpenMP. With regard
to CSD solver a recent work [34] evaluates the performance of the code, whereby
it is not needed a new evaluation. Also, the small number of degrees of freedom
of the numerical problems used as benchmarks are not suited to do performance
measurements and will not lead to reasonable results.

First the parallel performance of the CFD solver is analyzed by carrying out
time measurements and then the coupled fluid structure interaction process is eval-
uated employing the same procedure.

All problems are solved using the cluster “Coyote” from CIMEC, which is
of the Beowulf kind, with a server and 8 compute nodes Intel® Xeon®ES5-1660
(DDR3-1600Mhz) of 3.3 GHz CPU, with 6 cores and 16 Gb RAM per node,
interconnected with a Gigabit Ethernet network.

The performance of each problem is analyzed based on the execution time,
being T the execution time to solve the problem on 1 node using 1 core and 7,,,
the parallel execution time with n process. Then the speedup

T.
Sp = == 22
P=7 (22)
and efficiency
S T,
E=2E_ (23)
n n-T,

can be computed [2]. First, the speedup and efficiency of the CFD solver are
analyzed by — Node Consecutive Filling (NCF) — from 1 to 12 cores. Therefore the
programs are executed in one compute node using multiple MPI tasks. For each
time measurement the number of MPI tasks is increased by one. After the first
node is fully loaded with 6 MPI tasks, a second compute node is added to increase
the number of MPI tasks up to 12. The second evaluation — Kernel Consecutive
Filling (KCF) — uses 2 compute nodes right from the beginning, and 2 additional
MPI tasks are added for each timing, hence each node initializes the same number
of tasks.

4.1. Fluid solver performance evaluation

The parallel performance of the fluid solver is evaluated using the meshes
described in Table (1). Figure 6 depicts the measured parallel speedup, which
reaches at its maximum a factor of 6.4, and its corresponding efficiency for the
analyzed meshes. The biggest speedup is archived when 12 cores are addressed.
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Figure 6: Parallel speedup and efficiency depending on mesh, and initialization of the parallel
computation.

With increasing number of initialized MPI tasks the speedup increases as well.
Which implies that the computational time decreases at the same time. Due to
the parallel overhead introduced by the communication of the processes the ef-
ficiency of a single core is decreasing when more cores are added. Hence more
communication between the processes is needed, and this additional communica-
tion time can not be used to solve the original problem. From the shown graphs
it is obvious that the KCF distribution performs better than the NCF initializa-
tion. This behaviour arises from the leak of memories bandwidth of the compute
nodes. The memory is not able to supply all cores with sufficient data at the same
time [20, 21]. Thus the gap between the two initialization procedures — KCF and
NCF - appears.

4.2. Fluid Structure solver performance evaluation

The evaluation of the parallel performance is carried out using the problem de-
scribed in §3.3. During the numerical simulation three codes, i.e. CFD, CSD and
CMD are executed, whereby the procedure to measure the performance slightly
differs to that used in the performance measurement of the fluid solver. The
speedup and efficiency of the FSI solver are analysed by NCF from 1 to 12 cores
for the fluid and mesh move solvers, while the structure is run in one core only
due to the small size of the numerical problem. In each node, a maximum of three
MPI process for the fluid solver plus three MPI process for the mesh move solver
are launched, reaching the maximum number of physical cores of the node. Then,
additional nodes are added in order to reach the total of 12 core, using a total of
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four nodes. In figure 7 the speedup and efficiency for increasing mesh size prob-
lems are plotted. When the first two meshes are used the exchange of information
and synchronization among the three codes plays an important role and the effi-
ciency starts to decay after using more than 6 core. This problem is overcome
when bigger meshes are used, which can be observed when solving the problem
with fl M3 and fl M4, whereby a weak scalability is achieved.
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Figure 7: Parallel speedup and efficiency depending on mesh mesh size.

When partitioned schemes are used to couple multiphysics systems, an ex-
change of information between the codes, as described in the algorithms (1) and
(2), 1s required. This exchange of information and synchronization has an impor-
tant influence over the possibility to reach a strong scalability.

5. Conclusion

In this research work were presented the algorithm and interfaces used to cou-
pled two independent software packages in order to obtain a FSI solver. The
coupling algorithms were presented in §(2.2) and the used strategy was described
in detail in §(2). Also, the limitations of this strategy were stated in §(2.1).

Both computer codes (fluid and structural) were individually validated by solv-
ing specific benchmark problems. In addition, a mesh convergence analysis was
carried out showing good results. In the fluid flow problem the Strouhal Number
and mean drag are in very good agreement with the numerical and experimental
values reported by several references. On the other hand, the solution obtained
with the structural solver was validated against the analytic solution of the prob-
lem, also showing good agreement and convergence.
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The parallel performance of the solvers were measured separately in order to
know the possible speedup and efficiency of the coupled solver, although it is
known that the required synchronization among the three solvers (fluid-structure-
mesh mover) and the exchange of information will lead to an efficiency decrement,
which makes the achievement of strong scalability difficult.

As future work in this collaborative project, it can be mentioned the use of
non matching meshes, which will allow to use different spatial discretizations in
the fluid and the structure. Also a surface tracking strategy is been developed and
implemented in order to manage the movement of the non matching meshes. This
new capabilities of the solver will be used to solve a 3D benchmark, in order to
validate the results and the performance obtained.
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