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This article presents a time dependent density functional theory (TDDFT) implementation to prop-
agate the Kohn-Sham equations in real time, including the effects of a molecular environment
through a Quantum-Mechanics Molecular-Mechanics (QM-MM) hamiltonian. The code delivers an
all-electron description employing Gaussian basis functions, and incorporates the Amber force-field
in the QM-MM treatment. The most expensive parts of the computation, comprising the commutators
between the hamiltonian and the density matrix—required to propagate the electron dynamics—, and
the evaluation of the exchange-correlation energy, were migrated to the CUDA platform to run on
graphics processing units, which remarkably accelerates the performance of the code. The method
was validated by reproducing linear-response TDDFT results for the absorption spectra of several
molecular species. Two different schemes were tested to propagate the quantum dynamics: (i) a
leap-frog Verlet algorithm, and (ii) the Magnus expansion to first-order. These two approaches were
confronted, to find that the Magnus scheme is more efficient by a factor of six in small molecules.
Interestingly, the presence of iron was found to seriously limitate the length of the integration time
step, due to the high frequencies associated with the core-electrons. This highlights the importance
of pseudopotentials to alleviate the cost of the propagation of the inner states when heavy nuclei
are present. Finally, the methodology was applied to investigate the shifts induced by the chemical
environment on the most intense UV absorption bands of two model systems of general relevance:
the formamide molecule in water solution, and the carboxy-heme group in Flavohemoglobin. In both
cases, shifts of several nanometers are observed, consistently with the available experimental data.

© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4871688]

. INTRODUCTION

The interest in the calculation of excited states and spec-
troscopic transitions has motivated in the last 20 years a
pronounced expansion in the application of time dependent
density functional theory (TDDFT)."? This methodology has
become the first choice to compute these properties in middle-
sized molecular and extended systems, for which the much
more expensive quantum-chemistry schemes based on multi-
configurational wavefunctions used to be the standard ap-
proach. Presently, the vast majority of applications of TDDFT
makes use of the linear response formulation (LR-TDDFT).
In this framework, the perturbation of the Kohn-Sham density
by an applied field is expressed to linear order introducing
the susceptibility (or density-density response function) of the
non-interacting electron system.>* Excitation energies and re-
lated quantities can be obtained from the poles of the suscepti-
bility function. Different treatments have been devised to im-
plement this technique; in particular, the Casida formulation’
is the one adopted by most LR-TDDFT quantum-chemistry
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programs to compute excitation frequencies and oscillator
strengths.

Alternatively, it is possible to explicitly evolve the time-
dependent Khon-Sham equations to simulate the electron dy-
namics resulting from a perturbation. This leads to the so-
called real-time time dependent density functional theory
(RT-TDDFT), which in principle provides the full temporal
description of the Kohn-Sham single-particle states. The spec-
troscopic frequencies and intensities can be recovered from
the Fourier transform of the time-dependent dipole moment,
but in general this requires to simulate the electron dynam-
ics over some tens of femtoseconds. This is computationally
costly and explains why the real-time formulation of TDDFT
has not been of widespread application as its linear response
counterpart. However, RI-TDDFT reproduces the quantum-
dynamics of the electrons, and therefore may provide insights
on fundamental phenomena banned to LR-TDDFT: charge
transport, photocurrent generation, coupled ion-electron dy-
namics, or the response to strong (laser) fields beyond the lin-
ear regime.

In parallel with the development of LR-TDDFT codes, a
smaller number of real time implementations using different

© 2014 AIP Publishing LLC
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basis functions and numerical schemes have appeared and
evolved since 1990s. The earliest versions employed real
space grids and the local density approximation, for example,
the pioneering work by Bertsch and Yabana,® which is the an-
tecesor of the Octopus TDDFT package.’” Other kind of basis
sets were adopted in different developments, including plane-
waves,>? numerical orbitals (in the context of the SIESTA
program),'® or, more recently, Gaussian functions.''-!?
Real-time time dependent DFT simulations were also carried
out at the semiempirical level, using the DFTB method.'*
Furthermore, first-principles ion-electron dynamics were per-
formed based on such implementations, applying the Erhen-
fest scheme or alternative treatments.® '°

In this article, we introduce a real time implementation
of TDDFT using Gaussian basis sets with two particular fea-
tures: (i) it is coupled to a Quantum-Mechanics Molecular-
Mechanics scheme which allows for the representation of
complex environments, and (ii) it is significantly acceler-
ated by performing part of the computations on graphics pro-
cessing units (GPU). Hybrid quantum-mechanics molecular-
mechanics (QM-MM) techniques introduce self-consistently
a set of atomic charges from an empirical force-field in the
ab initio hamiltonian. In this way, the electronic density of
the “quantum” subsystem is modulated by the presence of a
non-reactive environment, for example, a solute surrounded
by the solvent molecules, or an active site immersed in a
protein matrix. The embedding of RT-TDDFT in a QM-MM
framework is alluring for various applications involving large
systems where the environment does not directly participate
in the quantum-dynamics, as for example, spectroscopy in so-
lution, or electron transport across solid-liquid interfaces, or
between redox centers in metalo-proteins.

In Sec. II, the methodology is described in detail. Next,
the implementation is validated by confronting the spectro-
scopic data obtained for simple molecules, against the results
obtained through linear response TDDFT. Efficiency aspects
are examined in Sec. III B, and finally, the last two parts
of the paper (Secs. III C and III D) are devoted to investi-
gate the role of the environment on the spectral features of
two systems of chemical and biological relevance: (i) the sol-
vatochromic effect of water on the position of the intense
T — 7 transition characteristic of the peptidic bond, and
(ii) the location of the Soret band in a heme-protein.

Il. METHODOLOGICAL IMPLEMENTATION
A. DFT and QM-MM scheme

The present real-time implementation is based on an all-
electron, Gaussian basis sets density functional code devel-
oped in our group. In this code, the exchange correlation
energy is computed numerically in a real space grid, and rep-
resents the most expensive part of the self-consistent proce-
dure. Recently, we have reformulated this grid to an atom
centered radial mesh where the density is grouped and par-
titioned into smaller points, and articulated it in CUDA to
perform the integration of the exchange-correlation potential
in graphics processing units.!” With this migration of archi-
tecture, the SCF procedure has been accelerated by a factor
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of 20 when running on a GTX 780 GPU, with respect to the
time consumed in a single CPU processor.!” Furthermore, this
code has been interfaced with a classical force-field, to carry
out hybrid quantum-mechanics molecular-mechanics simula-
tions. In such schemes, the system is partitioned in two re-
gions: the “quantum” or QM subsystem, where the electronic
or chemical processes of interest take place, and the “clas-
sical” or MM region, containing the environment represented
by a distribution of atomic charges which interacts electrostat-
ically with the quantum part of the system. Additionally, the
atoms of one subsystem may interact with those of the other
through Lennard-Jones or any other empirical potential. The
total energy E,,, takes the form:

Eior =Eogm +Eum + Eou-mum, (1)

where Eguy — py and Ejpyy denote the energy of the quantum
and classical parts, computed as usual, and Egy — y is the
hybrid contribution:

drp(r) Z
Eov—mmu = ZQA/ + Z qa BB + Eé{w_MM.
A

r—rTA

)
In the expression above, p(r) is the electron density, g4 rep-
resents the point charges of the MM atoms, and Z, the nu-
clear charges of the QM atoms (with the indices A and B run-
ning over the atoms of the classical and the quantum regions,
respectively). E 5{1,17 uy introduces parameterized, two-body
interactions between the atoms of both subsystems. This term
plays an important role in geometry optimizations or molecu-
lar dynamics, because it prevents that negative point charges
from the MM region collapse onto the positive QM nuclei.
Additional terms may be present if the QM and MM partitions
are connected via chemical bonds. All these contributions are
included in the hamiltonian across the SCF cycle, so that the
electron density adapts self-consistently to the point charge
distribution. In the same way, the forces on the MM region
are subject to the effect of the electron density, and therefore it
is said that each half of the system responds self-consistently
to the other. In the implementation presented in this article,
the QM region is treated via the Kohn-Sham hamiltonian,
whereas the MM atoms are described by the AMBER force-
field.!” 18

B. Temporal evolution of the electron density

The Liouville-von Neumann equation describes the elec-
tron dynamics of a quantum system in terms of the density
matrix P:"”

LOP

where H is the electronic hamiltonian matrix. In the present
implementation H is the Kohn-Sham matrix and P is con-
structed from the coefficients C,,, of the canonical (orthonor-
mal) molecular orbitals v,:

Va(r, 1) =Y Cpa(t)pu (D), )

12

Puy =Y Cra(t)Cry(t) (5)
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with ¢,, the Gaussian basis functions. At time ¢ = 0 a per-
turbation VPP is applied and, starting from the ground state,
the density matrix is propagated using Eq. (3) in a discretized
temporal domain. Two different techniques were tested to in-
tegrate this equation, which are described in the next subsec-
tion. Once P has been evolved for the next time step At, the
Kohn-Sham matrix needs to be updated because it depends on
the density matrix via the Coulomb (V¢) and the exchange-
correlation (V*¢) terms:

HYC (1) = H"* + VE[P(1)] + V[P()] + Vapp(1),  (6)

Ve =3 PACG) / drydr; ¢”(r‘)¢“|(r';‘)jb: :2)%(“),
A
)

MOES f Uxe[ (X, )] (1), (X)dr, ®)

with v, the exchange correlation potential. The supraindex
AO highlights that Eq. (7) is valid for P expressed in the ba-
sis of (Gaussian) atomic orbitals and that HA9(7) is assembled
in that basis. Therefore, the density matrix needs to be trans-
formed to the atomic basis before evaluating H:

PA0(r) = XP(H)X". 9)

Here X is the transformation matrix that diagonalizes the
overlap matrix S,

XISX =1 S, = f Bu(r)p (),

which in the present implementation is calculated using the
DSPEV routine of the LAPACK library. Naturally, once the
Kohn-Sham matrix is obtained, it has to be transformed to
the molecular orbitals (MO) basis to go ahead with the inte-
gration of Eq. (3):

H() = X'H ()X, (10)

The next sequence summarizes the procedure to propagate the
quantum dynamics starting from the ground state.

1. Do a standard SCF cycle, from which H(r = 0) and
P(t = 0) are computed in the MO basis.

2. Compute [H(t), P(t)] to obtain P(z + A¢) via Eq. (3) in
one of the ways described in Sec. II C.

3. Transform P(¢ + At) to the AO basis, Eq. (9).

4. Construct H(r + Af) in the AO basis, Eq. (8).

5. Transform H(z + Af) to the MO basis, Eq. (10).

6. Go to step 2.

C. Time integration

We examined the performance of two distinct numer-
ical approaches to evolve the electronic equations of mo-
tion: the Magnus propagator, and the much simpler Verlet
algorithm to first-order. The former approach has been often
adopted in real-time quantum dynamics implementations, '3 1©
while the later has been tried successfully in semiempirical
RT-TDDFT," but, to the best of our knowledge, no applica-
tion in first-principles electron dynamics has been reported.

J. Chem. Phys. 140, 164105 (2014)

Verlet propagation. A first-order Taylor expansion of
P(¢) around ¢ yields:

P(t + A1) = P(r) + 1h[H(t), P(1)] At

i

an
1
P — A1) =P(t) — E[H(r), P()] At
i
The combination of these two equations gives
P + At) = 2[H(), P(t)]At + P(t — Ar) (12)

so that the propagation of the density matrix requires its value
at the present and the previous time step, and also the value
of the Kohn-Sham matrix at the current step. We note that
this propagation scheme preserves by construction the trace
of the density matrix, because the trace is invariant against
the permutation of the matrix product,

T}"(HP) = ZZHjiPij
i
Tr(PH) =Y " " PiHy =Y Y P;H; = Tr(HP).
i J

J 1
and therefore the trace of the commutator in Eq. (12) is zero.
Magnus expansion. Given a time-independent hamilto-
nian matrix H, the differential Eq. (3) has the following exact
solution:

P(r) = e /POy ™M1/ (13)

To see this, it suffices to differentiate the right-hand side of
Eq. (13), and to note that the exponential operator commutes
with H. In the case of a time-dependent hamiltonian H(?), an
equivalent solution would be

P(t) — e—i for H(l‘)dt/hP(O)ei fol H(t)df/h' (14)

However, a Taylor expansion shows that this expression leads
to an inconsistency in the chronological order in which H(7)
operates (see Ref. 19). Magnus worked this out demonstrating
that the propagator could be reformulated as follows:'%2°

P(1) = *OP0)e M VA®) = Ar(1) + Ao(r) + As(0) + - -
(15)

1 t
A(t) == / dnH(ty),
iti 0

1L\ [ ?
A= (—) / dt, f dnH(n), Hn)),
it 0 0

1/1 3 pt 13 t
A3(t):_8 (—) / dl3/ dlz[ dt;[H(z1), [H(2), H(#3)]]
ifi 0 0 0

+ [[H(r), H(z2)], H(13)].

Following recent implementations, we adopt here
the Magnus expansion to first-order—including only A;(f)
in equation (15)—, the integral by a middle-point approxi-
mation, and apply the Baker-Campbell-Hausdorff (BCH) for-
mula to calculate the matrix product with the exponential

13,16
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term:

1
Ait) ~ —H(t/2)t (16)

2
P(t) = P(0) — it[A(2), P(O)] — %[Al(t), (A1), PO)]]

3
+ i%[Al(t), [A1(1). [A1(D), PO + -+ (17)

A caveat of this approach is that the value of H(#2) in
Eq. (16) depends on the (unknown) density matrix at time
t/2. To deal with this, we have adopted the predictor-corrector
scheme proposed by Van Voorhis and co-workers,!! where
H(#/4) is estimated from a linear interpolation based on the
two preceding matrices H(—#/2) and H(—3#/4). This allows to
compute A;(#/2), which is used to propagate the density ma-
trix half-step. The resulting P(#/2) is employed to construct
the Kohn-Sham matrix H(#/2), with which the dynamics is
evolved a full time step. This procedure is correct to order
Ar?.' The effect of truncating expansion (17) has been inves-
tigated and is discussed in Sec. III B.

D. Absorption spectra

An optical absorption spectrum can be obtained from the
response of the dipole moment to an electric perturbation in a
real time simulation. This can be achieved by introducing a §
function like electric-field kick capable to excite all electronic
frequencies with the same intensity.° In this work, a linearly
polarized Gaussian type perturbation E(¢) was imposed to the
ground state density to simulate a classical electric field in the
linear regime:

E(t) = Egexp[—(t — t)*/20*]F, (18)

where 1y is the time for which the pulse reaches its maximum
value Ey, w is its width, and 7 is the unitary vector pointing in
the direction of x, y or z. Typical values used in this work for
Ey and w are in the order of 0.05 and 2.23 atomic units, re-
spectively. The coupling term between the external (applied)
electric field and the system is given by

Vapp(t) = —E(1) ® ji(t), (19)

where j1(2) is the time dependent dipole moment, which scalar
components can be approximated to first order by

wi(t) = pg +/dl10lik(t — 1)E;(t). (20)

(@) (b)
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Here uy is the k component of the dipole moment of the sys-
tem in the absence of an external electric field, and «; is an
element of the linear polarizability tensor. Then, if we define
the induced dipole moment ,uvf{”d as

() = () — g Q1)
we have an expression for its frequency domain form:
1 (@) = (@) Ei(). (22)

Finally, the polarizability tensor can be computed from the
time-dependent dipole moment and the applied field in the
following way:

M;'cnd(w) _ fdteiwtu;'(nd(t)efyt

E;(w) fdtei‘”’E,-(t) (23)

ajp(w) =

In the expression above, a damping factor y was introduced,
which produces a broadening in the absorption spectrum
peaks that is useful to emulate coupling effects between elec-
tronic and nuclear degrees of freedom.?'~?? Values in the or-
der of 0.2 fs~! were adopted for this parameter to simulate the
spectra. Once the polarizability tensor is obtained in the fre-
quency domain, the absorption cross section tensor o (@) and
the dipole strength function S(w) can be calculated as

drw
o(w) = Tlm[oz(a))], 24)

S(w) = %Tr[a(a))]. 25)

lll. APPLICATIONS AND RESULTS
A. Validation: Electronic spectra of simple molecules

To check the reliability of the quantum dynamics pro-
duced by this implementation, we have computed the ab-
sorption spectra of several molecules following the pro-
tocol described in Sec. II D. The list includes a variety
of compounds covering an ample range of sizes, from di-
atomics to tryptophan to carotene (see Figure 1). Simulations
times were extended for at least 20 fs, and were performed
using the PBE approximation to the exchange-correlation
energy,”’ in combination with a DZVP basis set.”* For com-
parison, electronic excitations were calculated for these sys-
tems with linear-response TDDFT, employing the same basis
sets and exchange-correlation functional. The Orca® and the

(©

FIG. 1. Some of the molecules investigated in this study: (a) tryptophan, (b) carotene, and (c) formamide. Color code: light blue = carbon; blue = nitrogen;

red = oxygen; white = hydrogen.
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TABLE I. Calculated and experimental (when available) absorption wave-
lengths in nm for various molecules in the gas phase. The reported values
correspond to the lowest energy transitions. Oscillator strengths are given
in parenthesis. Real-time and linear-response TDDFT calculations were per-
formed with the PBE exchange-correlation functional and DZVP basis sets.

RT-TDDFT LR-TDDFT Expt.
co 147 (0.1) 143 (0.1) 145
H,0 161 (0.04) 159 (0.02) 170
CeHg 175 (0.8) 172 (0.6) 180
CHy 103 (0.1) 103 (0.1) 127
H, 94 (0.3) 95 (0.6) 110
H,SO 224 (0.01) 222 (0.01) ..
Tryptophan 298 (0.1) 311 (0.1) 286
Carotene 568 (0.9) 579 (1.2)
Gaussian 03% packages were used to realize the LR-TDDFT

calculations. The comparison between methods and with ex-
periments is presented in Table I. It is seen that the frequen-
cies from real-time simulations are in very good agreement
with the linear-response values. The seemingly stronger dis-
crepancies in wavelengths between the LR and RT results for
carotene or tryptophan, of around 10 nm, are only apparent: in
terms of energy, they represent less than 0.2 eV, i.e., the same
discrepancies observed for the smaller molecules absorbing at
shorter wavelengths. The LR-TDDFT calculation for carotene
exhibits a peak at 545 nm with an oscillator strength of 0.44.
The simulation time in RT-TDDFT may not be enough to re-
solve this peak from the one at 579 nm, entailing a separation
of only 0.1 eV, and both would appear as a single signal.

Overall, the computed results are pretty close to the ex-
perimental data, with an average error below 15 nm. The in-
tensities provided by the RT-TDDFT approach are also in line
with the oscillator strengths calculated with Gaussian 03. To
illustrate this, the spectra for both formamide (HCONH,) and
the intermediary species H,SO are shown in Figure 2, to-
gether with the data obtained from LR-TDDFT.

B. Propagators and performance considerations

The Verlet algorithm described above is very inexpen-
sive computationally in comparison with the Magnus or with
other conventional quantum-mechanical propagators, but in
turn it substantially restrains the length of the time step At
that can be used to integrate the equations of motion. On the
other hand, when applying Magnus propagation to first-order,
this time step presumably depends on the number of commu-
tators (NC) included in expansion (17). We examine in this
section how these aspects affect the overall performance of
the code, in order to identify the most efficient propagation
scheme among those implemented.

Table II shows the effect of NC on the maximum
time step able to produce a stable, conservative quantum-
dynamics. Results are shown for four systems of different
size and nature: methane, carotene, the heme group, and the
iron dimer. As expected, the length of the time step can be
increased if more commutators are considered in expansion
(17). For methane and caroten, this effect seems to saturate
beyond 15 commutators. It seems perhaps surprising that the

J. Chem. Phys. 140, 164105 (2014)
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FIG. 2. Simulated spectra for HCONH,; (a) and H,SO (b), comparing linear
response and real time TDDFT results. Calculations were performed with the
PBE exchange-correlation functional and DZVP basis sets.

iron-porphyrin and the Fe, species require a sensibly smaller
time step than the one used in other systems. The origin of this
requirement is not related to the valence d shell, but it has to
do with the core electrons of the iron atom (we recall that this
is an all-electron treatment). This was corroborated through
calculations in charged iron dimers lacking the full valence
charge density, e.g., Feé8+, for which the time step turned out
be exactly the same as in the neutral dimer. Seemingly, the
inner electrons subject to the field of a heavy nucleus have
much higher frequencies demanding a more stringent inte-
gration step. This pinpoints the relevance that pseudopoten-
tials may have when dealing with heavy atoms in RT-TDDFT,
not so much because of a reduction of the dimensions of the

TABLE II. The effect of the number of commutators (NC) in the Magnus
expansion (Eq. (17)) on the maximum viable time step At to propagate the
quantum-dynamics a single step. Times are given in femtoseconds.

NC=5 NC =10 NC =15 NC =30
Methane 0.002 0.007 0.010 0.012
Carothene 0.005 0.007 0.010 0.010
Fe dimer 0.0003 0.0005 0.0006 0.0009
Heme-group 0.0003 0.0005 0.0006 0.0009
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TABLE III. Time step At, and ratio between the time step and the computational time t consumed to propagate the quantum-dynamics a single step for the
methane molecule. At is given in femtoseconds and A#/t in femtoseconds/second.

Magnus (NC = 5) Magnus (NC = 10) Magnus (NC = 15) Magnus (NC = 30) Verlet
At Atlt At Atlt At Atlt At Atlt At Atlt
0.002 0.013 0.007 0.044 0.010 0.063 0.012 0.076 0.001 0.013

density matrix, but through a significant decrease in the prop-
agation time step.

In Table III the parameter t represents the computational
time to propagate the dynamics one time step, and there-
fore the ratio At/t gives a measurement for the efficiency of
the propagation algorithm. For a small molecule as methane,
the Verlet algorithm turns out to be nearly twice as fast as the
Magnus propagator, but the time step for the later is nearly 12
times larger. As a result, for this system the Magnus expan-
sion excels the performance of the Verlet scheme by a factor
of 6. The excess in computational GPU time for increasing the
number of commutators in the first-order Magnus expansion
is negligible.

C. Solvatochromic shift in formamide

Formamide represents the simplest model for the pep-
tidic bond. The interest in the application of UV spectroscopy
to the structural, dynamical, and electronic characterization
of the peptidic linkage in proteins, has motivated a lot of
experimental®’~! and theoretical®*™*! research on the excita-
tions and absorption of formamide, acetamide, and other re-
lated molecules. The UV spectrum of formamide is character-
ized by an intense band at 7.4 eV involving non-bonding and
antibonding  orbitals (denoted 7, — 7%),27-30 which expe-
riences a red-shift of 0.5 eV in aqueous solution.?®?° Other
weaker signals are also present, attributed to n — 7* tran-
sitions and to Rydberg excitations. Various authors have ap-
plied electronic structure methodologies to interpret the ori-
gin of these bands, and to examine the effect of the solvent
on their energies. Early simulations of the absorption spec-
tra of small amides in the gas phase or hydrated by a few
water molecules, were based on static calculations with the
CASSCF and CASPT2 methods. The effect of finite tem-
perature was modelled in water solution by several workers
like Mennucci or Besley and Hirst, who performed TDDFT
calculations embedded in a continuum solvent on an ensem-
ble of configurations generated through classical molecular
dynamics.*7 Besley and Doltsinis followed this same idea
to obtain the absorption spectra of formamide in the gas
phase, combining in this case Car-Parrinello molecular dy-
namics with MRCI to extract the electronic transitions.>® Very
recently, Gordon et al. have interpreted the observed solva-
tochromic shifts in terms of the solvent effect on the HOMO
and LUMO energies.*! In particular, they explored the fi-
nite temperature broadening of the spectral line shape both in
vacuum and in solution, by performing molecular dynamics
simulations with DFT and then computing the spectra at the
TDDFT/PBEQ level for a set of configurations. The solvent
environment was modelled in a QM-MM framework with the

inclusion of 100 H,O molecules represented through the ef-
fective fragment potential EFP1.*! Based on this approach,
these authors reported absorption energies of 8.74 eV and
8.31 eV in the gas and in the aqueous phases, respectively.
We have examined this problem applying our QM-MM
methodology. More specifically, we have run molecular dy-
namics simulations of a formamide molecule in an octahe-
dral simulation box of radius 15 A containing 1067 water
molecules in periodic boundary conditions, to analyze the
displacement of the m,, — 7* band in solution. The con-
figurational sampling of solvated formamide was achieved
through QM-MM Born-Oppenheimer molecular dynamics,
which combined DFT and the TIP3P water force-field to de-
scribe the H,O molecules.*> This scheme was applied to prop-
agate the positions of the nuclei adiabatically on the Born-
Oppenheimer surface, coupled to a Langevin thermostat. A
set of configurations extracted from these QM-MM trajecto-
ries were then computed at the RT-TDDFT level, using ex-
actly the same PBE/TIP3P hamiltonian as the one adopted to
perform the molecular dynamics. Hence, an interesting fea-
ture of our approach is that it allows to use exactly the same
QM-MM hamiltonian (combining PBE 4 Amber) for both
the Born-Oppenheimer and the electron dynamics. The spec-
tra of formamide were thus computed as an average of differ-
ent configurations, each of which was extracted from a trajec-
tory thermalized during at least 5 ps, preceded by an equilibra-
tion scheme including a previous QM-MM thermalization at
the AM1 level. Figure 3 displays the averaged spectra in vac-
uum and in water. The position of the absorption maximum
appears to converge for a set of less than 20 configurations in

0,15 T T T T T T T T
— Formamide (aq)
e Formamide (vacuum) J
5
< O1F =
——
ey
(o]
[ =] o .
(0]
=
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o 005
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6 7 8 9
energy (eV)

FIG. 3. RT-TDDFT simulated spectra of formamide in the gas phase and
in aqueous solution. The results correspond to averages taken over 20 and 30
configurations, respectively, generated through molecular dynamics at 300 K.
QM-MM simulations were performed to obtain the spectra in solution.
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the gas phase, whereas in solution it requires a more extensive
sampling, involving 30 different snapshots. This should be ex-
pected since the solvated formamide explores many more lo-
cal minima than in the gas phase. We note that the starting
geometries for the different structures employed in the con-
struction of the TDDFT spectra, have their origin in a classi-
cal molecular dynamics with the Amber force-field extended
over 15 ns. This ensures that in the frames taken to average the
RT-TDDFT spectra, the solvent configurations are well decor-
related from one another. The calculated 7,;, — 7* band ex-
hibits a deviation of approximately 4-0.6 eV with respect to
the experimental value, owing to the DFT description (errors
in the energies predicted by TDDFT for the various excita-
tions in the amide group were shown to be in this range, de-
pending on the exchange-correlation functional®”). More im-
portantly, our approach yields a solvent induced red-shift of
0.46 eV, remarkably reproducing the experimental value of
0.5 eV. This result proves that the present scheme is appro-
priate to study the UV spectroscopy of the peptidic bond in
aqueous solution, suggesting at the same time that the partic-
ipation of the solvent in the solvatochromic shift of the amide
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is purely electrostatic. In other words, it does not seem to be
necessary to have a quantum-mechanical description of the
solvation shell to attain a quantitatively accurate representa-
tion of this phenomena.

D. The effect of the protein environment on the Soret
band of heme

Porphyrins exhibit two kinds of well characterized elec-
tronic transitions in the visible region, associated with the
so called Q and Soret bands.*> The last ones have been ex-
tensively utilized to provide rich morphologic and biochem-
ical information about the environment of the heme group
such as the type and number of ligands coordinated to the
metal atom or its oxidation state.***® In this section we ap-
ply our TDDFT QM-MM scheme to investigate the Soret
band of heme in the Flavohemoglobin of Escherichia Coli
(ecFlavoHb).*’ Flavohemoglobins (FlavoHbs) are a family of
heme proteins widely distributed among bacteria and yeasts.
Their structural features involve a globin domain contain-
ing a penta-coordinated heme group (with an axial imidazole

(d)

Gl
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p
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o ‘_/é\‘_ =
o—-&K

FIG. 4. Simulated spectra of hexa-coordinated heme in Flavohemoglobin (a) and in the gas phase (b). The corresponding model structures are represented in
(c) and (d). The spectra in Flavohemoglobin was obtained using QM-MM calculations.
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ligand), fused with a ferredoxin reductaslike module. Given
their high redox reactivity, different physiological roles asso-
ciated with cell response to oxidative and nitrosative stress
have been proposed.*’ In particular, ecFlavoHb consists of
396 aminoacids plus a heme group and a flavin-adenine dinu-
cleotide (FAD) molecule. A model structure for this system is
displayed in the upper right panel of Figure 4. The total num-
ber of atoms is 6270, which makes a full quantum mechanics
treatment unaffordable.

The absorption spectrum of CO bound ecFlavoHb was
computed on a partially optimized structure, including in the
QM region the heme group plus the two axial ligands: imi-
dazole and carbon monoxide. The Soret band is depicted in
the upper left panel of Figure 4. On the other hand, the ab-
sorption peak corresponding to the isolated hexa-coordinated
heme group with the same ligands is shown in the lower panel.
These bands are centered at 400.6 nm and 436.0 nm for the
protein and the isolated complex, respectively. It is important
to emphasize that in both the ecFlavoHb and the isolated heme
models, the QM region is exactly the same. Therefore, the ob-
served blue shift of ~35 nm in the Soret band results from
the incorporation of the MM subsystem representing the sur-
rounding protein.

The Soret band for the penta-coordinated heme
in ecFlavoHb has been experimentally characterized at
403 nm.*’ This can be considered as an upper bound to the
position of the Soret peak in CO ligated ecFlavoHb, since the
coordination of CO to a penta-coordinated heme produces a
small blue shift in the Soret absorption, typically in the range
of 5-15 nm.*® Then, despite the lack of a direct experimen-
tal comparison, it can be concluded that the observed shift
in the ecFlavoHb heme with respect to the gas phase hexa-
coordinated porphyrin is qualitatively correct. We note that
these results must be considered only qualitative, as they pro-
ceed from static configurations of the heme model. As dis-
cussed in Ref. 49, the convergence of the spectrum with re-
spect to the number of sampled configurations is mandatory
if an accurate prediction is sought.

IV. CONCLUSIONS

We have developed a powerful scheme to perform real-
time TDDFT electron dynamics in a QM-MM framework.
This implementation can easily handle systems in the order
of 100 quantum atoms surrounded by thousands of classical
nuclei, enabling the investigation of the effect of a complex
environment, such as a solvent or a protein matrix, on the
spectroscopy, the conductance, or the out-of-equilibrium be-
havior of large molecular species. The most demanding parts
of the present scheme involve the exchange-correlation en-
ergy, which is computed in GPU and scales linearly with the
number of atoms,!” and the [H, P] commutator. The later is
also efficiently handled in GPU, hence representing a negli-
gible fraction of the total computing time, providing the di-
mension of the matrices is not huge. As a consequence, the
global scaling turns out to be almost linear. Since the most
common LR-TDDFT implementations scale with N> or N*
(with N the number of electrons), the parallelization in GPU
renders this method competitive with respect to the linear re-
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sponse approach to calculate the electronic transitions of large
molecular systems, in the order of 100 atoms or more.

The Magnus propagator was found to be more efficient
than the Verlet algorithm for small systems by a factor of 6.
The inclusion of additional commutators in the BCH scheme,
up to NC =~ 30, allows for a longer time step at a negligible
GPU computation cost. The presence of heavy atoms severely
restrains the maximum time step, because of the high frequen-
cies associated with the inner electronic states.

In general, the observed quantum response of the sys-
tem arises from an average on an ensemble of instantaneous
configurations, which can be obtained, for example, from a
molecular dynamics trajectory. An interesting feature of the
present method is that it allows to use exactly the same hamil-
tonian to sample the configurational space through molecular
dynamics simulations, and to propagate the time-dependent
equations for the electronic states. This procedure has been il-
lustrated for the case of formamide in aqueous solution, yield-
ing results in excellent agreement with experiments. Beyond
the calculation of absorption spectra, the code reported here
may be useful to study charge transport in biological environ-
ments. For example, the electron transfer rates between en-
zymatic active sites are largely determined by the geometries
adopted by the peptidic chains in between, and modulated by
the surrounding residues. A reliable estimation of the trans-
port properties in this complex would require an extensive av-
eraging on the accessible structures of the system, attainable
via QM-MM molecular dynamics simulations. The method-
ology described in this article is particularly well suited to
address this kind of problems, which will be the subject of
future work.
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