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In this article we introduce a simple grand canonical screening (GCS) approach to accurately com-
pute vapor pressures from molecular dynamics or Monte Carlo simulations. This procedure entails
a screening of chemical potentials using a conventional grand canonical scheme, and therefore it is
straightforward to implement for any kind of interface. The scheme is validated against data obtained
from Gibbs ensemble simulations for water and argon. Then, it is applied to obtain the vapor pressure
of the coarse-grained mW water model, and it is shown that the computed value is in excellent accord
with the one formally deduced using statistical thermodynamics arguments. Finally, this methodol-
ogy is used to calculate the vapor pressure of a water nanodroplet of 94 molecules. Interestingly,
the result is in perfect agreement with the one predicted by the Kelvin equation for a homogeneous

droplet of that size. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4865137]

. INTRODUCTION

The characterization of the gas-liquid equilibrium of a
fluid, including the estimation of the vapor pressure as a
function of temperature, pressure, composition, or interfacial
curvature, is of extreme relevance from a general chemical-
physics perspective, but also in countless applications related
to adsorption,' materials engineering,”° catalysis,” and en-
vironmental and atmospheric chemistry.!%'> A number of
methods exists to access computationally the point of coexis-
tence and the vapor pressure of a liquid. The Gibbs ensemble
Monte Carlo approach by Panagiotopoulos, based on particle
exchange between two reservoirs containing the two phases in
equilibrium, is possibly the most widespread.'3"'> Grounded
on a different conception, the path-sampling techniques ex-
plore the configurations or contiguous macrostates connect-
ing the two phases of interest, integrating the free-energy
along the path. Examples implementing this strategy include
various schemes like the expanded ensemble,'® simulated
tempering,'” or adaptive umbrella sampling.'® A review on
these family of techniques can be found in Ref. 19. The more
recent transition matrix Monte Carlo method (TMMC) orig-
inally applied to low-dimensional model systems,?*>* is an
efficient variation of these approaches which has been proved
accurate and versatile to identify states in coexistence.?>°
Errington has recently published a series of papers summa-
rizing many of these contributions to the calculation of in-
terfacial and coexistence phenomena in different molecular
systems.>’~%

However, most of these methods cannot be adapted in
a simple way to capture the vapor pressure of an interface
of arbitrary shape or size. In particular, the vapor pressure
of nanodroplets or molecular aggregates is very difficult to
access experimentally, though it is of a fundamental interest
in areas like classical nucleation theory.12 In some occasions,
estimates have been obtained for Lennard-Jones models em-
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ploying molecular dynamics simulations with constant num-
ber of particles.>** The vapor pressures of nanoaggregates
computed using this route, though, exhibit large uncertainties,
due to the small number of particles in the vapor phase and to
the infrequent collisions in the vapor.3!32

In this article, we propose a simple approach based on
grand canonical simulations to accurately calculate the va-
por pressure of bulk and finite interfaces. Indeed, this method
(which will be referred to as GCS, from grand canonical
screening) just requires to span a range of different chemical
potentials using a conventional grand canonical scheme, and
therefore it is straightforward to implement for any kind of
interface. In the first place, we compare the results of our pro-
cedure with those obtained from the Gibbs ensemble method
for the cases of the SPC/E water and argon potentials. Next,
we apply it to obtain the vapor pressure of the coarse-grained
mW water model, to show that the computed value of Py is
in excellent agreement with the one formally predicted using
statistical thermodynamics arguments. Then, we present an
analysis of the precision and the magnitude of the errors
associated with the GCS methodology. Finally, we employ
it to calculate the vapor pressure of a water droplet of
94 molecules, with a diameter of about 1.7 nm, showing that
the result is in agreement with the Kelvin equation if the Tol-
man correction is considered.

Il. METHODOLOGY

In this study, both molecular dynamics and Monte Carlo
simulations were performed in the grand canonical ensemble.
We will refer to these two techniques by GCMD and GCMC,
respectively. In particular, GCMD calculations were carried
out using the program LAMMPS,* which, properly modi-
fied, allows for grand canonical simulations with monoatomic
models with a high computational efficiency. Since grand
canonical simulations within the LAMMPS package are

© 2014 AIP Publishing LLC
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only feasible for monoatomic potentials, we also employed
the public software Towhee for Monte Carlo molecular
modelling,*® which was applied to the atomistic SPC/E
water model.?’

Grand canonical molecular dynamics schemes introduce
Metropolis Monte Carlo sampling throughout the dynamical
evolution to allow for particle exchange with a reservoir,
hence preserving a temporal description at a controlled chem-
ical potential. The algorithm reproduces a grand-canonical
ensemble where particles can be displaced, deleted or created
in the simulation box. In the present implementation the
movement of the particles is ruled by the integration of the
Newton equations using the Verlet algorithm at constant
temperature, which is controlled with the Nosé-Hoover ther-
mostat. Insertion and deletion attempts are effected on single
particles with equal probability anywhere in the box, adopt-
ing the usual acceptance criteria of the Monte Carlo grand-
canonical algorithm.'>38 The vapor may be treated as an ideal
gas or as a real gas introducing fugacity coefficients. Along
the grand canonical dynamics, a number of attempts for
particle insertion and deletion are carried at every time-step:
this number is the so called GC/MD ratio. It is desirable to
keep this parameter as low as possible to minimize computer
time, but in turn it must be high enough to ensure that the tar-
get chemical potential is reached during the simulation.?%40
GC/MD ratios in the range 20-100 have been typically used
in previous studies.**!' In our simulations a GC/MD ratio of
20 was adopted, which is common in the literature and gives
converged results for the systems examined here.

An analogous scheme was employed in the grand canon-
ical Monte Carlo simulations, for which the displacement, ro-
tation, removal or insertion of a molecule were all equally
probable. The magnitudes of molecular displacements and ro-
tations were adjusted on the fly to fit a 50% acceptance ratio.
In grand canonical simulations performed with the Towhee
code, the pressure is not readily accessible: the acceptance
criterion for insertion and deletion is based on the chemical
potential, without a direct connection to P. The relation be-
tween p and P, given by u = u® + kgTln (PolkgT), with
¢ the fugacity coefficient, is not useful since we ignore the
reference chemical potential u(’ for the SPC/E model. Then,
a possible way to estimate the pressure corresponding to a
GCMC calculation with this code, is to run a single Monte
Carlo simulation in the isothermal-isobaric (NPT) ensemble
at a fixed pressure PM'7, where the chemical potential u™NF"
can be computed, e.g., with the Widom insertion method. If ¢
is the fugacity coefficient, for each of these ensembles holds

uNPT = pO(T) + kT In (PYPT¢(PNPT)/kpT)

MGCMC — ,LLO(T)+kBT1n (PGCMC¢(PGCMC)/kBT) ,

where the connection is attained by subtracting both
equations:

pocMC — LIGRISDE e () o
G(PGCMC)

PGCM C PNPT

If the ideal gas approximation is valid, or if and
are very close, the ratio between the fugacity coefficients can
be taken to be 1.
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In the present study argon and water were modelled,
using a Lennard-Jones potential with a cutoff of 7o in
the former case,*? and both the SPC/E’’ and the mW®
models for H;O. The mW model represents each molecule
as a single particle interacting through anisotropic short-
ranged potentials that encourage “hydrogen-bonded” water
structures. It adopts the short-ranged interaction form of
the Stillinger-Weber force-field, which consists of a sum of
two-body attraction terms favoring high coordination, and
three-body repulsion terms reinforcing tetrahedral hydrogen-
bonded configurations.*® In recent years, the mW model has
repeatedly been applied to explain the behavior of water in
various conditions and regimes (see, for example, Ref. 44,
and references therein). Periodic boundary conditions were
used in all axes, setting the dimensions of the simulation box
as to avoid interactions between images.

lll. RESULTS AND DISCUSSION

A. Computation of the vapor pressure: Description
of the GCS approach and application to argon and
SPC/E water

To obtain the vapor pressure, various grand canonical
simulations in the presence of an interface, must be conducted
successively at different chemical potentials around the pre-
sumed equilibrium value. The procedure described here is
equally valid for either GCMC or GCMD simulations. As
each one of these simulation evolves, the total number of
molecules N may rise or drop, depending on whether the mag-
nitude of the chemical potential u is, respectively, above or
below the equilibrium value. Hence, 1., can be identified by
spanning u to find the condition for which N remains con-
stant, or, more practically, for which the average derivative of
N with respect to the simulation step changes from negative to
positive. The precision in the characterization of the equilib-
rium point may be increased by narrowing down the chemical
potential window.

In the case of a droplet, when the value of u fixed in the
simulation is above the value of ., corresponding to the ini-
tial curvature of the interface, condensation occurs leading to
an increase in radius, which in turn diminishes the magnitude
of fleq. In this way the growth of the droplet continues un-
til the simulation box is completely filled. Conversely, if
is below 1., at the beginning of the simulation, the evapora-
tion proceeds until all particles have disappeared. One pos-
sible way to understand this is by looking at the change of
the free energy as a function of nanodroplet radius, described
by the Kelvin equation in the context of classical nucleation
theory and illustrated in Figure 1.'> Each curve in the figure
corresponds to a different value of the chemical potential u,
which is fixed in a grand canonical simulation (or in an ex-
periment at constant pressure) and therefore the evolution of
the system is constrained to only one of the curves. In our
procedure, we run independent simulations at different chem-
ical potentials. If the initial radius of the droplet is r* and u is
lower than the equilibrium value (blue curve), the minimiza-
tion of the free energy would lead to the evaporation of the
cluster. For the same initial radius r* but with u larger than
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FIG. 1. Change of the Gibbs free energy (AG) involved in the formation of
a droplet of radius r at different chemical potentials u. A droplet of radius r*
is metastable at a chemical potential 1t.,. At a higher u a droplet of this size
will condense, whereas at a lower u it will evaporate.

Meq (red curve), condensation would occur. By repeating this
computational experiment for a given r* at different chemical
potentials, an upper and a lower bound can be found for 1.,
with as much precision as desired at the expense of simulation
time (see Sec. III C).

This procedure was applied to compute the bulk vapor
pressure of the SPC/E water model at 300 K. At this tem-
perature, the vapor in equilibrium may be assumed to be
ideal: this is a common choice in grand canonical simulations
of H,O near ambient conditions.**® The determination of
the equilibrium point was accomplished through a series of
GCMC simulations of a water slab initially consisting of 240
molecules and exposing two planar interfaces to the vacuum,
contained in a box of 1.5 x 1.5 x 55.5 nm? in periodic bound-
ary conditions. Figure 2 depicts the number of molecules as
a function of time for several choices of w, which can be re-
lated to the pressure via Eq. (1). The system slips from evap-
oration to condensation when the pressure jumps from 7.4
mbar to 8.8 mbar: this allows to situate the equilibrium va-
por pressure at 8.1 = 0.7 mbar (this uncertainty could be re-
duced by further exploration inside the 7.4—8.8 mbar range).
This outcome is in excellent agreement with the value of 7.65
=+ 0.38 mbar reported for SPC/E water at 300 K by Liu and
Monson on the basis of simulations in the Gibbs ensemble.*’
Less recent calculations also based on the Gibbs ensemble
methodology by Errington and Panagiotopoulos estimated a
value of 10 mbar.” It must be noted that these results are less
than one third of the experimental vapor pressure; this inac-
curacy is common to other atomistic models of water such as
TIP4P>!52

As a final validation, we have explored the vapor pres-
sure of liquid argon at different temperatures. To this end we
performed a set of GCMD runs with the program LAMMPS,
modelling the liquid argon phase with 4096 molecules in a
box of dimensions 4.8 x 4.8 x 30 nm?. The states of the
gas phase on the coexistence curve cannot be assumed ideal
above 90 K, so the Ar pressures were corrected using the
fugacity coefficients. The procedure to correct the pressure
and the fugacity coefficients for this system are reported in

J. Chem. Phys. 140, 064111 (2014)
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FIG. 2. Number of water molecules versus GCMC simulation step of a pla-
nar vapor-liquid interface using the SPC/E model. Each curve corresponds
to a different pressure, which is indicated in mbar for those cases close to
the equilibrium condition. For pressures lower than or equal to 7.41 mbar the
number of molecules eventually decays to zero, while for pressures higher
than or equal to 8.78 mbar the liquid phase grows and occupies the full sim-
ulation box.

the Appendix. In Figure 3 the results obtained using our ap-
proach are compared with experiments and with data from
Gibbs ensemble calculations from different groups.'*3* Our
results show very good agreement with the values reported by
Panagiotopoulos et al.'?

B. The vapor pressure of the mW water model

The bulk vapor pressure of the mW model was calcu-
lated considering a water slab initially consisting of 4096
molecules and exposing two planar interfaces to the vac-
uum, contained in a box of 4.9 x 4.9 x 8.6 nm? in periodic

- I
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FIG. 3. Vapor pressure of bulk argon as a function of the inverse temperature
(in reduced units). Data from Gibbs ensemble simulations were taken from
Panagiotopoulos'? and from Al-Matar.>> The experimental curve shows the
fitting by Drii and Rabinovich.®!
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FIG. 4. (a) Evolution of the number of particles (V) as a function of time, in GCMD simulations of a planar vapor-liquid water interface represented with the
mW model at different chemical potentials. The time step is 5 fs. The value of u was varied to screen a range of pressures from 0.001 mbar (black line) to
0.6 mbar (cyan). (b) Rate of filling versus pressure. The two phases are in thermodynamical equilibrium when dN/dt = 0, for a pressure of 0.5 mbar. The inset

zooms in on the zero intercept region.

boundary conditions. Figure 4(a) shows the number of
molecules as a function of time resulting from GCMD sim-
ulations at different values of w. To identify the equilibrium
point, we plotted the initial N variation rate—which is approx-
imately constant over the first 100 ps—as a function of u, to
obtain (., from the zero intercept (Figure 4(b)). In this way
we can estimate with a high precision the chemical potential
(and hence the pressure) for the liquid-vapor coexistence of
the model. Under the ideal gas approximation, this value of
Meq implies a saturation pressure Pg = 0.486 mbar at 298 K,
which turns out to be two orders of magnitude below the cor-
responding experimental value, of 31.6 mbar. Such a discrep-
ancy stems from the absence of rotational degrees of freedom
in the mW model, which produces an entropy decrease that
must be more significant in the gas phase than in the liquid,
where rotations are restrained. As a consequence, in coarse-
grained water there is a reduction of the free energy gap be-
tween the condensed and gas phases, that becomes manifest
in a vapor pressure downshift. This difference between the
experimental value of Py and the simulation result can be pre-
dicted in terms of the various contributions to the free energy
in real water (u%?) and in the model (u™"):

pp ! =H =TS =H = T(Sl 0 + Sial o + S57);
@

up = HPY TSP = Y - T (s, sEY) )

where H; and S; are the molar enthalpy and entropy of the
liquid phase, and the supraindex exp stands for experimental.
The subindices id — tr and id — rot denote, respectively, the
ideal gas contributions to translations and rotations, whereas
xs refers to the excess entropy of the liquid with respect to the
gas arising from the intermolecular interactions in the con-

densed phase. At the point of liquid-vapor coexistence, the
chemical potentials of both phases must be equal:

P,
0 exp
MeX[’_leexp—FRTln( Pe >

= H" = T(Sigly + Sialvor +S57), @

P
WY Z b RT I (LW) — HP™ — TS, + SIY),

po
&)
The combination of these two last equations yields

PEX
Ap’ 4+ RT In <—”)
mW

=H" —HM" —TS"

id—rot

— (85" = S5"). (©)

but, since Au? is simply —T'S7;”

id—ror» 1€ €quation above re-
duces to

P
RT In <—"> = H;"" — H" —T(857 — spV)
mw

exp _

=i — (7)

Adopting for uy” and p™W, respectively, values of

—6.33 kcal/mol—from Ref. 54—and —8.63 kcal/mol—from
our own Widom insertion simulations—, the predicted vapor
pressure for the mW water model is Py = Py,eXp (A piy/RT)
= 0.68 mbar, remarkably close to the value of 0.49 mbar es-
timated through our GCMD screening technique (it must be
noticed that the deviation from 0.49 to 0.68 mbar originates
in a difference of only 0.15 kcal/mol between the two values
of Apiys).

The value of Au, can be broken down into its com-
ponents, separating the enthalpic and the different entropic

14
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contributions. On one hand, for the enthalpy we have H;"”
— H" = 0.09 kcal/mol.>* On the other hand, the two-body
contribution to the translational part of the excess entropies,
S;i";ms and S;"_vymx, can be computed on the basis of the ra-
dial distribution functions obtained from neutron diffraction

data®> and from molecular dynamics simulations,*’ respec-

tively, giving T(S5™" = — Sy ) = —0.10 kcal/mol (where
S5 s = —2.96 cal/mol K and S7'W = —2.64 cal/mol K).

2—tras
Therefore, the major contribution to the vapor pressure shift

must come from the excess rotational entropy. This is for-
mally equivalent to say that the entropy gain during the liquid-
vapor transition is smaller for the monoatomic water model in
comparison to real water, producing a decrease in its vapor
pressure. Then, by tracking the origin of the decrease in P,
we have demonstrated that the logarithm of the vapor pressure
of the model is shifted with respect to the experimental value
by a quantity equal to (uyy” — u™")/RT.

Resorting to Gibbs ensemble Monte Carlo simulations
with the Towhee code, we obtained an independent estimate
of 0.458 mbar for the mW vapor pressure at 298 K. The small
discrepancy with respect to our result of 0.486 mbar falls
within the errors of the methodologies (see Sec. I1I C). More-
over, the average value of the particle density in the vapor
phase turned out to be 1.1160 x 10~> nm~, representing a
deviation of less than 1% with respect to the ideal pressure,
thus justifying the use of the ideal gas approximation.

Our method can be used to show that the mW model
follows tightly the Clapeyron-Clausius equation, with a va-
porization enthalpy of 10.60 kcal/mol. This result is in accu-
rate agreement with the experimental value (10.52 kcal/mol at
298 K) and with the one reported in the original paper where
the mW model was introduced (10.65 kcal/mol), in which
AH,q, was obtained through canonical molecular dynamics
simulations.*® Figure 5 depicts the variation of In Py as a func-
tion of 1/T in the range 278—400 K. Each point in the graph
was computed from a set of GCMD simulations at the corre-
sponding temperature.

In (PO /mbar)
T
|

| L | 1 | L
0.0025 0.003 0.0035

/T (K

FIG. 5. Logarithm of the vapor pressure (in mbar) versus the inverse of the
temperature for mW water. The model follows the Clapeyron-Clausius equa-
tion, with a vaporization enthalpy of 10.60 kcal/mol.
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FIG. 6. Number of particles N as a function of time, in GCMD simulations
of a slab of mW water for different pressures near the equilibrium value. The
horizontal dashed line indicates the initial N (equal to 4102), whereas the
dotted lines delimit a range of £20% around this value. The legends indicate
the pressure corresponding to each curve in units of mbarx 100.

C. Precision in the determination
of the equilibrium point

In principle, the present approach allows to reduce the er-
ror as much as desired, by performing a large enough number
of simulations at different chemical potentials. In this section,
this matter is examined in practice. What we find is that, in
fact, the precision in the determination of y., can be increased
by further exploration of chemical potentials around the un-
known equilibrium value. However, as u approaches ., the
ratio between effective particle insertions and deletions tends
to 1, and therefore the sampling needs to be extended over
longer times to reveal the final bias to evaporation or to con-
densation. Figure 6 exemplifies this behavior, by showing the
number of molecules as a function of time in GCMD simu-
lations of a water slab made of 4102 mW particles in a box
of 7 x 7 x 10 nm?, for different pressures falling within
P,+ 10%. It can be seen that as u is closer to the equilib-
rium value, insertions and deletions become more balanced,
and the number of particles N fluctuates around the initial
value for longer times. Such fluctuations are typically of the
order of 10%. To decide whether evaporation or condensa-
tion has occurred, we can choose a threshold in terms of the
(positive or negative) variation of N with respect to its initial
value, which makes it possible to establish a connection be-
tween simulation times and the uncertainty in the estimation
of P,. To this end we adopt a variation of 20% (this makes a
robust criterion as the trend predicted on its basis is never re-
verted if longer times are considered). The application of this
criterion leads to Figure 7, which depicts the dependence of
the error on the length of the simulation. Runs of 5 ns entail
uncertainties of 3%, comparable with those informed in Gibbs
ensemble grand canonical studies.'>*%? This error can be re-
duced by longer simulations. Nevertheless, Figure 7 suggests
that it would be extremely expensive to go beyond an uncer-
tainty of 1%, and therefore this limit can be taken as a nominal
precision of the method for this particular system. Of course,
the error will depend on both the model system and the tem-
perature. Table I presents a similar analysis for the slab model
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FIG. 7. Uncertainty in the determination of the vapor pressure of the mW
model at 298 K, as a function of the sampled time in GCMD simulations.
The data were obtained from the curves in Figure 6.

of argon studied in Sec. III A at two different temperatures,
the highest of them in the vicinity of the critical point. Data
from Gibbs ensemble simulations taken from Ref. 13 are also
included. The errors exhibited in the table were obtained with
sampling times of 3 ns. In these conditions the precision of the
GCS approach is higher than that achieved with the Gibbs en-
semble method, but lower than that corresponding to TMMC,
which has been reported to be below 0.2%.%

As the temperature gets closer to the critical point, fluc-
tuations in N become more significant. In the simulations at
150 K, we observed that a region exists where the trajecto-
ries may cross, violating the expected behavior, i.e., we see
evaporation for a chemical potential ; which is larger than a
chemical potential u, leading to condensation. This produces
absolute errors in P, of about two orders of magnitude higher
than at 85 K. However, since the vapor pressure in turn in-
creases exponentially, the relative errors end up differing by a
factor of ten. The same trend for the relative errors is found in
the Gibbs ensemble data (see Table I).

Fluctuations are discussed in a recent communication by
Jackson and co-workers,’® who demonstrate that these pro-
vide a significant contribution to the surface tension (through
the free-energy variations) of small Lennard-Jones droplets.
In particular, they argue that the mechanical route based on
the pressure-tensor is not valid to compute the interfacial ten-
sion of nanodroplets because it does not capture the second-
order energy fluctuations contribution. Here we would like to
recall that fluctuations are significantly less important in wa-
ter clusters than in the Lennard-Jones fluid, and, on the other
hand, they are naturally considered in our approach, regard-
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less of the magnitude of their contribution. On these grounds,
we expect this technique to be equally valid for curved as
much as for planar interfaces.

D. The vapor pressure of a water nanodroplet

We applied the GCS procedure to determine the vapor
pressure of a water cluster of 94 molecules, using both the
SPC/E and the mW potentials at 300 K. The sizes of the boxes
were 5 x 5 x 5nm? and 4.9 x 4.9 x 8.6 nm? for the SPC/E
and mW calculations, respectively. At variance with simula-
tions of argon droplets,’® we found that the behavior of this
system is not sensitive to the size of the simulation cell, un-
less it is extremely large. In that case, the probability that
additional clusters nucleate in the given volume may not be
negligible, leading to the appearance of multiple droplets co-
existing in the gas phase.

The average radius of the droplet can be computed by
identifying the position of the equimolar surface, R,. If p; and
pg are the bulk densities in the liquid and the vapor phase,
this surface is defined by the following expression (see, for
example, Ref. 31):

1 [ .d
Rj:____/ P80, @®)
P — P Jo dr

This integral is evaluated numerically on the radial density
profiles. For the 94 molecules cluster, it gives a radius of
8.69 10\, which coincides with the one that can be deduced by
simple inspection of the radial density profile.

In Figure 8, the number of water molecules is illustrated
as a function of simulation step for a range of pressures. If
the equilibrium pressures for SPC/E and mW are divided by
the value of Py corresponding to each model, the relative va-
por pressures resulting from both force-fields are in excellent
agreement: 3.1 £ 0.1 and 2.9 &£ 0.1 for SPC/E and mW re-
spectively. The accord between both water models reflects
that the Py shift observed in mW does not affect the ratio P/P,
in the curved interface of the aggregate.

The Kelvin equation provides the vapor pressure (P,) of
a droplet as a function of the radius of curvature r of the
interface:

P, 20

In—L=-—"", 9
"B T roRT ©)

where Py is the vapor pressure of the bulk substance, o is the
surface tension, p is the density of the condensed phase, R
is the gas constant, and 7T is the temperature. For very small
droplets, of just a few nanometers of diameter, the effect of
curvature on surface tension starts to be important. This can

TABLE I. Equilibrium chemical potentials (fteq, in kcal/mol) and vapor pressures (P, in bar) with the corre-
sponding errors, calculated for the Lennard-Jones fluid.

This work Gibbs ensemble Monte Carlo'?
T (K) Heg % error P, % error T (K) P, % error
85 —2.2540 + 0.0006 0.03 0.6781 £ 0.0025 0.37 90 0.9637 £ 0.1257 13

150 —3.2679 + 0.0074 0.23 40.56 £+ 1.01 25 150 4232 £3.77 8.9
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FIG. 8. Number of water molecules as a function of simulation step for a water droplet of 94 molecules, according to the mW (left) and the SPC/E (right)
models at different pressures. Considering the equilibrium bulk vapor pressure of every model, mW and SPC/E yield, respectively, a ratio P/Py of 2.9 & 0.1 and
3.1 £ 0.1 for this cluster. The relative pressures above and below the equilibrium value are labelled next to the curves.

be accounted for through the Tolman equation:>’

o 1

—_—= 10
oo 14+28/r (10)

with o the surface tension of the planar interface, and ¢
the so-called Tolman length,’® which assumes a characteristic
value for every fluid. The combination of Egs. (1) and (2) can
in principle yield the dependence on radius of the vapor pres-
sure. For water, the value of § originally proposed by Tolman
was 1 A,%® with more recent estimations falling always close
to this former appraisal.”’>®’ Adopting such a value to com-
pute the surface tension of the interface for the cluster of 94
molecules, and setting r = 8.69 A, the Kelvin equation turns
out to be in remarkable agreement with the vapor pressure
computed from our simulations. The results are compared in
Table II.

IV. FINAL REMARKS

In summary, we have proposed a straightforward proce-
dure to compute the vapor pressure of fluids in flat and curved
interfaces. In bulk phases this property can be accessed via
Gibbs ensemble simulations, which are however not appro-
priate for nanodroplets or other interfaces of arbitrary shape.
The present algorithm can be equally applied to bulk or fi-
nite size model systems exposing an interface to the vacuum.
We employed our scheme to find the vapor pressure of the
mW model of water, showing that the result is consistent with
a statistical thermodynamics analysis, and that the model fol-

TABLE II. Relative vapor pressure for a water nanodroplet of 94 molecules,
computed with the SPC/E model, the mW model, the Kelvin equation, and
the Kelvin equation with the Tolman correction.

SPC/E mW Kelvin eq. Kelvin + Tolman eq.

3.1 29 3.34 2.95

lows the Clapeyron-Clausius law. The precision of the method
appears comparable to that of the Gibbs ensemble approach,
though it can be increased at the expense of computational
time. Finally, we determined the vapor pressure of a water
nanodroplet of 1.74 nm diameter, showing that it is in excel-
lent agreement with the value predicted by the Kelvin equa-
tion if a Tolman length of 1 A is considered.

We envision that one of the most significant applications
of the GCS scheme would be the examination of binary or
ternary aggregates that play a central role in the genesis of at-
mospheric aerosols.'? The knowledge of how the vapor pres-
sure of small water clusters is affected by the presence of sul-
furic acid, or different organic compounds, is of enormous
relevance in the investigation of homogeneous nucleation in
the atmosphere, yet it is not trivially accessible through ex-
periments, neither by simulations. The scheme we propose in
this article can be equally applied to interfaces with one or
more components. In particular, the liquid-vapor equilibrium

' I L I s I
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~— 100K i
[?]_‘ 0.95 110K
g - — 50K 1
S 09 i
e F _
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© 0.85[ -
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172} L .
]
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FIG. 9. Compressibility factors of the Lennard-Jones model as a function of
pressure, obtained from isobaric-isothermal molecular dynamics simulations.
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TABLE III. Vapor pressures (P,) and corresponding fugacity coefficients
(¢) computed for the Lennard-Jones model from integration of the compress-
ibility factor.

Temperature (K) P, (mbar) ¢

85 0.6781 0.984
100 2.896 0.949
110 5.702 0.921
150 40.56 0.743

in binary clusters of water and sulfuric acid of different size
and composition will be the subject of future investigations.
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APPENDIX: FUGACITY COEFFICIENTS OF ARGON

The non-ideal vapor pressure P, can be computed
from the equilibrium chemical potential according to e
=kgTIn A3 + kT In(P,¢/kpT), where A is the de Broglie
length and ¢ is the fugacity coefficient at the correspond-
ing pressure and temperature. These coefficients can be ex-
tracted from a set of molecular dynamics simulations at dif-
ferent pressures in the isobaric-isothermal ensemble. From
such simulations it is possible to obtain the dependence of the
compressibility factor (Z = V,,/ Vi4e) on P. Once this de-
pendence is known for a given temperature, ¢(P) can be cal-
culated by integration of (Z — 1)/P up to the desired pressure.
In this work, NPT simulations were conducted on systems of
1000 particles at 85, 100, 110, and 150 K, over a range of pres-
sures from zero to coexistence. Figure 9 shows the compress-
ibility factor as a function of P for the different temperatures
examined. On the other hand, Table III presents the fugacity
coefficients determined for the argon model at the coexistence
pressure.
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