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Highlights 

 We proposed four discriminability measures to quantify differences of 

experimental conditions. 

 The methods are based on information theory, percentage overlap and 

divergence between distributions. 

 The methods were evaluated on experimental protocols related to vibrissal 

tactile discrimination. 

 The methods indicate the time intervals where sweep conditions have higher 

probability of being discriminated one from other. 

 The methods here proposed can be adapted to many other features of biological 

responses. 

 

*Highlights (for review)
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ABSTRACT 

BACKGROUND 

Often, the first problem that the neuroscientist must face is to determine if a specific 

stimulus set applied to biological system produces specific, precise and well differentiated 

responses. 

NEW METHOD 

In the present study we have proposed four discriminability measures to evaluate the 

feasibility of differentiating experimental conditions: Information measures based on 

Information Theory, percentage overlap based on Linacre method, Bhattacharyya distance 

and univariate standard distance. All discriminability measures were evaluated on 

experimental protocols related to vibrissal tactile discrimination. 

RESULTS 

Time-frequency features were extracted from afferent discharges and then, pairwise 

comparisons were realized by using the proposed discriminability measures. Our results 

reveal the existence of time-frequency patterns which allows differentiating of sweep 

conditions from multifiber recordings.  

COMPARISON WITH EXISTING METHODS 

Currently, statistical methods used to justify significant differences in experimental 

conditions have rigorous criteria that must be met for correct validation of results. 

Discriminability measures proposed here are robust and can be adjusted to different 

experimental conditions (time series, repeated measures, specific variables and other). 

CONCLUSIONS 

Discriminability measures allowed determining the time intervals where two sweep 

situations have the highest probability to be differentiated from each other. High 

discriminability percentages were observed into protraction phase, although to a lesser 

degree, it were also observed in retraction phase. It was demonstrated that sensibility of 

discriminability measures are different. This revealing a greater ability to highlight 

http://ees.elsevier.com/jneumeth/download.aspx?id=287103&guid=64138251-e9f6-4122-8bb4-640ca0279498&scheme=1
http://ees.elsevier.com/jneumeth/viewRCResults.aspx?pdf=1&docID=7436&rev=1&fileID=287103&msid={A23E4360-9567-440E-8B4D-D6AC67504E74}
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percentage changes of pairwise comparisons. Finally, the methods here proposed can be 

adapted to other features of biological responses. 

 

 

Keywords 

Information Theory, discriminability, spectrogram, Texture discrimination, afferent 

activity, vibrissae. 
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1. INTRODUCTION 

Understanding how neurons represent, process, and manipulate information is one 

of the main goals of neuroscience (Victor, 2006). Therefore, the nervous system has to 

interpret what is going on in the real world through the neuronal responses. In short, this 

means identifying a particular stimulus (or extracting the value of a stimulus parameter) by 

using the responses of one or more neurons (Dayan and Abbott, 2005). The first problem 

that the neuroscientist must face is to determine if a specific stimulus set applied to 

biological system produces specific, precise and well differentiated responses. Often this 

first exploration is performed through a time-frequency analysis (Victor, 2006).  

Time-frequency (or spectrotemporal) analysis is a general exploratory method that 

is particularly suitable for neural data, both spiking and continuous (Mitra and Pesaran 

1999). This analysis allows identifying meaningful statistical structure in spike trains. Its 

frequent use is due to that neural signal, especially those influenced by external stimuli, are 

nonstationary (i.e. its statistical properties change along time). Therefore, neural signal is 

segmented into periods that are sufficiently brief so that within each one, the signals can be 

assumed stationary. Then, standard spectral analysis applied to each segment can then 

reveal how the frequency characteristics of a signal evolve over time. Thus, time-frequency 

analysis provides specific information which can be related to neural encoding of sensory 

information. For this, a specific stimulus set applied to biological system should produce 

time-frequency features well differentiated. 

The discriminability of neural responses evoked by different stimuli is one of the 

main indicators of existence of some neural encoding. Discriminability measures have been 

derived from information theory (Shannon, 1948) and signal-detection theory (Green and 

Swets, 1974). Information theory has been applied to quantify the amount of information 

conveyed by neuronal responses (Borst and Theunissen, 1999; Haag and Borst, 1997; Koch 

et al, 2004; Passaglia and Troy, 2004). Measures of the discriminability of neuronal 

responses have been applied to estimate the relevant time scale of neuronal coding 

(Kretzberg et al, 2001; Machens et al, 2001) or to quantify the response reliability (Grewe 

et al, 2003; Chichilnisky and Rieke, 2005). Both types of reliability measures, i.e. the 
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theoretical information and the signal-detection ones, shed light on the accuracy with which 

a sensory system encodes stimuli (Grewe et al, 2007).  

In this paper we have proposed four discriminability measures, one of which is 

based on Information Theory. The second proposed method is based on estimates of 

percentage overlap between normal distributions proposed by Linacre (1996). The third and 

fourth measures are Bhattacharyya and Univariate standard distances which are measures 

of divergence between two distributions (Bhattacharyya, 1943; Flury and Riedwyl, 1986). 

All discriminability measures were applied to texture discrimination problem in the rat 

vibrissal system (Albarracín et al, 2006).  

It is well known that rats acquire sensory information by actively moving their 

vibrissae, and a neural code is manifested at different levels of the sensory system 

(Arabzadeh et al. 2006; Diamond et al 2008; Farfán et al, 2013). Particularly, Wolfe et al 

(2008) found that when a vibrissa sweep over a rough surface, it experiences changes in its 

trajectory characterized by irregular and skipping motions (known as slip-stick events) and 

thus producing a pattern of slip-stick events which would be related to surface features like 

the size of grains and the distance between them. Farfán et al. (2013) showed that it is 

possible to identify electrophysiological events evoked by mechanical slip-tick events by 

exploring the afferent activity recordings, and that these would allow discrimination of 

rough surfaces at peripheral level.  

Here, we analyzed the afferent discharge from a deep vibrissal nerve when the 

vibrissa sweeps materials (wood, metal, acrylic, sandpaper) having different textures. Just 

like Albarracín et al (2006), here we also consider the change of slip-resistance of vibrissa 

over surfaces as a way to improve the tactile information acquisition. Time-frequency 

features from afferent recordings were obtained for each experimental condition (sweep 

over different surfaces). Then, pairwise comparisons were realized by using the proposed 

discriminability measures. We demonstrated that experimental sweep conditions can be 

discriminated with time-frequency features and discriminability measures. 
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2. MATERIALS AND METHODS 

2.1. PROCEDURES  

Five Wistar adult rats (300 g – 350 g) were used in our experiments. They were 

anesthetized with urethane (1.5 g/Kg) and their temperature was maintained at 37° by a 

servo-controlled heating pad. Surgery consisted of exposing the infraorbital nerve as well 

as the two branches of the facial nerve (buccal and upper marginal mandibular) on the right 

side. The motor branches were dissected and transected proximally to avoid possible motor 

influences on the sensorial pathway. The stimulation electrodes were placed on their distal 

stumps to produce the contraction of the mystacial muscles. The deep vibrissal nerve 

innervating a vibrissal follicle (Gamma vibrissa) was identified with a high magnification 

dissecting microscope. The dissected nerve was also transected proximally and this action 

allowed eliminating discharges arriving from higher level of the sensorial pathway. To 

make sure that the nerve transection did not affect the functionality of the vibrissal nerve 

during our recording time, we have tested the reduction in the nerve afferent activity 

throughout the time (data not shown). We concluded that the activity starts decreasing 

approximately over 1 hour after the nerve transaction, so we never exceeded this space of 

time in our experiments. We used a bipolar electrode (insulated silver wire, 0.2mm 

diameter) to record the multifiber afferent discharge of the vibrissal nerve selected. The 

recording electrodes as well as the nerves were immersed in a mineral oil bath during all 

recording.  

All these procedures were carry out in accordance with the recommendations of the 

Guide for the Care and Use of Laboratory Animals (National Research Council, NRC). 

2.2. RECORDING OF THE VIBRISSA ELECTRICAL ACTIVITY  

In this study we have recorded the multifiber activity of the Gamma vibrissal nerve 

while the vibrissa was sweeping surfaces of different textures. The experimental protocol 

used in this paper has been previously described in detail by Albarracín et al. (2006) and 

Farfán et al. (2011, 2013). The procedures are briefly described below. 
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Vibrissa movements were induced by electrical stimulation of facial motor nerve 

(VII). Square-wave pulses (30 μs, 7V supramaximal
1
, 5 Hz) simulated vibrissal whisking at 

its natural frequency (a diagram of experimental set up is shown in Fig. 1B). 

Nerve activity was recorded and digitized at 20 kHz (sampling rate, Fs) during a 

100 ms window following onset of each cycle of whisker movement with a Digidata 1322A 

(Axon Instruments). Fifty whisker movement cycles were obtained for each surface, and an 

additional 50 cycles were recorded while whisker moved unobstructed in air (control). 

Four slip-resistance levels were presented for each surface by mounting the surface 

at different distances from the whisker base. A minimal slip-resistance level was presented 

by placing the surface at a maximal distance from the whisker base so that the tip just 

barely contacted the surface throughout the entire movement cycle (slip-resistance 1). 

Increased slip-resistance levels were presented by moving the surface 3, 6 or 9 mm closer 

to the whisker base (slip-resistance 2, 3 and 4, respectively) (Albarracín et al, 2006). 

Movements of the Gamma whisker were recorded simultaneously with nerve 

activity using a custom-made photoresistive sensor (Fig. 1B). The frequency response of 

the sensor was maximal in the range 0-100 Hz, enabling direct identification of the 

protraction and retraction phases of the movement cycle (Dürig et al. 2009). 

2.3. ROUGH SURFACES  

The swept surfaces used in this paper were surfaces with different textures: wood, 

metal, acrylic and sandpaper P1000 (Fig. 1A). Three surfaces (wood, metal and acrylic) 

were polished using the same grade sandpaper P1000. This procedure allowed us to obtain 

surfaces with similar roughness and different textures. 

Surface texture is not a measurable quantity; it is not possible to assign a unique 

"texture" value to every different surface. However, it is possible to measure some of the 

intrinsic characteristics, or parameters, of surface texture. Thus, we measured the surfaces 

roughness by using a Hommel Tester T1000 (HommelWerke, www.hommel-etamic.de) 

and we used the Ra parameter (arithmetical deviation of the assessed profile) as a 

                                                 
1
 A supramaximal stimulation should simultaneously depolarise all of nerve fibres within the nerve.It is 20-

50% above a stimulation that causes maximal response. 
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roughness estimation (International Standards BS.1134 and ISO 468). Ra values are shown 

in Fig. 1A. 

FIGURE 1 

2.4. DIGITAL PROCESSING AND STATISTICS 

2.4.1. SPECTROGRAM VIA SHORT-TIME FOURIER TRANSFORM 

One commonly used time–frequency representation is the short-time Fourier 

transform (Qian, 2002), defined as: 

    dfettxfSTFT tfj

x







 
 2)(,  

dtttx ft )(*)( ,




   

(1) 

Where   tf

ft ett   2

, )(* . STFT analyses the signal x(t) through a short-

time window    ttxt )()( , and then a Fourier transform is performed on this 

product using complex exponential basis functions. The square modulus of STFT is referred 

to as the spectrogram (Zhan et al, 2006). 

  2
),(, fSTFTfSPEC xx    (2) 

Thus, the spectrogram of each multifiber activity recording was calculated by using 

following parameters: Hamming window length (HWL) of 200 samples, overlap between 

segments of 97.5% (195 samples), FFT length of 200 (Fig. 2A). Time-frequency diagrams 

were reduced to time interval from 5 to 95 ms because windowing used. Thus, frequency 

resolution of spectrogram results 100 Hz (sampling rate/HWL). 

2.4.2. MAXIMUM ENERGY FREQUENCY COMPONENTS VS TIME 

Maximum energy components into frequency range of 10 to 1000 Hz were obtained 

for each spectrogram along time. Thus, the spectrogram information, provided in three 

dimensions (frequency, amplitude and time), is reduced to a time series (frequency of 
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maximum energy values vs time). Then, fifty time series represents one experimental 

situation (Fig. 2B). 

2.4.3. DISCRIMINABILITY MEASURES 

Discriminability between all possible pairs of experimental situations were 

measured using four methods: information measures using theory information (Shannon, 

1948; Cover and Thomas, 1991; Farfán et al, 2013), overlap percentage estimations 

(Linacre, 1986), Bhattacharyya distance (Bhattacharyya, 1943) and univariate standard 

distance (Flury and Riedwyl, 1986). 

2.4.4. INFORMATION MEASURES (I) 

The information that time-frequency features from afferent activity convey about 

the stimulus can be quantified by Shannon’s mutual information formula (Cover and 

Thomas, 1991), abbreviated hereafter as information: 

  ))(/)((log)()( 2 sPrsPrsPrPI  
(3) 

Where P(s) is the probability of presentation of roughness stimulus s, P(s|r) is the 

posterior probability of s given observation of r, and P(r) is the probability of r 

unconditional on the stimulus. Information determines the maximum amount of knowledge 

(the upper bound of information) available to an observer who knows the posterior 

probabilities P(s|r) and uses them to read off the signals available in a single observation of 

a spike train (Rieke et al., 1997). Details about probability distribution estimations of eq. 3 

are described by Farfán et al, 2013. 

Here, the information was obtained for each pair of experimental situation along 

time. In short, I values (eq. 3) were obtained as follow: 

1. First, the frequency diagrams (or histograms) for each time are determined. 

For each experimental situation, the number of occurrences of r is obtained. 

Response r is the maximum energy component into frequency range of 10 to 1000 

Hz (Fig. 2C). 

2. Determination of the joint probability distribution, P(s,r) (Fig. 2D). 
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3. Determination of the P(r) and P(s) probability distributions. The probability 

of obtaining a response r, regardless of whether stimulus s did or not occur, is called 

the marginal probability, and it can be calculated by the sum of joint probabilities 

for a given response r. 

4. Determination of conditional probability distribution P(s|r). 

5. Determination of the amount of information. After obtaining all probability 

distributions, it is possible to obtain the mutual information using eq. 3. 

The stimulus-response probabilities in the above formula (eq. 3) are not known a 

priori and must be estimated empirically from a limited number, N, of experimental trials 

for each unique stimulus. In our data set, N was 50. Limited sampling of response 

probabilities can lead to an upward bias in the estimate of information (Optican et al. 1991; 

Panzeri and Treves 1996; Golomb et al. 1997; Victor 2000; Paninski 2003). We used a 

number of bias-correction procedures (Panzeri and Treves, 1996). Because they all have 

almost identical results, we present only results based on the quadratic extrapolation 

correction procedure. This bias correction procedure assumes that the bias can be 

accurately approximated as second order expansions in tot

trN/1 (where tot

trN is the number of 

trials), that is: 

 2// tot

tr

tot

tr NbNabias   (4) 

Where a and b are free parameters that depend on the stimulus-response 

probabilities, and are estimated by re-computing the information from fractions of the trials 

as follows. The dataset is first broken into two random partitions and the information 

quantities are computed for each sub-partition individually: the average of the two 

partitions provides an estimate corresponding to half of the trials. Similarly, by breaking the 

data into four random partitions, it is possible to obtain estimates corresponding to a fourth 

of the trials. Finally, a and b are extrapolated as parameters of the parabolic function 

passing through the 2/tot

trN  and 4/tot

trN  estimates (Magri et al, 2009). 

FIGURE 2 
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2.4.4.1. PERCENTAGE OVERLAP BETWEEN NORMAL DISTRIBUTIONS 

(LDF) 

Discriminability of two experimental situations was estimated by measuring the 

percentage overlap between distributions of maximum energy components. Time series 

mean and standard deviation of fifty time series (Fig. 2B) were calculated according to 

grouped data theory. For this, a frequency distribution histogram (FDH) most be created 

(Fig. 2C). The number of histogram bins was ten, while histogram bin size is 100 Hz (10 to 

1000 Hz, in steps of 100 Hz). Then, mean and standard deviation are calculated as follows:  

Mhx
M

i

ii /ˆ
1









 



  (5) 

  )1/(ˆˆ
1

2









 



Mhx
M

i

ii   (6) 

Where, ̂  and ̂  are estimates of mean and standard deviation, M is class number 

(number of histogram bins), xi is the mean value of i-th class, and hi is the number of 

elements of each bin. Therefore, each experimental situation is represented by a  t̂  time 

series with its corresponding  t̂ . 

To compare the experimental conditions we have estimated the overlap percentage 

along the time axis. This percentage was proposed by Linacre (1996). Next, we state the 

major steps of the procedure: 

The percentage by which each sample of f2(x) overlaps the f1(x) can be estimated by 

calculating the area under the f1(x) distribution from –∞ to x1 plus the area under f2(x) 

distribution from x1 to x2 plus the area under f1(x) from x2 to ∞ (Fig. 3). Written in symbolic 

form: 







2

1

2

1

2

1

1 )()()(
x

x

x

x

overlap dxxfdxxfdxxfA  (7) 

Where: 

Aoverlap: is the overlap area of function f2 on f1. 
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f1(x) and f2(x) are functions of normal distribution. f1 and f2 parameters are µ1, µ2, σ1 

and σ2, corresponding to the averages and standard deviations. 

x1 and x2 are points of intersection between f1(x) and f2(x). 

FIGURE 3 

Fig. 3 shows the overlap area (Aoverlap) obtained from eq. 7. A nomogram for the 

relationship of averages, variances and overlap percentage, can be found. We suppose that: 

100/ 1  KAA foverlap  (8) 

Where Aoverlap is the overlap area and Af1 is the area under f1 distribution. 

If we consider Af1=constant, then Aoverlap can be written as a function of 

112   and 12   (Linacre, 1996). Fig. 4 shows the resulting nomogram. 

FIGURE 4 

Finally, a relationship between overlap percentage and variables Z and W can be 

established (   Kwzf , ). 

         

         

         

         2222

32222

32222

2222

12log121
2

1

2log12
2

1

2log12
2

1

12log121
2

1
),(

wwwzwzErf

wwwwzwwzErf

wwwwzwwzErf

wwwzwzErfwzp









 (9) 

Where Erf[X] is the error function for each element of X. The error function is 

defined as: 

   

X

t dteXErf
0

2

/2][   (10) 

In short, at each instant of time a standardized absolute distance between the means 

( ABA  
) and the ratio of the standard deviations ( AB 

) are calculated. Where µA 
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and µB are Fmax averages at time ti of A and B situations. σA and σB are the standard 

deviations of A and B situations. Thus, this method allows to discover the expected 

percentage by which each sample distribution overlaps the other (Aoverlap). Finally, a 

discriminability measurement between two experimental situations will be given by: 

overlapALDF 1  (11) 

Where LDF is the Linacre discriminability factor. 

2.4.4.2. BHATTACHARYYA DISTANCE (DB) 

The Bhattacharyya distance is a measure of divergence between two distributions 

(Bhattacharyya, 1943). In its simplest formulation, the Bhattacharyya distance between two 

classes under approximately normal distributions can be calculated by extracting the mean 

and variances of two separate distributions or classes. 

       2222222 )4/1(2//)4/1(ln)4/1(),( qpqppqqpB qpD  

 

(12) 

Where, ),( qpDB  is the Bhattacharyya distance between p and q distributions or 

classes, σp is the variance of the p-th distribution, μp is the mean of the p-th distribution, and 

p, q are two different distributions.  

Here, DB (sitA, SitB) was calculate along time. μ and σ were obtained by using eq. 5 

and 6, respectively.  

2.4.4.3.UNIVARIATE STANDARD DISTANCE (D) 

Comparing two sample means μp and σp is one of the basic statistical problems. 

Here we purposed a simple formulation given by Flury and Riedwyl (1986) which consists 

in comparing two sample means in terms of the standard distance. 

sD qp / 

 

(13) 

   2222  Nsss qp

  

(14) 
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Where s
2
 is the pooled variance of both samples (eq. 14). It can be interpreted as 

mean difference in units of the standard deviation. Here, D was calculated along time. μ, 

and σ were obtained by using eq. 5 and 6, respectively. 

3. RESULTS 

The afferent discharge recorded here is the average electrical activity of about 200 

myelinated axons (Albarracín et al, 2006; Farfán et al, 2013) and not all of those fibers have 

the same firing patterns. Fig 5A shows the multifiber recordings belonging to Gamma 

vibrissa innervation recorded during a control sweep, and its corresponding vibrissal 

displacement. The whisker displacements and evoked afferent activity were recorded 

simultaneously at the same sampling frequency. From displacement recordings is possible 

to identify the protraction, retraction and resting phases. In this last phase the Gamma 

vibrissa remains in its natural position in order to complete a 100 ms period (sweep 

frequency 10 Hz). In afferent recording is possible to observe a stimulus artifact at t = 2 ms 

and an artifact generated by the volume conduction of EMG at t= 4 ms. 

Fig. 5B shows five afferent recordings in different sweep situations at slip-

resistance 1. Amplitude of afferent discharge does not vary significantly for control and 

sweep on wood, metal and acrylic. However, an afferent discharge of greater amplitude are 

observed when the vibrissa to sweep over sandpaper. This particularity is due to high 

roughness values of sandpaper (4.31 μm) compared to other sweep surfaces (acrylic 0.30 

μm, metal 0.11 μm and wood 2.52 μm). At slip-resistance 2 the amplitude of afferent 

discharges increased (Fig. 5C), revealing a dependence with surfaces roughness. Thus, one 

can observe that when sweep the vibrissa on wood evoke higher discharges than sweep on 

acrylic. The sweeps on sandpaper evoked highest afferent discharges. Similar results are 

observed when slip-resistence increase to level 4 (Fig. 5D). 

Spectrogram was obtained for each afferent activity recording, and maximum 

energy components, into frequency range of 10 to 1000 Hz, were determined along time. 

Thus, fifty time series (Fmax vs time) were obtained for each sweep situation. The mean 

and standard deviations of Fmax along time from two situations are shown in Fig. 6. A 

qualitative observation reveals that difference between Fmax means varies according to 
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slip-resistance levels into protraction and retraction phases (10 - 50 ms). Such differences 

between means are quantitatively estimated by overlap degree between the shaded areas. 

FIGURE 5 

FIGURE 6 

Fig. 7A shows means and standard deviations of Fmax along time belonging to 

sweep over wood and acrylic at slip-resistance 4. Discriminability measures between sweep 

situations are shown in Fig.7B. All discriminability measures lead to similar results. These 

show quantitative differences between sweep situations into protraction and retraction 

phases of vibrissal sweep. All discriminability measures provide quantitative values with 

different units (e.g. I value is measured in bits, while LDF value is measured in 

percentages). To compare the different discriminability measures, these were standardized 

to their corresponding means and standard deviations values into resting state phase. 

Thereby it is possible quantifying the discriminability between sweep situations according 

to the percentage increase respect to its mean value into resting state phase 

(Discriminability Factor normalized, DFn).  

Fig. 7C shows the four standardized discriminability measures in percentage units 

(percentage increase respect to discriminability measures into resting state phase). It is 

possible to observe that standardized Bhattarcharyya distance (DBn) has greater percentage 

changes into protraction phase (10 a 30 ms). 

FIGURE 7 

Standardized discriminability measures for sweep situations of Fig. 6 are displayed 

in Fig. 8. Sweep on wood vs acrylic situations do not show significant increases in their 

discriminability measures at slip-resistance level 1 (Fig. 8A, left). On the other hand, sweep 

wood vs metal and wood vs sandpaper situations, show significant increases in their 

discriminability measures, mainly into protraction phase. An increased of slip-resistance to 

level 2 causes an discriminability increase of sweep wood vs acrylic situations into 

temporal range from 18 to 30 ms (Fig. 8B, left). Standardized information measure (In) 

reflects this particularity. An increase of discriminability measures at 20 ms is observed for 

sweep wood vs metal situations (Fig. 8B, middle), while a decrease at 20 ms is observed for 

sweep wood vs sandpaper situations (LDFn, DBn y Dn) and an increase at 40 ms (DBn). 
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At slip-resistance 4, sweep wood vs acrylic situations produces a significant 

increase in their discriminability measures (reflected mainly by LDFn, DBn and Dn factors) 

into temporal range from 20 to 35 ms (Fig. 8C, left), while sweep on wood vs metal 

situations are not discriminable from each other. (Fig. 8C, middle). 

FIGURE 8 

4. DISCUSSION 

In the present study we have proposed different discriminability measures to 

evaluate the feasibility of differentiating sweep situations with time-frequency features 

extracted from afferent activity recordings. Our results reveal the existence of time-

frequency patterns which allows differentiating of sweep situations from multifiber 

recordings. All discriminability measures indicate the time intervals where two sweep 

situations have higher probability of being discriminated one from other. However, the 

sensitivity of these indicators is different. Sensitivity refers to percentage changes of 

indicator respect to its average value in a reference phase (here, reference phase is the 

resting state). In Fig. 8 is observed that DBn factor is more sensitive than other factors 

because the percentage changes are larger (solid orange lines). These differences in 

sensitivity of discriminability measures can improve and highlight areas, or time intervals, 

where the time-frequency features reveal significant changes. Thus, a more comprehensive 

analysis of neural encode involved in coding of sensorial information can be better planned. 

The lower sensitivity was observed in information measures, In (Fig 8, solid black 

lines). Similar results were observed by Grewe et al (2007), who argued that information 

measures based on Information Theory are usually applied to evaluate a system’s encoding 

capabilities while signal-detection measures are commonly used to asses the decoder’s side 

of neuronal information processing. Increased response reliability, however, increases the 

SNR, leads to an increased information capacity and, in parallel, increases response 

discriminability in the signal-detection task (Grewe et al, 2007). Thus, all discriminability 

measures proposed here can be employed to tackle the problem of coding performance 

since they depend similarly on response quality. 
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Information theory measures the statistical significance of how neural responses 

vary with different stimuli (Borst and Theunissen, 1999). That is, it determines how much 

information about stimulus parameter values is contained in neural responses. If stimulus A 

yields a mean response RA and stimulus B yields RB, information in the response could be 

measured as the difference between RA and RB. However, two experimental situations with 

the same differential response (RA – RB) may have different variability in their responses. 

Then the information obtained is greater for the experimental situation with less variability. 

If response variability is described by the variance, then neuronal information can be 

described by Linacre discriminability factor, Bhattacharyya distance or Univariate standard 

distance. However, this is rigorously correct only if the distribution of response 

probabilities given particular stimulus conditions (conditional probability distribution) is 

completely specified by their mean and variance, as for Gaussian distributions (Borst and 

Theunissen, 1999). 

The use of information as a statistical measure of significance is an extension of this 

process. Information theory allows to consider not only response variance, but exact 

conditional probability distributions. Here, we have estimated conditional probabilities of 

stimuli s (sweep situations) given observation of r (time-frequency features), P(s|r), and 

then we have used the information theory to calculate a distance between two experimental 

situations. Although this method does not require any Gaussian distribution condition, it is 

very sensitive to overestimations of information values due to limited sampling of response 

probabilities (Panzeri and Treves, 1996). Here, we used a number of bias-correction 

procedures to solve these overestimation problems. Finally, the information measures 

allowed us to validate other discriminability measures. 

4.1. VIBRISSAL TACTILE DISCRIMINATION 

It is well known that the rats distinguish surfaces with different roughness through 

its vibrissal system (Guic-Robles et al, 1989; Carvell and Simons, 1990, 1995), and that 

there are specific discharge patterns at peripheral level when rats sweep their vibrissae over 

rough surfaces (Albarracín et al, 2006; Farfán et al, 2011, 2013). Many researches have 

proposed different mechanisms of transduction and neural encoding of tactile information, 

however one of the most accepted is the one proposed by Wolfe et al (2008), who found 
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that when whiskers were moving along the texture, their trajectory was characterized by an 

irregular, skipping motion: the whisker tip tended to get fixed in place (“stick”), before 

bending and springing loose (“slip”) only to get stuck again. A slip-stick event was a jump 

in speed and acceleration; the two quantities covaried. Thus, a pattern of slip-stick events 

would be set by surface features like the size of grains and the distance between them 

(Diamond et al. 2008; Farfán et al, 2013). Follicular receptors would respond to the most 

prominent features of the vibrissal movement – the high velocity jumps over texture 

grains– giving rise to the texture neural code (Arabzadeh et al. 2005; Shoykhet et al. 2000; 

Ito 1985).  

Farfán et al (2013) hypothesized that the follicular receptors transform the 

mechanical events (slip-tick) to electrical activity (spikes) that would travel through 

multiple axons (infraorbital nerve) to higher levels. Thus, it is possible to identify 

electrophysiological events evoked by mechanical slip-tick events by exploring the afferent 

activity recordings. Here, we explored the existence of time-frequency information which 

could be related to tactile neural encoding. Preliminary investigations revealed the 

existence of amplitude and frequency features in afferent activity through which it was 

possible to discriminate surfaces with different textures (Albarracín et al, 2006). 

Discriminability measures proposed here reveal time-frequency features along time which 

could be related to the neural encoding of tactile information. 

It is possible to ensure that sweep on wood vs acrylic can not be differentiated from 

each other by analyzing the time-frequency features at slip-resistance 1 (Fig. 8A). 

However, these situations can be differentiated around 20 ms at slip-resistance 2 (Fig. 8B). 

This observation is given by the percentage increase of Information values (bits) with 

respect to resting state. Sweep on wood vs acrylic can be discriminated from each other into 

protraction phase (from 10 to 30 ms) at slip-resistance 4 because to percentage increase of 

all proposed discriminability measures. DBn factor had the greatest percentage changes 

(Fig. 8C). These results partially agree with those obtained by Albarracin et al, 2006. 

Discriminability between experimental situations may be due to possible temporal patterns 

in afferent discharge (electrophysiological events) which encode texture features of sweep 

surfaces (Farfán et al, 2013). 
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4.2. LIMITATIONS OF DISCRIMINABILITY MEASURES 

The information measures of eq. 3 can be extended to a situation with many 

stimulus conditions {sA, sB, sC, …} to measure how the distribution of responses to any 

particular stimulus condition ‘x’ is different from all other conditional distributions that can 

be obtained. This is done by comparing the conditional probability P(sX|r) to the 

unconditional probability P(r) (the probability of the response under any stimulus 

condition) (Borst and Theunissen, 1999). Discriminability measures proposed here can not 

be expanded to more than two experimental situations by using the formulations given in 

eq. 11, 12 and 13. This important limitation can be avoided by using other methods to 

measure distance among experimental situations, such as Mahalanobis distance 

(Mahalanobis, 1936) and others. 

On the other hand, discriminability measures that involve means and variances in 

their formulations require the normality condition of distributions of response probabilities. 

However, the central limit theorem of probability theory states that, given certain 

conditions, the arithmetic mean of a sufficiently large number of samples of independent 

random variables will be approximately normally distributed (Rice, 1995). In other words, 

discriminability measures proposed here can be used in experimental protocols where a 

significant amount of samples have been extracted. 

5. CONCLUSION 

We have proposed four discriminability measures which have been implemented to 

investigate the texture discrimination through time-frequency features of afferent 

recordings from vibrissal nerve. Discriminability measures allowed to determine the time 

intervals where two sweep situations have the highest probability to be differentiated from 

each other. Simultaneously, these allow quantifying the discriminability degree according 

to percentage changes respect to a stationary state (resting state). High discriminability 

percentages were observed into protraction phase, although to a lesser degree, were also 

observed in retraction phase. It was possible to quantify the slip-resistance effect on ability 

of sweep situations discrimination via time-frequency features. High discriminability 

percentages were achieved at low slip-resistance level for specific pairwise comparisons, 
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while others were best discriminated at high slip-resistance level. This suggests that slip-

resistance would be a possible behavioral strategy for rough surfaces discrimination. 

Finally, it was demonstrated that sensibility of three discriminability measures 

(LDFn, DBn and Dn) are different of information measurement (In via Information 

Theory). This revealing a greater ability to highlight percentage changes of pairwise 

comparisons.  
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FIGURE LEGENDS 

Fig. 1 Experimental set up and stimuli set. (A) It shows how the facial nerve must 

be stimulated for producing the artificial movement of the vibrissa, and the methodology 

used to obtain the recordings of the electrical activity in the deep vibrissal nerve (modified 

from Albarracín et al. (2006). (B) Surfaces Pictures. Photographs of the surfaces used in 

this paper. 

Fig. 2 Time-frequency features from spectrograms of afferent recordings. (A) Fifty 

spectrograms were obtained from fifty afferent recordings for one experimental situation. 

(B) Maximum energy components into frequency range of 10 to 1000 Hz were obtained for 

each spectrogram along time. (C) For each Δt (200 samples = 5 ms), frequency diagrams 

(or histograms) was determined. (D) For each Δt, joint probability distributions were 

determined. 

Fig. 3 Overlap percentage between two normal distributions. (A) Two distributions 

whose means are equal and σ1 < σ2. The points of intersection between f1 and f2 are x1 and 

x2. (B) The means are different (µ1< µ2) and standard deviations are different. The region 

shaded in both figures represents the overlap area between the distributions (Aoverlap). 

Fig. 4 Percent of one normal distribution overlapping another (p%). Z is the 

distance between means 112   , and W is standard deviation ratio 12  . 

Fig. 5 Afferent discharges. (A) Displacement and afferent activity recordings from 

Gamma vibrissa acquired during a control sweep. The displacement recordings were 

acquired by using a custom-made photoresistive sensor. Four temporal phases are 

highlighted in the afferent recording: Stimulus artifact, an artifact due to EMG volume 

conduction, protraction and retraction phases and a resting state necessary to achieve a 

vibrissae swept of 10 Hz. (B) Five afferent activity recordings recorded in follows sweep 

situations: air sweep (control), sweep on wood, sweep on metal, sweep on acrylic and 

sweep on sandpaper P1000. All activity recordings were obtained at slip-resistance 1. (C) 

Five afferent activity recordings obtained in different experimental conditions at slip-

resistance 2. (D) Idem to C at slip-resistance 4. 
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Fig. 6 Pairwise comparisons of sweep situations at different slip-resistance levels. 

(A) Mean and standard deviation of maximum energy components along time obtained 

from spectrograms of sweep situations at slip-resistance 1. (B) Idem to A at slip-resistance 

2. (C) Idem to A at slip-resistance 4. 

Fig. 7 Discriminability measures. (A) Mean and standard deviation of maximum 

energy components along time obtained from spectrograms of two sweep situations at slip-

resistance 4 (vibrissa sweep on wood and acrylic surfaces, blue and red shades 

respectively). (B) Discriminability measures given by information measures (I), Linacre 

discriminability factor (LDF), Bhattacharyya distance (DB) and univariate standard 

distance (D). (C) Standardized discriminability factors. All discriminability measures were 

standardized respect to their mean and standard deviations into resting state. 

Fig. 8 Standardized discriminability measures of pairwise comparisons of sweep 

situations at different slip-resistance levels. (A) Discriminability measures at slip-resistance 

1. (B) Idem to A at slip-resistance 2. (C) Idem to A at slip-resistance 4. 
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Figure5
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Figure6
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