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The coupling between local composition fluctuations in binary lipid membranes and curvature
affects the lateral membrane structure. We propose an efficient method to compute the composition-
curvature coupling in molecular simulations and apply it to two coarse-grained membrane models—a
minimal, implicit-solvent model and the MARTINI model. Both the weak-curvature behavior that is
typical for thermal fluctuations of planar bilayer membranes as well as the strong-curvature regime
corresponding to narrow cylindrical membrane tubes are studied by molecular dynamics simulation.
The simulation results are analyzed by using a phenomenological model of the thermodynamics of
curved, mixed bilayer membranes that accounts for the change of the monolayer area upon bending.
Additionally the role of thermodynamic characteristics such as the incompatibility between the
two lipid species and asymmetry of composition are investigated. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4901203]

I. INTRODUCTION

The spontaneous curvature of lipid monolayers and the
coupling, λ, between composition and curvature in lipid bi-
layer membranes has attracted abiding interest because it
is important for the lateral organization of membranes.1

For instance, curvature-composition coupling can give
rise to spatially modulated phases or microemulsion-like
morphologies2–5 that resemble “rafts,” i.e., domains of phos-
pholipids and cholesterol, whose properties differ from their
surrounding. Additionally, the coupling between curvature
and composition may also be important for highly curved
structures6 like membrane tubes or transition states that oc-
cur in transformation of membrane shapes (e.g., pore forma-
tion, fusion, and fission7, 8). Alternatively, proteins or other
membrane inclusions can give rise to high local curvatures
that modify the local composition in multi-component mem-
branes.

In this paper we propose to measure the coupling be-
tween curvature and composition and the concomitant spon-
taneous curvature of a monolayer by analyzing the composi-
tion difference �φ between apposing monolayers of curved
membranes in molecular simulations. This is an alternative
to extracting the spontaneous curvature of a monolayer by
the first moment of the pressure profile across a bilayer
membrane.9–11 Both the weak-curvature behavior that is typ-
ical for thermal fluctuations of planar bilayer membranes as

a)Electronic mail: vidal@theorie.physik.uni-goettingen.de
b)Electronic mail: carla@dqb.fcq.unc.edu.ar
c)Electronic mail: pastor@cnea.gov.ar
d)Electronic mail: mmueller@theorie.physik.uni-goettingen.de

well as the strong-curvature regime corresponding to narrow
cylindrical membrane tubes are studied. The latter gives rise
to pronounced composition differences that can be accurately
determined.

Our simulation results are analyzed using a phenomeno-
logical description of the thermodynamics of curved, mixed
bilayer membranes.1 Several models have been proposed to
describe the lateral sorting of lipids and its interplay with
membrane curvature in model bilayer mixtures comprised of
two or three lipid species.1, 3, 12–18 All these models comprises
three terms: (i) a curvature dependent term that accounts for
the elastic energy, (ii) a composition dependent term describ-
ing the free energy of mixing, and (iii) an energetic contribu-
tion that couples curvature and composition. Although most
of these models explicitly distinguish the composition on each
leaflet of the bilayer, few of them consider their difference in
curvature. This simplification is valid for bilayers in the ab-
sence of strong shape fluctuations or curved surfaces with a
radius of curvature that is much larger than the bilayer thick-
ness. However, important contributions to the lateral sort-
ing of lipids may arise when these conditions are not met.
In this paper we present a simple phenomenological model
that explicitly accounts for the curvature difference, resulting
in additional contributions to the free energy of mixing. We
employ this model to analyze the strength of the curvature-
composition coupling from molecular dynamics simulations
under different curvature, composition and incompatibilities
between the lipid species.

Our paper is arranged as follows: In Sec. II we pro-
vide a brief description of the thermodynamics of a curved,
mixed bilayer membrane which is used to analyze the

0021-9606/2014/141(19)/194902/13/$30.00 © 2014 AIP Publishing LLC141, 194902-1
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composition difference between the apposing monolayers
of curved membranes. We use two coarse-grained simula-
tion models—a minimal, implicit-solvent model19–21 and the
MARTINI model22—to study the composition-curvature cou-
pling. Section III presents our simulation results for small and
large curvatures and small and large incompatibility between
the lipid species. The paper closes with a brief summary and
an outlook (Sec. V).

II. BACKGROUND

In this section we present a simple, phenomenological
model that describes the thermodynamics of mixing in
the two monolayers of the membrane and its coupling to
the membrane’s curvature. For simplicity we consider a
spatially homogeneous cylindrical membrane of thickness
th, characterized by the curvature, H = −1/R, and the area,
A, of its midplane, as shown in Fig. 1. In terms of these, the
corresponding curvature and area for the upper and lower
monolayers (denoted by subscripts u and l, respectively) are

Hu = H
1 − th

2 H
, Hl = −H

1 + th
2 H

, (1)

Au = A

(
1 − th

2
H

)
, Al = A

(
1 + th

2
H

)
. (2)

With this sign convention, monolayer configurations where
polar head groups bend towards the bilayer’s center (increas-
ing monolayer’s area compared to bilayer’s midplane) have
negative curvature and configurations bent in the opposite di-
rection (with reduced area) have positive curvature. The num-
ber of lipids on each monolayer is denoted by nα = nα1 + nα2,
where α = u, l represents the monolayer and indexes 1 and 2
stand for the two lipid species. The local order parameter of
a single monolayer is defined by −1 ≤ φα = n

α1−n
α2

n
α

≤ 1.

FIG. 1. Schematic representation of the curved bilayer, where the middle
plane represents the neutral surface.

The free energy of the system can be decomposed into
(i) the free-energy of mixing in the individual monolayer, (ii)
a Helfrich Hamiltonian that describes the bending free en-
ergy of each monolayer, and (iii) a intrinsic coupling of the
composition in the two apposing monolayers. In the follow-
ing we study the composition of the monolayers at fixed cur-
vature. Additionally, we neglect the intrinsic coupling (iii) of
compositions between the two opposing monolayers due to
interactions across the midplane of the membrane. Such phe-
nomenological models have previously been studied.3, 12–18

The free energy of mixing takes the form of an ideal mix-
ture for each of the monolayers

Fmix

kBT
=

∑
{α}

nα

[
χ

4

(
1 − φ2

α

) + 1 + φα

2
ln

(
1 + φα

2

)

+1 − φα

2
ln

(
1 − φα

2

)]
, (3)

where the first term quantifies the energy of mixing and the
last two terms are the entropy of mixing. χ denotes the in-
compatibility due to pairwise repulsion of the species. This
expression explicitly depends on the number of lipids per
monolayer, nα . For planar membranes nl ≈ nu, however, for
highly curved cylinders nα must be proportional to the radius
of the corresponding monolayer and, therefore, to its inverse
curvature. To make this curvature dependence explicit we set
nα = σ mAα , where Aα denotes the area of the corresponding
monolayer and σ m is the areal density of lipids in a mono-
layer, which may depend on membrane tension. The weak,
quadratic dependence of σ m on curvature is ignored.

We define the average order parameter, ψ , of the bilayer,
which is linearly related to the average composition, and the
composition difference, �φ, by

−1 ≤ ψ = φl + φu

2
≤ 1 and �φ = φl − φu

2
. (4)

Note that these definitions imply upper and lower limits for
the values of �φ that can be accessed for a fixed average com-
position. These saturation values are �φs = ±(1 − |ψ |).

With these definitions for ψ and �φ, and according to
Eqs. (1) and (2), the bilayer’s free energy of mixing (up to
first order in H) takes the form

Fmix

σmAkBT
= sl + su + χ

2
(1 − ψ2 − �φ2)

+ h

2
H(sl − su − χψ�φ), (5)

where we use the abbreviation

sα = 1 + φα

2
ln

[
1 + φα

2

]
+ 1 − φα

2
ln

[
1 − φα

2

]
(6)

for the entropy of mixing of each planar monolayer. The sec-
ond line in Eq. (5) is a correction to the free energy of mixing
that accounts for the dilution or enhancement of interactions
induced by curvature.

The free-energy cost of bending the bilayer membrane
is described by a Helfrich Hamiltonian23 for each of the
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monolayers

Fben

kBT
= κm

2
Au(Hu − Cu)2 + κm

2
Al(Hl − Cl)

2, (7)

where Cα is the spontaneous curvature of a single monolayer
and κm denotes its bending rigidity, measured in units of the
thermal energy scale, kBT. Since distinct lipid species are
characterized by different spontaneous curvatures, Cα must
be a function of the local order parameter. In the following,
we assume a simple, linear dependence

Cα = C0 +
(

σm

κm

λ

)
φα, (8)

where C0 is the spontaneous curvature of a mixed monolayer
with an equal amount of lipids of each species, and λ

quantifies the strength of the intrinsic curvature-composition
coupling. The particular choice of the term in parenthesis
recovers the usual definition for the coupling of the bilayer15

(see last term in Eq. (11)). Alternatively, this definition
provides an expression for λ and C0 in terms of the spon-
taneous curvatures of the two lipid species, C+1 and C−1
(corresponding to φα = ±1)

λ = C+1 − C−1

2ηm

and C0 = C+1 + C−1

2
, (9)

with ηm = σ m/κm. Typical values for the area per lipid and
the bending rigidity at room temperature are 1/σ m ≈ 0.5 nm2

and κm ≈ 10.0 (in units of kBT),24, 25 which yield the ap-
proximate value ηm ≈ 0.2 nm−2. Additionally, the absolute
spontaneous curvature of lipids with biological relevance has
been reported25 to be as large as |C±1| ≈ 0.9 nm−1. These
data provide us with a crude estimate for the absolute value
of the strength of the direct coupling, |λ| � 4.5 nm.

Expanding the bending energy of the bilayer, Eq. (7), up
to first-order terms in H, we obtain

Fben

σmAkBT
= thH�φ[C0λ + ηmλ2ψ] + 2λH�φ + ηmλ2�φ2

+ terms independent from H and �φ. (10)

The last term in this expression can be absorbed into the defi-
nition of the bare χ parameter in Eq. (5). We define the effec-
tive incompatibility coefficient χ eff = χ − 2ηmλ2.

Adding the mixing and bending contributions, Eqs. (5)
and (10), we obtain the final expression for the free energy of
the bilayer:

F

σmAkBT
= sl + su + χeff

2
(1 − ψ2 − �φ2)

+ th

2
H(sl − su − χeffψ�φ)

+ thH�φ(C0λ + ηmλ2ψ) + 2λH�φ. (11)

The most probable composition difference, �φ∗, for a
fixed average order parameter, ψ , and curvature, H, is ob-

tained by minimizing Eq. (11)

0 = 1

2
ln

[
(1 + �φ∗)2 − ψ2

(1 − �φ∗)2 − ψ2

]
+ thH

4
ln

[
(1 + ψ)2 − �φ∗2

(1 − ψ)2 − �φ∗2

]

− χeff�φ∗ − 1

2
χeffthHψ

+ thH
(
C0λ + ηmλ2ψ

) + 2λH. (12)

If the composition difference between monolayers is small,
compared to the corresponding saturation value for the given
average order parameter, |�φ∗| � |�φs|, this equation can be
further approximated by

−
[

2

1 − ψ2
− χeff

]
�φ∗ = thH

[
1

2
ln

(
1 + ψ

1 − ψ

)
− 1

2
χeffψ

]

+λthH
[

2

th
+ C0 + ηmλψ

]
,

(13)

which predicts a linear dependence of the most probable com-
position difference, �φ∗, on curvature. The strength of this
dependence is given by the effective curvature-composition
coupling

�eff

th
=

1
2 ln

[
1+ψ

1−ψ

]
+ ψ[ηmλ2 − 1

2χeff] + λ[ 2
th

+ C0]

χeff − 2
1−ψ2

. (14)

Phase separation in the monolayers of a planar membrane
will occur, if χ eff exceeds the critical value χ c. The mean-field
estimate for the critical point is χMF

c = 2. If the planar mem-
brane does not spontaneously phase separate (i.e., χ eff < 2),
the bracket on the left-hand side of Eq. (13), which quantifies
the inverse susceptibility of the bilayer with respect to com-
position fluctuations, will be positive.

Note that �eff is not an odd function of the average order
parameter ψ , i.e., it does not simply change sign when the two
lipid species are exchanged. The last term in the numerator of
Eq. (14) quantifies this asymmetry and it is proportional to
the intrinsic coupling, λ, and the sum of the curvature of a
single, mixed monolayer and its maximum attainable value,
2/th. (The maximum radius of curvature of a monolayer is
th/2, as can be seen in Fig. 1).

If the susceptibility is large, i.e., in the proximity
of macroscopic demixing of the planar membrane, this
curvature-induced asymmetry will be enhanced and the com-
plementary distribution of lipids between monolayers (oppo-
site composition in opposite leaflets, as described in Ref. 26)
will be more pronounced. This requirement of co-operativity
is also supported by experiments on curvature-induced lipid
sorting.27

III. MODELS AND SIMULATION TECHNIQUE

In order to study the curvature-composition coupling
in mixed bilayer membranes, we employ a minimal,
implicit-solvent model,19–21 and the coarse-grained MAR-
TINI model.22 The former model serves to systematically
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FIG. 2. Snapshots of configurations used in this work. (Top left) A configu-
ration for the cylindrical geometry of the MARTINI model. (Top right) Cut
of the same configuration along the cylinder axis. The 4 pores opened in
the membrane to allow a fast exchange of lipids between inner and outer
leaflets are clearly observed. (Bottom left) Axial cut of a cylinder used in
the implicit-solvent model. The white spot in the middle is the pore used to
facilitate the equilibration of areal densities in both leaflets. (Bottom right)
Upper and lower views of a planar configuration used in the implicit-solvent
simulations.

explore the effects of curvature-composition coupling and to
compare the results of planar membranes with thermal fluc-
tuations of the local bilayer position and highly curved mem-
brane tubes. The latter model allows us to make direct connec-
tion to relevant experimental systems. Snapshots of typical
configurations used in both, MARTINI and implicit-solvent
simulations are shown in Fig. 2.

Details of model parameters and setup of simulations are
compiled in Appendix A.

IV. RESULTS

A. Minimal, implicit-solvent membrane model

First, we characterize the dependence of the order pa-
rameter, ψ , for nearly planar membranes, as function of
the imposed exchange chemical potential, �μ. As shown in
Fig. 3, the transition from the regime where the bilayer is
mainly composed of short-head lipids to the one where the
majority component are large-head lipids, occurs in a nar-
rower interval for the high incompatibility case than in the
case of small incompatibility. Therefore, composition fluc-
tuations are stronger in the former case and the effective
curvature-composition coupling is expected to be enhanced.
The susceptibility of the order parameter, Sψ , was extracted
from the slope of the graphs in the main plot of Fig. 3. Con-
sistent results were obtained from the analysis of fluctuations
of ψ ,28, 29 as shown in the inset of Fig. 3, for the case of low
incompatibility. This susceptibility is related to the second

-4.4 -4.2 -4 -3.8 -3.6
Δμ

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

ψ

High χ
hh

Low χ
hh

-4.4 -4.2 -4
Δμ

0

1

2

3

4

S
ψ
 / 

2

Slope
Fluct. Spectra

FIG. 3. Main plot: Average order parameter, ψ , of the minimal, implicit-
solvent model vs exchange chemical potential, �μ, for low and high in-
compatibilities (lines are just guides to the eye). Inset: Susceptibility of local
composition for low incompatibility, evaluated from the slope of the corre-
sponding graph in the main plot (filled triangles) and the analysis of compo-
sition fluctuations (open squares).

derivative of the free energy, Eq. (11), via[
∂〈ψ〉
∂�μ

]−1

= 1

σmA〈(ψ − 〈ψ〉)2〉 ≡ 2

Sψ

= 1

σmA

∂2F/kBT

∂ψ2
= −χeff + 2

1 − ψ2
. (15)

From this analysis we found χL
eff = 1.5 ± 0.3 and χH

eff
= 1.97 ± 0.1, for low and high incompatibility, respectively.

After composition fluctuations are equilibrated around an
average value set by �μ, we map the unit length of our simu-
lations, i.e., the cutoff radius for non-bonded interactions, rc,
to real units. This is done by means of the bilayer thickness,
which we defined as the distance between peaks in the den-
sity profile, for head-group beads in opposite leaflets, finding
th ≈ 6rc. Since the typical thickness of real biological mem-
branes is in the range of several nanometers, we can identify
rc ≈ 1 nm. Once this is done, we can analyze the local shape
and composition of the bilayer using a lateral grid of 8 × 8
squares in the xy plane. Then, at every grid point, we fit the
height of the membrane (with respect to its projected plane)
by a quartic function

g(x, y) = p1x
2 + p2y

2 + p3xy + p4x + p5y + p6. (16)

In this Monge representation, the mean curvature H is
given by30

H =
(
1 + g2

y

)
gxx − 2gxgygxy + (

1 + g2
x

)
gyy

2
(
1 + g2

x + g2
y

)3/2 , (17)

and the derivatives are locally estimated from a fit according
to Eq. (16). In the limit of small curvatures, we consider only
first-order terms, so that this expression simplifies to

H = gxx + gyy

2
, (18)

i.e., the mean curvature at a given point, (x, y), on the mem-
brane is computed from the fit according to H = p1 + p2.

The fit is done using the sub-grid with 4 × 4 neighbors of
the current point. The concentration difference at that point
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FIG. 4. Color map: Joint probability distribution of local curvature, H, and
composition difference, �φ, for �μ = −4.130. Symbols: Average 〈�φ〉 and
most probable, �φ∗ composition difference for a given curvature. The line is
a linear fit, �φ∗ vs. thH, from which we determine the effective composition-
curvature coupling, �eff.

is set as the average concentration difference on the same
sub-grid. A typical snapshot of a membrane with pronounced
shape and composition fluctuations is shown in Fig. 2. This
snapshot also exhibits the high degree of complementarity
between the two leaflets (opposite composition on opposite
leaflets) for systems close to the demixing critical point (i.e.,
for high incompatibility and �μ ≈ −4.160, shown in Fig. 3).

From those maps we evaluate the joint-probability distri-
bution function, P (H,�φ), counting all the occurrences of a
particular �φ for a given H. Fig. 4 presents P (H,�φ) for the
case �μ = −4.130.

From every histogram (one per each �μ) we obtained
the most likely, �φ∗ and the average, 〈�φ〉 composition dif-
ference for a given curvature. Away from the critical point of
demixing, �φ is Gaussian distributed and both values coin-
cide. However, near the critical point, finite-size effects be-
come important and the distribution slightly deviates from a
Gaussian, as shown in Fig. 5 for the composition difference,
�φ, and the reduced order-parameter, ψ−〈ψ〉

σ
(with 〈ψ〉 and

σ being the mean and standard deviation of the distribution,
respectively). This non-Gaussian behavior is a characteristic
feature of critical phenomena.31–35 In those cases, we have
considered the most probable composition difference, �φ∗,
for the analysis (cf. inset in Fig. 5).

The coefficient ηm = σ m/κm in the definition of the effec-
tive coupling, Eq. (14), was determined by measuring (i) the
surface density of lipids in each monolayer and (ii) the fluctu-
ation spectra of the bilayer in the limit of small wave vectors
(limq→0 S(q) = 1

Aκmq4 ), from which the bending rigidity, κm,

was obtained. No significant differences where found for low
and high incompatibility, or data corresponding to different
average compositions. We set the average value ηm = 0.1685
± 0.0033 nm−2, which corresponds to κm ≈ 10.6. This result
lies within typical values reported for single component, fluid
phase membranes.19

-0.8 -0.4 0.0 0.4 0.8 1.2
Δφ

P
(Δ

φ)

Simulation
Gaussian fit

-0.1 0.0 0.1
H x t

h

-0
.2

-0
.1

0.
0

0.
1

0.
2

Δφ

<Δφ>
Δφ*

Fit

-4 -2 0 2 4
(ψ - <ψ>) / σ

σP
(ψ

)

FIG. 5. Main plot: Probability distribution function for composition differ-
ence, �φ, slightly above the critical point, �μ = −4.160 and high incompat-
ibility. Insets: (Left) Average, 〈�φ〉, most probable, �φmax and fitted com-
position difference for a given curvature. (Right) Probability distribution of
the reduced order parameter, ψ−〈ψ〉

σ
.

Analyzing the joint probability distribution, cf. Fig. 4, we
determine the effective coupling, �eff. The results as a func-
tion of the average order parameter, ψ , and two incompati-
bilities are presented in Fig. 6. Globally fitting these simula-
tion results to the prediction of the phenomenological theory,
Eq. (13), we obtained the parameters, C0, λ, and χ for low
and high incompatibility cases. A compilation of relevant pa-
rameters for the implicit-solvent model is given in Table I.
Using this simple set of parameters, we can describe the ef-
fective coupling, �eff, for different average compositions and
incompatibilities, indicating that the phenomenological de-
scription captures the salient physical mechanisms of
composition-curvature coupling for our membrane model.

Several conclusions can be drawn from these results:

� C0 = −0.27 nm−1 ≤ 0. This, together with Eq. (8)
yields C+1 = 0.072 nm−1 and C−1 = −0.61 nm−1

for the spontaneous curvatures of the short-head and
large-head lipids, respectively. Additionally, these re-
sults are consistent with those presented in Ref. 19,
where short-head lipids are reported to self assembly
into planar bilayers, whereas large-head ones are close
to the phase boundary between planar bilayers and
cylindrical micelles.
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FIG. 6. Effective coupling vs average order parameter for low and high
incompatibility.
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TABLE I. Phenomenological parameters for simulations with the minimal,
implicit-solvent model.

Param. Value Param. Value

th 6.0 nm ηm 0.1685 ± 0.0033 nm−2

κm 10.6 ± 0.3 C0 −0.27 ± 0.01 nm−1

λ 2.01 ± 0.06 nm χL
eff 0.0 ± 1.13

χH
eff 1.91 ± 0.01

� λ ≥ 0 reflects the fact that lipids with shorter/larger
head groups will prefer to cluster in regions with posi-
tive/negative curvature, respectively.

� The agreement over the entire range of compositions
validates the linear dependence of the spontaneous cur-
vature of a mixed monolayer on composition, Eq. (8).

� χ eff = 1.91 � χ c for high incompatibility. In this case,
the system is fairly close to the critical point of macro-
scopic phase separation. This result is in agreement
with the finite-size effects and the non-Gaussian prob-
ability distribution function of �φ near �μ ≈ −4.160
(cf. Fig. 5), where the correlation length is compara-
ble to the system size. It is also in good accord with
the analysis of Fig. 3 and Eq. (15). Recent experi-
mental observations suggesting that the composition
of plasma membranes is tuned close to a miscibility
critical point36 indicate the relevance of near-critical
conditions.

� χ eff ≈ 0 for low incompatibility. Qualitatively, the in-
compatibility is lower than for the high incompatibil-
ity case but, quantitatively, the estimate extracted from
Fig. 6 is smaller than the value obtained from Fig. 3.
This deviation can be partially rationalized by the in-
sensitivity of the data in Fig. 6 to the value of χ eff,
that is reflected in the rather large uncertainty of the
fit. Moreover, an additional term in the free energy of
mixing that stems from the coupling of the composi-
tion of the two opposing monolayers, could become
important at small incompatibility but such a term has
been neglected in our phenomenological treatment. Fi-
nally, also the composition-dependence of the mechan-
ical properties of the bilayer could generate additional
terms that help explain the deviation at low incompat-
ibility.

� It is also worth noting that the values of λ, C0, and
ηm are in good agreement with what is expected for
biologically relevant lipids, according to the analysis
following Eq. (9).

From Fig. 6 we also observe that the model reproduces
the expected behavior for single-component systems (those
with ψ = ±1), where the effective coupling vanishes, since
the compositions difference remains zero, no matter what the
curvature of the bilayer is.

Another feature is the predicted asymmetry with respect
to equi-molar composition, ψ = 0. As previously discussed,
this effect is enhanced when the system is in the vicinity of the
demixing critical point, where the intrinsic coupling and the
enthalpic contributions become comparable to the entropic
term, which tends to smooth out composition heterogeneities.

The phenomenological expression for the effective cou-
pling, Eq. (14), has been obtained in the limit that the com-
position difference is small compared to its saturation value,
�φs. The validity of this assumption depends on the strength
of the effective coupling. In particular, high curvatures as
they occur in membrane tethers and high incompatibility
will results in the break-down of the linear dependence. In-
stead, those systems will be described by the implicit relation
Eq. (11), which duly accounts for saturation effects that stem
from the free energy of mixing. This hypothesis is verified by
simulations with highly curved cylinders of different radii at
both, high and low, incompatibility. For these simulations, the
total number of lipids in each leaflet has been equilibrated by
opening a small pore oriented in the direction perpendicular
to the axis of the cylinder, as described in Appendix A 2 (see
Fig. 2). The results are shown in Fig. 7, where continuum
and broken lines correspond to the numerical solution of
Eq. (11) using the parameters of the phenomenological model
extracted from Fig. 6, squares represent data from simulations
with planar membranes and circles correspond to simulations
with narrow cylinders. The saturation values for low and high
incompatibility are �φs = 0.62 and �φs = 0.763, respec-
tively. In all cases we observe good agreement between sim-
ulations and phenomenological description. For planar cases,
we corroborate that the linear approximation accurately de-
scribed the range of curvatures accessible to flat bilayers.
Moreover, due to the small effective coupling, the linear ap-
proximation remains valid for cylinders with low incompati-
bility. Only for narrow cylinders with high incompatibility, we
observe that corrections due to the entropy of mixing become
important and the full description, Eq. (11), nicely agrees with
our simulation data in the limit �φ → �φs.

B. MARTINI coarse-grained model

For the MARTINI model we simulated binary 1:1 mix-
tures, corresponding to ψ = 0, comprised of a cylinder-
shaped lipid, dipalmitoylphosphatidylcholine (DPPC), as a
common component in all of them. The second species,
phosphatidylethanolamine, was a conically shaped lipid with
a PE head group. PE is a major lipid of the plasma mem-
brane, representing about 25% of the phospholipids, with an

-1 -0.8 -0.6 -0.4 -0.2 0
H x t

h

-0.2

0

0.2

0.4

0.6

Δφ
*

Low χ
hh

 Cyl
High χ

hh
 Cyl

Low χ
hh

 FLat
Highχ

hh
 Flat

Low χ
hh

 Fit
High χ

hh
 Fit

FIG. 7. Most probable composition difference vs curvature for high and low
incompatibility.
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asymmetric distribution between the leaflets.37 Upon dehy-
dration and/or temperature increase, PE lipids tend to form in-
verted hexagonal (HII) phases.38–40 Tails of PE were changed
in the number and type of unsaturations to account for the
effect of the tail region on the curvature preference of the
lipid. We took DPPE which has fully saturated tails of the
same kind as those in DPPC; POPE and DOPE with one or
both monounsaturated tails, respectively; PUPE and DUPE,
having one or both polyunsaturated tails, respectively. The
unsaturated species of PE are the more prevalent ones in
natural membranes. Within the MARTINI model, the differ-
ence between PE and PC represents the ability of PE to form
hydrogen-bonds between neighbor PE molecules.

To quantify ηm = σm
κm

, we determined the areal density

and the bending rigidity of the bilayers. κ = 2κm was mea-
sured in the cylindrical geometry as proposed in Ref. 41

κ = FzR

2π
, (19)

where Fz is the force needed to keep the cylinder length con-
stant and R denotes the cylinder radius (see Fig. 1). The net
force along the z-direction is computed according to

Fz =
(

Pzz − Pxx + Pyy

2

)
LxLy, (20)

where Pii are the pressure components along the x, y, and z
axis and LxLy is the box area perpendicular to the cylinder. We
also obtained κ from the fluctuation spectra of planar mem-
branes at q → 0. Both values are given in Table II. We observe
a slight decrease of the bending rigidity with the radius in
accord with previous simulations of the MARTINI model.42

This curvature dependence of the mechanical properties re-
sults from the modification of the lipid packing upon bend-
ing. In mixtures DOPE-DPPC the smaller cylinder is about
1.5 times more rigid, but the largest cylinder simulated shows
almost no differences with a planar bilayer. The areal density,
σ m, and membrane thickness, th, also exhibit a weak curvature
dependence. For R ≈ 7 nm, however, both values are within
2% of those of the planar geometry.

The incompatibility between the lipid species was esti-
mated from the susceptibility of the local composition, ψ , in
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FIG. 8. Composition, φ, as a function of curvature, H, for 1:1 binary mix-
tures of DPPC and a PE (see Legend), in cylindrical bilayers at T = 300 K.
Dashed lines are guides to the eyes. Thick line is the fit of Eq. (13) for the
average value of parameters reported in Table II for the DOPE series.

NpT or NV T ensembles with fixed total composition, as de-
scribed in Sec. IV A, Eq. (15). To this end, we divided a pla-
nar patch of membrane into a square grid of about �L = 5
nm length. Each grid cell is comprised of about 40 lipids and
the composition is equi-molar on average, 〈ψ〉 = 0. Thus, the
incompatibility is estimated according to χ eff = 2 − 2/Sψ .

The effective composition-curvature coupling, �eff, was
estimated from the linear dependence of the composition dif-
ference, �φ, on the curvature, H, of a cylindrical membrane
tube as shown in Fig. 8. The error bars are the standard de-
viation of the data. We chose the mixture DPPC-DOPE to
make a systematic variation of cylinder radius in the range
4 nm to 9 nm. Although these radii are well below the typi-
cal radii of experiments, R ≈ 25 nm,44 the simulations of the
more-detailed MARTINI model are already computationally
intense. Even larger radii would increase the system size and
reduce the composition difference, �φ, and thereby make the
study unfeasible with the computational resources available
to us. The simulations of the implicit-solvent model, which
allows us to study small and large curvatures, however, sug-
gest (cf. Fig. 7) that the values extracted from highly curved
cylinders are also indicative of the behavior of larger tubes or
planar membranes.

TABLE II. Membrane properties of MARTINI bilayers made of 1:1 mixtures of DPPC and the lipid listed in the first column. The spontaneous curvature of
DPPC lipids, CPC = 0.035 nm−1, was extracted from literature.43 The radius of the membrane tube was varied for mixtures DPPC-DOPE: Radius, R, thickness,
th, areal density, σm, bilayer bending constant measured in the cylinders using Eq. (19), κ , and in planar membranes from the fluctuation spectra, κ∗; effective
incompatibility coefficient, χ eff, direct curvature-composition coupling, λ and spontaneous curvature for CPE lipid species (check sign convention defined in
Sec. II).

System R (nm) th (nm) σm (nm−2) κ (kBT) κ∗ (kBT) �eff (nm) χ eff λ (nm) CPE (nm−1)

DOPE_4 4.16 ± 0.02 4.30 ± 0.03 1.455 ± 0.008 28.8 ± 0.4 20.0 ± 0.9 −1.22 ± 0.07 −0.19 ± 0.07 1.03 ± 0.04 0.24 ± 0.01
DOPE_4.9 4.90 ± 0.02 4.35 ± 0.04 1.553 ± 0.008 25.2 ± 0.5 −1.23 ± 0.10 1.00 ± 0.05 0.28 ± 0.01
DOPE_5 5.15 ± 0.03 4.39 ± 0.04 1.538 ± 0.009 23.7 ± 0.5 −1.16 ± 0.11 0.94 ± 0.05 0.28 ± 0.01
DOPE_6 6.31 ± 0.04 4.41 ± 0.06 1.567 ± 0.01 22.7 ± 0.7 −1.08 ± 0.10 0.88 ± 0.07 0.28 ± 0.02
DOPE_7 7.17 ± 0.03 4.40 ± 0.05 1.582 ± 0.008 21.4 ± 0.9 −1.00 ± 0.07 0.81 ± 0.09 0.28 ± 0.02
DOPE_9 8.57 ± 0.04 4.40 ± 0.06 1.594 ± 0.008 18.7 ± 2 −1.10 ± 0.07 0.86 ± 0.20 0.32 ± 0.06
POPE 4.24 ± 0.04 4.21 ± 0.06 1.54 ± 0.02 30.8 ± 0.9 24.8 ± 0.5 −1.06 ± 0.08 −0.20 ± 0.04 0.92 ± 0.09 0.22 ± 0.02
DUPE 4.41 ± 0.03 3.84 ± 0.04 1.46 ± 0.01 15.6 ± 0.5 14.1 ± 0.4 −1.61 ± 0.09 1.38 ± 0.01 0.41 ± 0.05 0.19 ± 0.02
PUPE 4.39 ± 0.02 3.94 ± 0.04 1.503 ± 0.009 21.0 ± 0.5 18.8 ± 0.4 −0.75 ± 0.13 0.25 ± 0.05 0.53 ± 0.05 0.19 ± 0.01
DPPE 4.74 ± 0.04 4.17 ± 0.05 1.63 ± 0.01 32.4 ± 0.7 23.2 ± 0.3 −1.00 ± 0.08 −0.22 ± 0.03 0.89 ± 0.07 0.21 ± 0.01
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Fig. 8 indicates that in mixtures DOPC-DOPE the lin-
ear dependence of the composition difference, �φ, on the
curvature, H, is approximately obeyed. The small devia-
tions from the linear behavior can be partially traced back
to the curvature-dependence of the bending rigidity (cf.
Appendix B).

Using the phenomenological model in Sec. II and the in-
dependently determined values of ηm and χ eff, we calculated
the spontaneous curvature, C0, of a mixed monolayer and the
intrinsic composition-curvature coupling, λ, for the different
bilayers. For equi-molar mixtures, ψ = 0, Eq. (14) simplifies
to

�eff ≡ �φ∗

H = −λ(2 + C0th)

2 − χeff

. (21)

Using the relation between the spontaneous curvatures for
one-component monolayers and the parameters, C0 and λ, cf.
Eq. (8), we obtain

�eff = (CPE − CPC)[4 + th(CPE + CPC)]

4ηm(2 − χeff)
, (22)

where CPC = C−1 stands for the spontaneous curvature of
PC and CPE = C+1 for that of PE. In the following, we use
the pure DPPC membrane as a reference system and assume
the independently measured spontaneous curvature, CPC
= 0.035 nm−1, extracted from the bilayer stress profile in
Ref. 43. Equation (22) then yields the spontaneous curvatures
for all the mixing partner. The results for CPE and λ are pre-
sented in Table II. First, the trend in spontaneous curvatures is
as expected, with higher positive values for the inverted con-
ically shaped PE lipids compared to PC lipids, as evidenced
by a positive λ. The equi-molar mixtures have positive
spontaneous curvatures, C0, meaning that monolayers curve
towards the hydrophilic region. Values of CPE for DOPE
and DPPE are well in agreement with those reported for
these lipids within the MARTINI model from pressure
profile measurements.22, 43 The spontaneous curvatures of the
modeled lipids are, however, slightly underestimated in com-
parison with the available experimental data on DOPE and
POPE. CDOPE values from literature range from 0.33 nm−1 to
0.39 nm−1,45–47 and CPOPE = 0.29 nm−1 has been reported
in Ref. 47. The difference between POPE and DOPE is quite
well reproduced within the MARTINI model.

Comparing lipids with identical hydrocarbon tails (i.e.,
DPPC and DPPE), there is a 6 times increase in the spon-
taneous curvature. Thus, the head group likely is the major
contribution to the increase in spontaneous curvature from PC
lipids to PE lipids.

The effect of changes in the hydrocarbon region on CPE is
significantly smaller. The increase in the hydrophobic volume
would putatively result in a larger curvature.48, 49 PE lipids
with monounsaturated tails (i.e., POPE and DOPE) follow
this rationale: They show enhanced preference for positively
curved regions, but the increase in spontaneous curvature is
only about 30% with respect to the saturated PE(DPPE).

Polyunsaturated tails (i.e., PUPE and DUPE), however,
are characterized by spontaneous curvatures similar to DPPE,
despite the lower packing density and larger hydrocarbon
volume.50, 51 This agrees with previous results that show that

the high rate of back-bending in the tails may help polyunsat-
urated PC lipids to adapt to negative (convex) curvatures by
providing the hydrocarbon tail region with a wedge shape.52

In line with our data, changes in the transition temperature
from the lamellar (Lα) to the inverted hexagonal (HII) phase
was shown to be rather insensitive to different hydrocarbon
chain structures in PE lipids.49

Undersaturation of the tails also affects the effective
composition-curvature coupling, �eff, via the increase of the
incompatibility. In fact, the mixture DPPC-DUPE is charac-
terized by the largest effective composition-curvature cou-
pling. The data in Table II show that χ eff is larger for mix-
tures of DPPC with a polyunsaturated PE lipids (i.e., PUPE
and DUPE) than monounsaturated PE lipids (i.e., POPE and
DOPE). This demixing tendency, and thereby the effective
composition-curvature coupling, can be further enhanced by
the addition of cholesterol.53–55

Comparing the results of the minimal, implicit-solvent
model and the coarse-grained MARTINI model we ob-
serve that (i) the two lipid species have different sponta-
neous curvatures in the implicit-solvent model whereas they
have both positive spontaneous curvatures in the MARTINI
model and (ii) the difference in spontaneous curvatures and
the composition-curvature coupling is larger in the implicit-
solvent model than in the MARTINI model because the pair
of lipids in the MARTINI are more similar than those in the
implicit-solvent model. In the MARTINI model, both head
groups, PE and PC, are comprised of two particles. The one,
representing the phosphate group, is the same for both type of
molecules. The other, representing the amine region, differs in
order to allow for stronger headgroup-headgroup interactions
in PE lipids.56 In the implicit-solvent model, however, the
lipid species differ in their hydrophilic-hydrophobic asymme-
try that is directly related to the spontaneous curvature of a
monolayer. The strong dependence of the spontaneous curva-
ture on the fraction, f, of hydrophobic beads has also been ob-
served in studies using similar models,57, 58 where the change
of a hydrophilic to a hydrophobic bead drastically changes
the excess free energy of forming an hourglass-shaped pas-
sage (“stalk”) between apposing membranes. These passage
become metastable in the vicinity of the transition between
the Lα and the HII phase. Previous studies indicate that stalks
become metastable around f ≈ 0.9,57 i.e., the value f = 0.6875
and f = 0.75 correspond to rather cone-shaped lipids.

V. SUMMARY AND OUTLOOK

In this work we have presented a phenomenological
model to describe the effective coupling between curvature
and composition in a two-component lipid bilayer. In ad-
dition to the elastic energy of the membrane and an in-
trinsic coupling between curvature and composition, our
model also includes contributions from a composition- and
curvature-dependent free energy of mixing. Low incompati-
bility between different lipid species leads to a weak effec-
tive composition-curvature coupling because the elastic en-
ergy gain due to lateral lipid sorting into regions of favored
curvature cannot overcome the concomitant entropy loss.
High incompatibility, however, results in much larger effects
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where in addition to the intrinsic coupling, the curvature de-
pendence of the free energy of mixing contributes to the lat-
eral sorting of lipids. This combined effect results in a higher
coupling that is further enhanced as the system approaches
the demixing critical point.

The quantitative comparison between the phenomeno-
logical model and computer simulation of a coarse-grained,
implicit-solvent membrane model demonstrates that a sin-
gle set of parameters can consistently describe the behavior
for different average compositions of the mixed membrane
and different incompatibilities. Additionally, we have ob-
tained consistent results comparing planar membranes where
thermal fluctuations induce small curvature fluctuations and
highly curved membrane tubes that are characterized by
strong, average curvatures.

Applying this validated model of composition-curvature
coupling, we have investigated the composition-curvature
coupling in mixed membrane tubes and the spontaneous cur-
vature of monolayers within the MARTINI model.22 Varying
the head group architecture and the saturation of hydrophobic
tails, we have obtained the spontaneous curvatures of a variety
of biologically relevant lipids.

Our computational strategy offers an alternative to ob-
taining the spontaneous curvature from moments of the stress
profile across a bilayer membrane.11 Since the measurement
of bending rigidity41 and composition-curvature coupling
can be efficiently performed in the highly curved geometry
of a membrane tube we expect that this strategy will find
further application. Whereas membrane properties in minimal
coarse-grained models are rather insensitive to curvature,41

models that account for more details of the lipid packing
may exhibit a dependence of the membrane properties on
curvature (see, e.g., Table II). Our results indicate that
such a dependence is smaller for the composition-curvature
coupling than for the bending rigidity, but such a dependence
can be accounted for by the phenomenological model (see
Appendix B).
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APPENDIX A: MODELS AND SIMULATION
TECHNIQUE

1. Minimal, implicit-solvent membrane model

We consider the bilayer as a binary mixture of lipids dif-
fering in their head group only. In this way, the formation

of local inhomogeneities will be driven mainly by interac-
tions within a single monolayer, i.e., the coupling of compo-
sition fluctuations across a planar membrane is small. In this
case, we expect the curvature-composition coupling to result
in complementary arrangement of domains in the two appos-
ing leaflets.

In our minimal, implicit-solvent model,19–21 n lipids are
represented by linear chains consisting of N = 16 segments.
The number of segments of the head group is Nα and this
value differs between the two lipid species. The first lipid
species is comprised of NB = 4, B-type head beads and NA
= N − NB = 12 hydrophobic tail beads of type A. The second
lipid species is characterized by 5 head beads of segment type
C and 11 tail beads of segment type A. The different ratios of
hydrophilic and hydrophobic portions gives rise to differences
in the spontaneous curvature.

The architecture of the flexible amphiphilic molecules is
represented by a bead-spring model. Neighboring beads along
the molecular backbone are connected by bonded interactions
that are comprised of a harmonic bond-length potential, char-
acterized by a rest length, l0, and spring constant, ks, and
a bond-angle term with bending stiffness, kb. For each am-
phiphile these interactions take the form

Ub

kBT
= ks

2

N−1∑
i=1

(ri,i+1 − l0)2 + kb

N−1∑
i=2

(1 − cos θi), (A1)

where ri,i+1 = |ri+1 − ri | denotes the length of the bond be-
tween bead i + 1 and i of the linear molecule and θ i is
the angle between vectors ri−1,i and ri,i+1. These two terms
control the molecular stiffness and the configurational fluc-
tuations of a molecule, which is important because the av-
erage shape of a molecule depends on the curvature of the
membrane.

The non-bonded interactions, that represent the repulsion
of hydrophobic, A-type beads and hydrophilic head beads of
types B and C, are incorporated through a third-order expan-
sion of the non-bonded free energy in terms of local densities
for each bead type

Unb

kBT
=

n×N∑
i=1

δαt(i)

[
vαβ

2N
ρ̄2β(ri) + wαβγ

3N
ρ̄3β(ri)ρ̄3γ (ri)

]
,

(A2)
where a summation convention is used over repeated Greek
indexes (α, β, γ , t(i) ∈ {A, B, C}, and where t(i) stands for the
type of bead i. The molecular weighted densities appearing in
this expression are defined as

ρ̄mα(r) = R3
eo

N

n×N∑
i=1

wm(|ri − r|)δαt(i), (A3)

where wm(r), m ∈ {2, 3} are weighting functions, and Reo de-
notes the lipid extension. The expansion coefficients, vαβ and
wαβγ , can be directly related to four phenomenological co-
efficients describing the thermodynamics of the system: the
incompressibility of the hydrophobic interior, κTN, and its
density, ρcoex, the incompatibility between hydrophobic and
hydrophilic beads χ thN, the incompatibility between different
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head groups χhhN. This parameterization yields

vAA = −2
κT N + 3

ρcoex

,

vAB = vAC = χthN

ρcoex

+ vAA + vBB

2
,

vBC = χhhN

ρcoex

+ vBB + vCC

2
, (A4)

vBB = vCC = 0.1,

wAAA = wAAB = wABB = 3

2

κT N + 2

ρ2
coex

,

wABC = wAAC = wACC = 3

2

κT N + 2

ρ2
coex

,

wBBB = wBBC = wBCC = wCCC = 0.

The set of parameters used in this simulations was
adopted from Ref. 19, where a systematic study of parameter
space has been performed to (i) evaluate model’s capability to
self-assemble into different morphologies (spherical micelles,
cylindrical micelles, worm-like micelles, bilayers, or bilayers
with hydrophilic inclusions) and (ii) adjust parameters to re-
produce some characteristic properties of lipid bilayers, such
as the density profile, elastic constants, and diffusion coef-
ficient. Parameter values use for this study are compiled in
Table III. As seen from Eq. (A4), the repulsive interaction
between polar head group beads, B and C, of different lipid
species is directly set by the virial coefficient vBC , which, in
turn, depends on the incompatibility χhh. This repulsion will
be the leading factor contributing to the bare incompatibility,
χ , of our phenomenological model (see Eq. (3)). However,
there is no simple correspondence between these quantities,
since χ also incorporates contributions of the repulsion be-
tween chains with similar head groups (quantified by vCC and
vBB), the repulsion between tails and head groups in differ-
ent chains (set by vAB and vAC), and the attraction between
tails (represented by vAA). In our simulations we consider
two cases: high incompatibility, setting vCB/vCC = 17 (χhhN

TABLE III. Relevant simulation parameters for the implicit-solvent model,
where: rc and τ are the length and time units, respectively, Reo is the end-
to-end (head-tail) distance of a lipid, A is the area of a planar bilayer, N
is the total number of beads per lipid, ks and l0 are the force constant and
rest length of the harmonic springs connecting beads in a single chain, kb
is the bending stiffness of the bond-angle potential, ρcoex and κN are the
density and incompressibility of the hydrophobic interior, χ th and χhh are
the hydrophobic-hydrophilic and thehydrophilic-hydrophilic incompatibili-
ties. �t and ϒ stand, respectively, for the integration step and the thermostat
collision frequency and finally, � is bilayer’s surface tension.

Param. Value Param. Value

Reo 3.5rc A 36.2rc × 36.2rc
N 16 ks 19kBT/r2

c

l0 0rc kb 5 kBT
ρcoex 18 κN 100
χ thN 30 χhhN 16.2, 28.8
�t 0.005τ ϒ 1.0τ−1

� −0.5 kBT/r2
c

= 28.8), and low incompatibility case where vCB/vCC = 10
(χhhN = 16.2).

The temperature of the system is controlled via the Lowe-
Andersen thermostat,59 where in every time step the relative
velocities of all interacting pairs are randomly reassigned with
probability ϒ�t. The velocity update is done such that the
total linear and angular momenta of the pair is conserved, i.e.,
the velocity component along the line passing their centers
is taken from the distribution ζij

√
2kBT/m, where m is the

mass of beads and ζ is drawn from a Gaussian distribution
with zero mean and unit variance. In our simulation, we use
a time step of �t = 0.005τ for the Velocity-Verlet integrator
and a collision frequency of ϒ = 1.0τ−1, with a time unit

τ ≡
√

mr2
c /kBT .

The molecular dynamics efficiently equilibrates the
molecular conformations but the redistribution of the lipids
between the monolayers equilibrates very slowly because the
flip-flop of lipids from one monolayer to the apposing one is
protracted. To facilitate the equilibration of composition fluc-
tuations, simulations are carried out in the semi-grand canoni-
cal ensemble,26, 60 where the total number of lipids in the sys-
tem remains fixed but their concentration fluctuates around
an average value fixed by the difference in chemical poten-
tial, �μ, between lipids. This ensemble is implemented by
augmenting the molecular dynamics simulation with Monte
Carlo moves, which randomly swap one lipid species into the
other by changing the bead types at fixed position, with an
acceptance probability

Pacc = min[1, e−(�E±�μ)/kBT ], (A5)

where �E = En − Eo is the difference in potential energy
between the new (n) and old (o) configurations. The + sign in
front of �μ = μC − μB corresponds to mutating a large-head
lipid to a short-head lipid, whereas the − sign applies for the
reverse Monte Carlo move.

In order to enhance the effects of the curvature-
composition coupling by accessing a broader range of curva-
tures than those naturally occurring in a tension-less bilayer,
simulations have been carried out in a slightly compressed
system with a surface tension � = −0.5 kBT/r2

c .
In this work we consider both, simulations with planar

and cylindrical bilayers. The starting configuration for the pla-
nar cases consist of a 1:1 mixture of 2340 lipids randomly dis-
tributed over each leaflet. These bilayers span over a square
patch of area A = 36.2rc × 36.2rc, where rc is the cutoff ra-
dius of the non-bonded interactions. The initial configurations
are equilibrated until they settle around the average compo-
sition imposed by the exchange chemical potential. Starting
configurations for cylinders are constructed by a transform-
ing and re-scaling the lipid positions from a planar bilayer
into a cylinder. This procedure results in the same number of
lipids but different areal densities in the two monolayers. The
equilibration of monolayer densities occurs via flip-flops and
is additionally facilitated by opening a pore perpendicular to
cylinder’s axis, as described in Appendix A 2. Typical equi-
libration times for planar and cylindrical configurations and
for both, high and low incompatibility are on the order of 1
× 105 simulations steps, except for the particular cases with
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high incompatibility and close to the demixing critical point,
corresponding to �μ = {4.160, 4.165, 4.170}, for which
equilibration times are on the order of 2 × 106 simulations
steps. Simulation runs of ∼1.2 × 107 steps were required in
these cases to collect enough statistics, whereas simulations
away from the demixing critical point lasted ∼6 × 106 steps.
In 105 steps about 2000 flip-flop movements are observed
and lipid diffuses a lateral mean-squared distance of 3.64r2

c

≈ 0.101̄th
2.

2. MARTINI coarse-grained model

In addition to the minimal implicit-solvent coarse-
grained model, we study the MARTINI v2.0 model.22 In this
model four heavy atoms are lumped into 1 interaction site and
also water is represented by a 4-to-1 mapping. Briefly, the
non-bonded interactions have Lennard-Jones and Coulomb
terms, with a cut-off of 1.2 nm, and a relative dielectric
constant of ε = 15. The bonded interactions for the lipids
used in this paper are stretching and bending harmonic po-
tentials. The unsaturated and polyunsaturated bonds in the
tails are accounted for by changes in the bending parame-
ters, the equilibrium bond angle, �0, and the bending con-
stant, Kb. In the mono-unsaturated bonds �0 = 100◦ and
Kb = 45 kJmol−1 rad−2, introducing an average kink in the
tail, with respect to the straight saturated hydrocarbon re-
gions (�0 = 180◦ and Kb = 25 kJmol−1 rad−2. The polyun-
saturated bonds are softer and with an equilibrium angle de-
parting from 180◦(�0 = 100◦ and Kb = 10 kJmol−1 rad−2),
allowing for a looser packing and shape fluctuations. The
lipids we used have a phosphatidylethanolamine (PE) or a
phosphatidylcholine (PC) headgroup. Within the MARTINI
model, the difference between PE and PC mimics the capa-
bility of PE to form hydrogen-bonds between neighbor PE
molecules. Both head groups have two particles, one corre-
sponding to the phosphate region and the second to the amine
region. In PE, the Lennard Jones interactions between both
are stronger than in PC. The MARTINI model was shown
to reproduce rather accurately the properties of pure PE and
PC:PE mixtures.56

The MARTINI simulations were performed in the canon-
ical ensemble, using the molecular dynamics package GRO-
MACS 4.5.5.61 We took a time constant of 30 fs for the cylin-
ders and 40 fs for the planar bilayers. Cylindrical membrane
tubes are about 20 nm long and of varying radii, ranging from
2000 to 3200 lipid molecules. All have an equi-molar binary
composition. The planar membranes have 2024 molecules
and also a 1:1 ratio between the lipids. All simulations were
performed at 300 K, by coupling to a Berendsen thermostat,
with a relaxation time of 0.3 ps. Planar bilayers were main-
tained at constant volume (NV T ensemble) with an area cor-
responding to the tensionless state. We also run simulations
at vanishing lateral membrane tension. This was achieved
in GROMACS with a semi-isotropic scheme coupling to a
Parrinello-Rahman barostat setting the average pressure to 1
bar in the xy plane and z directions. In this case, the lateral
area A = Lx × Ly is free to fluctuate at fixed aspect ratio and,
in the perpendicular direction, Lz is allowed to independently
fluctuate. The masses for the equations of motions associated

to the area A and Lx are parameterized in GROMACS (see
Section 3.4.9 in GROMACS 4.5.5 Manual61) in such a way
that the parameters for the coupling are given by a coupling
time constant of 20 ps, and “isothermal compressibility” of
βPR = 3 × 10−5 bar−1.

The cylindrical membranes were kept, with the same
semi-isotropic Parrinello-Rahman scheme, at a fixed length
of the cylinder axis, and an average pressure of 1bar perpen-
dicular to the axis. This was achieved by setting the “isother-
mal compressibility” to βPR = 0 in the direction of the cylin-
der axis, and βPR = 3 × 10−5 bar−1 in the perpendicular
direction.

This physical setting is analogous to that of pulling ex-
periments that measure the force needed to extend a mem-
brane tether. We opened 4 pores per cylinder to equilibrate
the composition between leaflets. Lipids diffuse freely from
one leaflet to the other through the pores. Pores were opened
by applying a harmonic potential of the following form,
wp = −kp(|r − rp| − Rp)2, where r is the bead position, rp
denotes the center of the pore, Rp is a cut-off distance that
ultimately determines the pore radius, and kp is the force con-
stant. The potential was only applied to tail particles within
the cut-off from the pore center. We defined two pore axes at
rp and r′

p along the cylinder radial direction. Each axis goes
through the cylinder twice, opening a pair of pores (cf. Fig. 2).
The force constant was set to kp = 50 kJmol−1 nm−1 and the
pore radius, Rp, was varied from 1nm to 2 nm for the smaller
and the larger cylinders, respectively. The setting is analogous
to that used in Refs. 62 and 63.

The equilibrium of the bilayers was determined by mon-
itoring the composition of the monolayers. The cylinders
reached its equilibrium values within the first 2.5 μs to
4.5 μs. We extended the production runs from 4 μs to 10 μs,
to sample in a better way the composition fluctuations. The
flow rate through each pore was of 0.1–0.25 molecules/ns.
To identify a flip-flop event we followed the molecules that
changed leaflet, considering only those placed at least 1 nm
away from the pore edge. Based on this criteria, the total num-
ber of molecules that migrate from one leaflet to the other in
the course of our simulations was at least 1.4 times the to-
tal number of molecules in the cylindrical membranes. Lipids
diffused over a mean squared distance of ∼100 nm2 per μs
to ∼145 nm per μs, in the least and the most insaturated
bilayers, respectively. Typical equilibration times for planar
membranes were in the order of 700 ns. Production runs of
around 4 μs gave good statistics for large membrane fluctua-
tion modes, to extract the bending modulus.

Within the MARTINI model, the bilayer thickness, th,
in Eq. (1) was defined as the distance between the PO4
residues of the outer and inner monolayers, th = (RPO4-outer
− RPO4-inner), and the neutral surface was set at the position
RPO4-inner + th/2.

APPENDIX B: CURVATURE-DEPENDENT
BENDING RIGIDITY

Because of symmetry reasons, we assume that the bend-
ing rigidity depends on the square of the curvature of bilayer’s
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midplane

κu = κl = κ0

(
1 + κ1

2
H2

)
, (B1)

where κ1 quantifies the curvature dependence of the bending
rigidity. With this assumption, the elastic contribution to the
free energy of the bilayer, Eq. (7), is modified in the following
way:

Fben

kBT
= κu

2
Au

[(
C0 + σm

κu

λφu

)2

− 2Hu

(
C0 + σm

κu

λφu

)]

+ similar term for subscript l. (B2)

Expanding this expression up to second-order terms in cur-
vature and only considering those terms that include a
composition-dependent prefactor, we obtain

Fben

σmAkBT
= ηmλ2�φ2 + λ�φthH

[
2

th
+ C0 + ηmλψ

]

−1

2

[
κ1ηmλ2

th
2

]
�φ2th

2H2. (B3)

Here, ηm = σ m/κ0. The only difference between this expres-
sion and the linear expansion, Eq. (10), is the very last term,
which vanishes for κ1 = 0. These H2-corrections modify
Eq. (12) resulting in

0 = −
[
κ1ηmλ2

th
2

]
�φ∗th

2H2 − χeffφ
∗

+ 1

2
ln

[
(1 + �φ∗)2 − ψ2

(1 − �φ∗)2 − ψ2

]

+ thH
{

1

4

[
(1 + ψ)2 − �φ∗2

(1 − ψ)2 − �φ∗2

]
+ ψ

[
ηmλ2 − χeff

2

]

+λ

[
2

th
+ C0

]}
, (B4)

which, in the limit of small composition differences, |�φ∗| �
|�φs|, reduces to the analog of Eq. (13)

0 = −
[
κ1ηmλ2

th
2

]
�φ∗th

2H2 +
[

2

1 − ψ
− χeff

]
�φ∗

+ thH
[

1

2
ln

(
1 + ψ

1 − ψ

)
+ ψ

(
ηmλ2 − χeff

2

)

+th

(
2

th
+ C0

)]
. (B5)

For the special case of an equi-molar mixture, ψ = 0, we
obtain

�eff ≡ �φ∗

H = − λ(2 + C0th)

2 − χeff − κ1ηmλ2H2
. (B6)

Since κ1 > 0, such a consideration is in qualitative agreement
with the deviations from the linear behavior in Fig. 8 but the
statistical uncertainty does not warrant a quantitative analysis.
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