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Abstract In this work we introduce a methodology in order to approximate
unknown parameters that appear on a non-linear reaction-diffusion model of
tumor invasion. These equations consider that tumor-induced alteration of
micro-enviromental pH furnishes a mechanism for cancer invasion. A coupled
system reaction-diffusion explaining this model is given by three partial dif-
ferential equations for the non-dimensional spatial distribution and temporal
evolution of the density of normal tissue, the neoplastic tissue growth and the
excess concentration of H+ ions. The tumor model parameters have a corre-
sponding biological meaning: the reabsorption rate, the destructive influence
of H+ ions in the healthy tissue, the growth rate of tumor tissue and the
diffusion coefficient.

We propose to solve the direct problem by using the Finite Element Method
(FEM) and minimize an appropriate functional including both the real data
(obtained via in-vitro experiments and fluorescence ratio imaging microscopy)
and the numerical solution. The gradient of the functional is computed by the
adjoint method.
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1 Introduction

Cancer is one of the greatest killers in the world although medical activity has
been successful, despite great difficulties, at least for some pathologies. A great
effort of human and economical resources is devoted, with successful outputs,
to cancer modeling, [9,1,4,5,8,26].

Some comments on the importance of mathematical modeling in cancer
can be found in the literature. In the work [5] it is mentioned that “Cancer
modelling has, over the years, grown immensely as one of the challenging
topics involving applied mathematicians working with researchers active in the
biological sciences. The motivation is not only scientific as in the industrial
nations cancer has now moved from seventh to second place in the league table
of fatal diseases, being surpassed only by cardiovascular diseases.”

In this work we use the mathematical analyses first proposed in [13] which
supports the acid-mediated invasion hypothesis, hence it is acquiescent to
mathematical representation as a reaction-diffusion system at the tissue scale,
describing the spatial distribution and temporal development of tumor tissue,
normal tissue, and excess H+ ion concentration.

The model predicts a pH gradient extending from the tumor-host interface.
The effect of biological parameters critical to controlling this transition is
supported by experimental and clinical observations [21].

In [13] a model tumor invasion was introduced in an attempt to find a com-
mon, underlying mechanism by which primary and metastatic cancers invade
and destroy normal tissues. This work is not attempting to model the large-
scale morphological features of tumors such as central necrosis or modeling
the genetic changes which result in transformation or seeking to understand
the causes of these changes. Rather, it concentrates on the microscopic scale
population interactions occurring at the tumor-host interface, reasoning that
these processes strongly influence the clinically significant manifestations of
invasive cancer. Specifically, this work hypothesize that the metabolism of the
neoplastic tissue increased acid production and the diffusion of that acid into
surrounding healthy tissue creates a microenvironment where tumor cells sur-
vive and proliferate whereas normal cells are unable to remain viable. The
progressive loss of layers of normal cells at the tumor-host interface facilitates
tumor invasion. Key elements of this tumor invasion mechanism are low in-
terstitial pH of tumors due to primitive metabolism and reduced viability of
normal tissue in a pH environment favorable to tumor tissue.

These model equations depend only on a small number of cellular and sub-
cellular parameters. Analysis of the equations shows that the model predicts
a crossover from a benign tumor to one that is aggressively invasive as a di-
mensionless combination of the parameters increases through a critical value.
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The dynamics and structure of the tumor-host interface in invasive cancers
are shown to be controlled by the same biological parameters which generate
the transformation from benign to malignant growth. A hypocellular intersti-
tial gap, as we can see in Figure 1 [13, Figure 4a], at the interface is predicted
to occur in some cancers.

Fig. 1 A micrographs of the tumor-host interface from human squamous cell carcinomas
of the head and neck [13].

In [27], we develop an algorithm that allow us to estimate a unique param-
eter for a similar tumor model with a two dimensional spatial variable. Here
we are interested in obtaining approximations for a pair of parameters that
are related to the therapeutic, so we shall consider a one dimensional spatial
variable in the tumor model.

In this paper we estimate a pair of parameters (the destructive influence
of H+ ions in the healthy tissue and the control in the buffer process of H+

ions concetration) using an inverse problem. Moreover, via fluorescence ratio
imaging microscopy, it is possible get data about the concentration of hydro-
gen ions [21]. We propose a framework via a PDE-constrained optimization
problem, following the PDE-based model by Gatenby [13]. In this approach,
tumor invasion is modeled via a coupled nonlinear system of partial differential
equations, which makes the numerical solution procedure quite challenging.

This problem is a particular application of the inverse problems which are
used in applied sciences: structured population dynamics [25], computerized
tomography and image reconstruction in medical imaging [10,28], and more
specifically tumor growth [2,16,19], among many others.

We solve a minimization problem using a gradient-based method consider-
ing the adjoint method in order to find the derivative of an objective functional.
In this way, we would obtain the best parameters that fits patient-specific data.

The contents of this paper is organized into 8 sections as follows: Section
2 consists in some preliminaries about the model and the definition of the
direct problem. Section 3 deals with the variational formulation of the direct
problem. Section 4 considers the formulation of the minimization problem
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and the reduced and adjoint problem, deriving the optimality conditions for
the problem. Section 5 finds the gradient of the functional with respect to
parameters that does not appear explicitly in the equation. Section 6 deals with
the numerical solution of the adjoint problem, designing a suitable algorithm
to solve it. In particular, we use the Finite Element Method. In Section 7 we
show some numerical simulations to give information on the behavior of the
functional and its dependence on the parameters including the corresponding
tables. Section 8 presents the conclusions and some future work related to the
contents of this paper.

2 Non-linear reaction-diffusion model of tumor invasion

We consider the mathematical model based on the theory of the change of the
pH of the environment, proposed in [13]:

∂N1

∂t
= r1N1

(
1− N1

K1

)
− d1LN1, (1)

∂N2

∂t
= r2N2

(
1− N2

K2

)
+∇ ·

(
DN2

(
1− N1

K1

)
∇N2

)
, (2)

∂L

∂t
= r3N2 − d3L+DN3

∆L, (3)

which determine the spatial and temporal distribution of three variables:
N1(x, t), the density of normal tissue; N2(x, t), the density of neoplastic tissue;
and L(x, t), the excess concentration of H+ ions. The units of N1 and N2 are
cells/cm3 and excess H+ ion concentration is expressed as a molarity (M), x
and t are the position (in cm) and time (in seconds), respectively.

In equation (1) the behavior of the healthy tissue is determined by the
logistic growth of N1 with growth rate r1 and carrying capacity K1, and the
interaction of N1 with excess H+ ions leading to a death rate proportional to
L. The number d1L is the excess acid concentration, dependent death rate in
accord with the well-described decline in the growth rate of normal cells, due
to the reduction of pH from its optimal value of 7.4. The constants r1, d1 and
K1 have units of 1/s, l/(M s) and cells/cm3, respectively.

For equation (2), the neoplastic tissue growth is described by a reaction-
diffusion equation. The reaction term is governed by a logistic growth of N2

with growth rate r2 and carrying capacity K2. The diffusion term depends on
the absence of healthy tissue with a diffusion constant DN2 . Constants r2, K2

and DN2 have units of 1/s, cells/cm3 and cm2/s, respectively.
In equation (3), it is assumed that excess H+ ions are produced at a rate

proportional to the neoplastic cell density, and diffuse chemically. An uptake
term is included to take into account the mechanisms for increasing local pH
(e.g., buffering and large-scale vascular evacuation [13]). Constant r3 is the
production rate (M cm3/(cell s)), d3 is the reabsorption rate (1/s), and DN3

is the H+ ion diffusion constant (cm2/s).
All the parameter values can be found in Table 1.
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Table 1 Parameter values used in [13].

Parameter Estimate

K1 5× 107/cm3

K2 5× 107/cm3

r1 1× 10−6/s
r2 1× 10−6/s
DN2

2× 10−10cm2/s
DN3 5× 10−6cm2/s
r3 2.2× 10−17M cm3/s
d3 1.1× 10−4/s

2.1 Nondimensionalization

Following the ideas exposed in [13], and considering one-dimensional space
variables, the mathematical model is rescaled and the spatial and temporal
domains are transformed onto the intervals I = (0, 1) and [0, T ] respectively.
Hence, let us define the following change of variables:

u1 =
N1

K1
u2 =

N2

K2
u3 =

L

L0

τ = r1t ξ =

√
r1

DN3

x

(4)

where L0 = r3K2/d3. We will continue denoting x and t instead of ξ and
τ , respectively. Using the transformation (4) the dimensionless form of the
equations (1)-(3) become

∂u1

∂t
= u1(1− u1)− δ1u1u3, (5)

∂u2

∂t
= ρ2u2(1− u2) +

∂

∂x

(
D2(1− u1)

∂u2

∂x

)
, (6)

∂u3

∂t
= δ3(u2 − u3) +

∂2u3

∂x2
, (7)

for (x, t) ∈ I × (0, T ], where the four dimensionless quantities which parame-
terize the model are given by:

δ1 =
d1r3K2

d3r1
, ρ2 =

r2

r1
, D2 =

DN2

DN3

, δ3 =
d3

r1
.

The interaction parameters between different cells (healthy and tumor)
and concentration of H+ are difficult to measure experimentally. This is the
reason for which we propose to estimate δ1. Also we will focus on δ3 because
we are interested in the buffering process that will allow to initiate the study
of the therapeutic of this problem. The other parameters can be estimated by
different techniques (see Table 1).
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2.2 Initial and boundary conditions

At t = 0 we will consider the tumor at a certain stage of its evolution. Hence
the initial conditions are:

ui(x, 0) = u0
i (x), i = 1, 2, 3, (8)

for all x ∈ [0, 1]. We assume that the tumor is on the left of the domain, in the
sense that the tumor cells are not moving. Then, for all t ∈ (0, T ], we have

∂u1

∂x
(0, t) = 0, u1(1, t) = 1, (9)

∂u2

∂x
(0, t) = 0, u2(1, t) = 0, (10)

∂u3

∂x
(0, t) = 0, u3(1, t) = 0. (11)

From now on, equations (5)-(11) will be referred to as the direct problem.

2.3 Weak formulation of the direct problem

In this subsection we use 〈·, ·〉 to denote the duality pairing, i.e., 〈·, ·〉 : U∗ ×
U 7→ R such that 〈w, u〉 = w(u) (the space is always clear from the context),
we emphasize that U∗ is the space of continuous linear functionals over U .

Using the variational techniques for obtaining the weak solution of the
direct problem [20,17,12], we can write the weak formulation of (5)-(11) as
E(u, ω) = 0, where E : U ×R2 7→ U∗ × (L2(I))3 such that

〈E(u, ω), ζ〉 =

∫
IT

(
∂u1

∂t
λ1 − (1− ũ1 − u1 − δ1u3)(ũ1 + u1)λ1

)
+

∫
IT

(
∂u2

∂t
λ2 − ρ2u2(1− u2)λ2 +D2(1− ũ1 − u1)

∂u2

∂x

∂λ2

∂x

)
+

∫
IT

(
∂u3

∂t
λ3 + δ3(u3 − u2)λ3 +

∂u3

∂x

∂λ3

∂x

)
+

∫ 1

0

(ũ1(0) + u1(0)− u0
1)γ1 +

∫ 1

0

(u2(0)− u0
2)γ2

+

∫ 1

0

(u3(0)− u0
3)γ3

=

〈
∂u

∂t
+ F (u), λ

〉
+
〈
u(0)− u0, γ

〉
, (12)

where IT = I × [0, T ], u = (u1, u2, u3) ∈ U , ũ(x, t) = ṽ(x) with ṽ ∈ (H1(I))3

and ṽ(1) = (1, 0, 0) is the Dirichlet lift, ω = (δ1, δ3) ∈ R2, ζ = (λ, γ) with
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λ = (λ1, λ2, λ3) ∈ U , γ = (γ1, γ2, γ3) ∈ (L2(I))3,

U =
{
u ∈ L2(0, T ;V ) | ∂u∂t ∈ L

2(0, T ;V ∗)
}
,

L2(0, T ;V ) =
{
u : (0, T ) 7→ V |

∫ T
0
‖u(t)‖2(H1(I))3 < +∞

}
,

with V = {v ∈ (H1(I))3 | v(1) = 0 ∈ R3} and H1(I), L2(I) are the standard
Sobolev and Lebesgue function spaces, respectively. In summary, for u such
that E(u, ω) = 0 we obtain that ũ+u is a weak solution of the direct problem.

3 The minimization problem

Suppose that in a time interval 0 ≤ t ≤ T experimental information is available
and that given a choice of ω we represent by u the solution of the direct
problem. Then, we propose to estimate δ1 and δ3 by solving the following
inverse problem:

Given available information over the time window 0 ≤ t ≤ T , find a
parameter ω able to generate data u that best match the given data.

First of all, we have to check which variables are observable, that is, which
variables can be experimentally measured. In [21,14] the authors proposed to
measure the excess concentration of H+ ions at certain times tk, k = 1, . . . ,M
using fluorescence ratio imaging microscopy. We assume that we have observa-
tions of the dimensionless variable u3 that corresponds to the variable L (the
excess concentration of H+ ions).

We define a distance (depending on the parameter ω) between the ex-
perimental data and the solution of the PDE system generated using ω as a
parameter. This distance is in fact an objective functional to be minimized.
So, the functional J : U ×R2 7→ R could be defined as:

J (u, ω) =
1

2

∫ T

0

∫ 1

0

[u3 (x, t)− û3 (x, t)]
2
χ(t)dxdt, (13)

where

χ(t) =

M∑
k=1

e(−C(t−tk)2),

is a weight function with C large enough, û3 (x, t) is the excess concentration
measured experimentally and u3 (x, t) is the excess concentration of H+ ions
obtained by solving the direct problem for a certain choice of ω.

Thus, we are interested in finding a solution of the PDE-constrained min-
imization problem

minimize
(u,ω)∈U×R2

J(u, ω)

subject to E(u, ω) = 0,
ω ∈ Ωad,

(14)
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where Ωad is the set of admissible values for ω. In our case we can choose
Ωad = (0,∞)× (0,∞). Notice that the constraint E(u, ω) = 0 constitutes the
direct problem.

There is a fundamental difference between the direct and inverse problem.
Usually, inverse problems are ill-posed in the sense of existence, uniqueness and
stability of the solution. Thus, regularization techniques can be considered [10,
11,18].

3.1 The adjoint method

In the following, for a function F : U × D 7→ Z such that (u, δ) 7→ F (u, δ),
we denote by F ′(u, δ) the full Fréchet-derivative and by ∂F

∂u (u, δ) and ∂F
∂δ (u, δ)

the partial Fréchet-derivatives of F at (u, δ). For a linear operator T : V 7→ Z
we denote by T ∗ : Z∗ 7→ V ∗ the adjoint operator of T .

We will consider the so-called reduced problem:

minimize
ω∈R2

J̃(ω) = J(S(ω), ω)

subject to ω ∈ Ωad,
(15)

where J̃ : R2 7→ R and S : Ωad 7→ U is given as the solution of E(S(ω), ω) = 0.
The existence of the function S is obtained by the implicit function theorem.
According to the ideas exposed in [7,15], this can be done since E is a con-
tinuously Fréchet-differentiable function, and assuming that for each ω ∈ Ωad

there exists a unique corresponding solution u = S(ω) such that the deriva-
tive ∂E

∂u (S(ω), ω) is a continuous linear operator continuously invertible. Also,
the solution of the problem (15) can be obtained by assuming that Ωad is a
compact set and J is a continuous function.

In order to find a minimum of the continuously differentiable function J̃ , it
will be important to compute the derivative of this reduced objective function.
Hence, we will show a procedure to obtain J̃ ′ by using the adjoint approach.

Since E(S(ω), ω) = 0, we have that J̃(ω) = J(S(ω), ω) + 〈E(S(ω), ω), ζ〉.
Thus

J̃ ′(ω) =
(
S′(ω)

)∗(∂J
∂u

(S(ω), ω) +

(
∂E

∂u
(S(ω), ω)

)∗
ζ

)
+
∂J

∂ω
(S(ω), ω) +

(
∂E

∂ω
(S(ω), ω)

)∗
ζ.

For a given ω, let us consider ζω ∈ U× (L2(I))3 as the solution of the so-called
adjoint problem:

∂J

∂u
(S(ω), ω) +

(
∂E

∂u
(S(ω), ω)

)∗
ζω = 0. (16)
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Note that each term in (16) is an element of the space U∗. Therefore, for
uω = S(ω) we obtain that

J̃ ′(ω) =
∂J

∂ω
(uω, ω) +

(
∂E

∂ω
(uω, ω)

)∗
ζω, (17)

where uω and ζω are solutions of the direct and adjoit poblem, respectively.
Notice that in order to obtain J̃ ′(ω) we need first to compute uω by solving

the direct problem, followed by the calculation of ζω by solving the adjoint
problem. For computing the second term of (17) it is not necessary to obtain
the adjoint of ∂E

∂ω (u, ω) but just its action over ζ.

4 Getting the derivative of the functional

In order to obtain the adjoint operator of ∂E∂u (u, ω) : U 7→ U∗×(L2(I))3, recall
that 〈(

∂E

∂u
(u, ω)

)∗
ζ, η

〉
=

〈
∂E

∂u
(u, ω)η, ζ

〉
,

for any η ∈ U and ζ ∈ U × (L2(I))3. Since〈
∂E

∂u
(u, ω)η, ζ

〉
= lim
µ→0

〈E(u+ µη, ω), ζ〉 − 〈E(u, ω), ζ〉
µ

,

after some algebraics, it can be shown that

〈
∂E
∂u (u, ω)η, ζ

〉
=

∫
IT

(
∂η1

∂t
− (1− 2(ũ1 + u1)− δ1u3)η1 + δ1(ũ1 + u1)η3

)
λ1

+

∫
IT

(
∂η2

∂t
− ρ2(1− 2u2)η2

)
λ2

+

∫
IT

D2

(
−∂u2

∂x
η1 + (1− ũ1 − u1)

∂η2

∂x

)
∂λ2

∂x

+

∫
IT

(
∂η3

∂t
− δ3(η2 − η3)

)
λ3 +

∫
IT

∂η3

∂x

∂λ3

∂x

+

∫ 1

0

(η1(0)γ1 + η2(0)γ2 + η3(0)γ3) .

Using integration by parts for time, we obtain〈(
∂E
∂u (u, ω)

)∗
ζ, η
〉

=

∫
IT

(
−∂λ1

∂t
− (1− 2(ũ1 + u1)− δ1u3)λ1 −D2

∂u2

∂x

∂λ2

∂x

)
η1

+

∫
IT

(
−∂λ2

∂t
− ρ2(1− 2u2)λ2 − δ3λ3

)
η2

+

∫
IT

D2(1− ũ1 − u1)
∂λ2

∂x

∂η2

∂x
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+

∫
IT

(
−∂λ3

∂t
+ δ1(ũ1 + u1)λ1 + δ3λ3

)
η3 +

∫
IT

∂λ3

∂x

∂η3

∂x

+

∫ 1

0

(
λ1(T )η1(T ) + (γ1 − λ1(0))η1(0)

)
+

∫ 1

0

(
λ2(T )η2(T ) + (γ2 − λ2(0))η2(0)

)
+

∫ 1

0

(
λ3(T )η3(T ) + (γ3 − λ3(0))η3(0)

)
.

On the other hand,〈
∂J

∂u
(u, ω), η

〉
=

∫ T

0

∫ 1

0

(u3(x, t)− û3(x, t))η3(x, t)χ(t)dxdt.

Since ∂J
∂u (u, ω)+

(
∂E
∂u (u, ω)

)∗
ζ = 0 if and only if 〈∂J∂u (u, ω)+

(
∂E
∂u (u, ω)

)∗
ζ, η〉 =

0 for all η ∈ U , we conclude that ζ = (λ, γ) satisfies ∂J
∂u (u, ω)+

(
∂E
∂u (u, ω)

)∗
ζ =

0 if and only if γ = λ(0), λ(T ) = 0 with λ ∈ U satisfying

0 =

∫
IT

(
−∂λ1

∂t
− (1− 2(ũ1 + u1)− δ1u3)λ1 −D2

∂u2

∂x

∂λ2

∂x

)
η1

+

∫
IT

(
−∂λ2

∂t
− ρ2(1− 2u2)λ2 − δ3λ3

)
η2

+

∫
IT

D2(1− ũ1 − u1)
∂λ2

∂x

∂η2

∂x

+

∫
IT

(
−∂λ3

∂t
+ δ1(ũ1 + u1)λ1 + δ3λ3 + (u3 − û3)χ

)
η3

+

∫
IT

∂λ3

∂x

∂η3

∂x

=

〈
−∂λ
∂t

+H(λ), η

〉
, (18)

for all η ∈ U . Thus, the weak formulation (18) shall be solved in order to get
ζω. Notice that the adjoint equations are posed backwards in time, with a final
condition at t = T , while the state equations are posed forward in time, with
an initial condition at t = 0.

Now, to compute the adjoint operator of ∂E
∂ω (u, ω) : R2 7→ U∗ × (L2(I))3,

for any q = (q1, q3) ∈ R2 and ζ ∈ U × (L2(I))3 we have〈(
∂E

∂ω
(u, ω)

)∗
ζ, q

〉
=

〈
∂E

∂ω
(u, ω)q, ζ

〉
= lim

µ→0

〈E(u, ω + µq), ζ〉 − 〈E(u, ω), ζ〉
µ

=

∫
IT

(ũ1 + u1)u3λ1q1 +

∫
IT

(u3 − u2)λ3q3.
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On the other hand, since ∂J
∂ω (u, ω) = 0, we obtain the following expression for

(17),

J̃ ′(ω) =

(
∂E

∂ω
(uω, ω)

)∗
ζω =

[∫
IT

(ũ1 + u1)u3λ1∫
IT

(u3 − u2)λ3

]
. (19)

5 Algorithms for the direct and inverse problem

The minimization of the objective functional J̃ (which solution are the model
parameters) is an iterative procedure that needs the derivative of the objective
functional. Solving two PDE problems (the direct and adjoint problems) per
iteration we can obtain J̃ ′, which is cheaper than solving the direct problem
many times per iteration to get the derivative [15]. We have implemented
the algorithms in MATLAB, using the Finite Element Method for solving
the direct and adjoint problems, and the Sequential Quadratic Programming
(SQP) method for solving the optimization problem using the built–in function
fmincon. At time t = 20 and in terms of x variable, Figure 2 shows excess
concentration of H+ ions, density of health cells and density of tumor cells.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2
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0.4

0.5

0.6
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0.8
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1

x

D
e
n
s
it
y

 

 

u
1

u
2

u
3

Fig. 2 Density of health and tumor cells, and excess concentration of H+ ions at fixed time
(t = 20) with respect to x variable, for δ1 = 12.5 and δ3 = 70.

In gradient–based optimization methods we need to have the derivative
of the objective function [24]. The solution of the adjoint problem (once per
iteration) allows to get the derivative regardless the number of inversion vari-
ables. Notice that the direct and adjoint problems can be solved by the Finite
Element Method.

Below we present the procedure to minimize the functional J̃ .

Algorithm 51 Adjoint-based minimization method.
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1. Give an initial guess ω0 for the parameter.
2. In step k, given ωk, solve the direct and adjoint problems.
3. Get the derivative of the functional, i.e. J̃ ′(ωk), using (19).
4. Obtain ωk+1 by performing one iteration of the SQP method.
5. Stop using the criteria of fmincon.

To perform the minimization procedure, it is necessary to solve both the
direct problem and the adjoint problem.

Algorithm 52 Direct problem.

1. Perform an implicit Euler step to find the state variables u, that is:

u(·, tn)− u(·, tn−1)

τ
= F (u(·, tn)),

where tn = tn−1 + τ , F (u(·, tn)) is a nonlinear functional and the initial
condition is u0(x) = u(x, 0).

2. Use FEM to make a discretization of ui(x, tn):

ui(x, tn) ≈
nod∑
j=1

uni,jφj(x), i = 1, 2, 3,

where φj are the linear shape functionswhere and nod is the number of
uniform distributed nodes for the spatial meshgrid for [0, 1].

3. Calling Un = [Un1 , U
n
2 , U

n
3 ] ∈ Rq, where

Uni = [uni,1, · · · , uni,j , · · · , uni,nod] ∈ Rnod, i = 1, 2, 3,

use the Newton method to find Un ∈ Rq such as Un−Un−1−τG(Un) = 0,
where G is the discretization of F .

Algorithm 53 Adjoint problem.

1. Perform an implicit Euler step to find the adjoint variable λ:

−λ(·, tn)− λ(·, tn−1)

τ
= H(λ(·, tn−1)),

where the final condition is λ(·, T ) = 0.
2. Use FEM to make a discretization of λ(·, tn) and solve the linear problem

λn−1 − λn − τK(λn−1) = 0,

where K is the discretization of H.
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6 Computacional results

In this section we evaluate the performance of the adjoint-based optimization
method proposed in this work. We show numerical simulations for some test
cases using Algorithm 51.

Let us consider a synthetic experiment where û3(x, t) is generated via the
direct model, for a choice of the model parameters ρ2 = 1, D2 = 4 × 10−5

and ω̂ = (12.5, 70). We choose δ̂1 = 12.5 with the objective of recovering the
behavior of different cell densities as in Figure 1.

The graph of (15) in terms of ω can be seem in Figure 3, leaving constant
the other parameters. Notice that J̃ looks convex with respect to ω.
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Fig. 3 The functional J̃ for û3 generated with ω̂ = (12.5, 70).

We want to test if we can retrieve the original value of the parameter. This
is not an easy task since we do not know, for instance, if the optimization
problem has a solution, or if that solution is unique, or if the optimization
problem has multiple local minima.

We have run Algorithm 51 for several values of ω̂ where the initial condition
ω0 is randomly taken. Algorithms 52 and 53 were solved using the following al-
gorithmic parameters: τ = 0.5, T = 20, nod = 201 and Uad = [0, 20]×[80, 120].
Results can be seen in Table 2) where we can observe that the retrieved pa-
rameter is obtained very accurately since the standard deviation is small.
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Table 2 Experiments for randomly initial data ω0, ω̂ = (12.5, 70), where S is the standard
deviation and eδi is the relative error

ω̄ S eδi

δ1 12.4749 1.5194 6.6878−3

δ3 69.9732 4.9359−2 3.7610−4

Table 3 Experiments for ω̂ = (12.5, 70) and σ = 0.05, where S is the standard deviation
and eδi is the relative error

ω̄ S eδi

δ1 13.2226 2.2095 1.7215−2

δ3 70.1958 8.5686−1 2.7577−3

Table 4 Experiments for ω̂ = (12.5, 70) and σ = 0.08, where S is the standard deviation
and eδi is the relative error

ω̄ S eδi

δ1 11.2916 2.8904 9.9735−3

δ3 69.8592 3.3723−1 1.9819−3

Table 5 Experiments for ω̂ = (12.5, 70) and σ = 0.10, where S is the standard deviation
and eδi is the relative error

ω̄ S eδi

δ1 11.7134 1.6167 4.0346−3

δ3 69.9574 7.8445−2 5.9917−4

Since we have accurately retrieved the value of ω̂ for different initial values
ω0, we will consider ω0 = (8, 50) in the next experiment.

The presence of noise in the data (due for example to measurement errors)
may imply strong numerical instabilities in the solution of an inverse problem
[6]. One of the techniques to obtain values of û3 is by fluorescence ratio imaging
microscopy [21]. Measurement errors can be seen as random perturbations in
the data.

Therefore, we can assume that we have observations of û3 affected by
Gaussian random noise with zero mean and standard deviation σ = 0.01, 0.05,
0.08, 0.1, 0.15. In Tables 3–6 we show, for each σ, the average ω̄ over 10 values
of ω, the standard deviation S and the relative error for each parameters

eδi = |δ̂i−δ̄i|
δ̂i

, i = 1, 3.

7 Conclusions

A miscellany of new strategies, experimental techniques and theoretical ap-
proaches are emerging in the ongoing battle against cancer. Nevertheless, as
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Table 6 Experiments for ω̂ = (12.5, 70) and σ = 0.15, where S is the standard deviation
and eδi is the relative error

ω̄ S eδi

δ1 10.1207 3.2747 2.6460−2

δ3 69.6646 5.1785−1 4.7218−3

new, ground-breaking discoveries relating to many and diverse areas of cancer
modeling are made, scientists often have recourse to mathematical modeling
in order to elucidate and interpret these experimental findings, [1,5,8,3], and
it became clear that these models are expected to success if the parameters
involved in the modeling process are known. Or eventually, taking into ac-
count that some biological parameters may be unknown (especially in-vivo),
the model can be used to obtain them [2,10].

This paper, as already mentioned in Section 1, aims to offer a mathematical
tool for the obtention of phenomenological parameters δ1 and δ3 representing
the negative influence of the protons ions in the tissue (the acidification of
the enviroment where live the cells) and the buffering (the way that the body
naturally eliminate the exceeding of protons ions), respectively. These param-
eters can be identified by inverse estimation, by making suitable comparisons
with experimental data. The inverse problem was stated as a PDE-constrained
optimization problem, which was solved by using the adjoint method. In addi-
tion, the gradient of the proposed functional is obtained and can be extended,
in principle, to any number of unknown parameters.

We remark that the parameter estimation via PDE-constrained optimiza-
tion is a general approach that can be used, for instance, to consider the
effects of nonlinear interaction between the health and tumor cells [23], and
the buffering coefficient that allow us in a future to design a methodology to
take into account the therapeutic of our problem.

As a future work we are interested in the dependence of the δ3 on time, as
in [22].
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