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Abstract. The Equitable Coloring Problem is a variant of the Graph
Coloring Problem where the sizes of two arbitrary color classes differ in
at most one unit. This additional condition, called equity constraints,
arises naturally in several applications. Due to the hardness of the prob-
lem, current exact algorithms can not solve large-sized instances. Such
instances must be addressed only via heuristic methods.
In this paper we present a tabu search heuristic for the Equitable Color-
ing Problem. This algorithm is an adaptation of the dynamic TabuCol

version of Galinier and Hao. In order to satisfy equity constraints, new
local search criteria are given.
Computational experiments are carried out in order to find the best com-
bination of parameters involved in the dynamic tenure of the heuristic.
Finally, we show the good performance of our heuristic over known
benchmark instances.
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1 Introduction

The Graph Coloring Problem (GCP) is a very well-studied NP-Hard problem
since it models many applications such as scheduling, timetabling, electronic
bandwidth allocation and sequencing problems.

Given a simple graph G = (V,E), where V is the set of vertices and E is
the set of edges, a k-coloring of G is a partition of V into k sets V1, V2, . . . , Vk,
called color classes, such that the endpoints of any edge lie in different color
classes. The GCP consists of finding the minimum number k such that G admits
a k-coloring, called the chromatic number of G and denoted by χ(G).

Some applications impose additional restrictions. For instance, in scheduling
problems, it may be required to ensure the uniformity of the distribution of
workload employees. Suppose that a set of tasks must be assigned to a set of
workers so that pairs of tasks may conflict each other, meaning that they should



not be assigned to the same worker. The problem is modeled by building a graph
containing a vertex for every task and an edge for every conflicting pair of tasks.
Workers are represented by colors. Then, in order for a coloring of this graph to
represent a valid assignment of tasks to workers, the same number of tasks must
be assigned to each worker. Since this is impossible when the number of tasks
is not divisible by the number of workers, one can ask for the number of tasks
assigned to two arbitrary workers can not differ by more than one. It is called
equity constraint and the resulting problem is called Equitable Coloring Problem

(ECP).

ECP was introduced in [1], motivated by an application concerning garbage

collection [2]. Other applications of the ECP concern load balancing problems in
multiprocessor machines [3] and results in probability theory [4]. An introduction
to ECP and some basic results are provided in [5].

Formally, an equitable k-coloring (or just k-eqcol) of a graph G is a k-coloring
satisfying the equity constraint, i.e. the size of two color classes can not differ
by more than one unit. The equitable chromatic number of G, χeq(G), is the
minimum k for which G admits a k-eqcol. The ECP consists of finding χeq(G)
which is an NP-Hard problem [5].

There exist some differences between GCP and ECP that make the latter
harder to solve. It is known that the chromatic number of a graph is greater than
or equal to the chromatic number of any of its induced subgraphs. Unfortunately,
in the case of ECP, this property does not hold. For instance, if G is the graph
shown in Figure 1, by deleting v5 from G, χeq(G) increases from 2 to 3.

Fig. 1.

As far as we know, there are few approximate and exact algorithms available
in the literature related to ECP.

It was proved that, for any graph G, ∆(G) + 1 is an upper bound of χeq(G)
[6], where ∆(G) is the maximum degree of vertices in G. Based on this fact, a
polynomial time algorithm for obtaining a k-eqcol of a graphG with k ≥ ∆(G)+1
is described in [7].

Two constructive heuristics called Naive and SubGraph are given in [5]
to generate greedily an equitable coloring of a graph. There also exist heuristic
algorithms for constructing colorings that are “nearly” equitable [8, 9], making



emphasis on achieving a small difference between the sizes of the biggest class
and the smallest one, although the equity constraint still might be violated.

The authors of [10] propose a tabu search heuristic to initialize an exact
algorithm that solves ECP via Integer Linear Programming (ILP) techniques.
Other exact algorithms for solving ECP are given in [11] and [12]. The first one
also uses IPL techinques and the second one is based on a DSATUR enumeration
scheme.

In this work, we propose a new heuristic based on the dynamic TabuCol

version of Galinier and Hao [13], one of the best tabu search algorithms for GCP
[14]. Then, computational experiments are carried out in order to find the best
combination of parameters involved in the dynamic tenure of our heuristic and
to show the good performance of it over known benchmark instances.

The paper is organized as follows. In Section 2, we present TabuCol and
the dynamic variant of Galinier and Hao. In Section 3, we give our variant for
ECP which we call TabuEqCol. Finally, in Section 4 we report computational
experiences and conclusions.

2 TabuCol and its variants

Tabu search is a metaheuristic method proposed by Glover [15] that guides a
local search algorithm equipped with additional mechanisms that prevent from
visiting a solution twice and getting stuck in a local optimum.

Let S be the solution space of the problem and f : S → R be the objective
function. The goal is to obtain a solution s ∈ S such that f(s) is minimum.

For each solution s ∈ S, consider a neighborhood N(s) ⊂ S with two desirable
(but not exclusionary) properties: 1) two solutions s and s′ are neighbors when it
is easy (from the computational point of view) to obtain s′ from s, and to obtain
f(s′) from f(s) (for instance, in constant time), and 2) for any s, s′ ∈ S, there
exists a path s = s1, s2, . . . , sm = s′ such that si+1 ∈ N(si) for i = 1, . . . ,m− 1.

In general, neighbor solutions are very similar in some sense, and the dif-
ference between them can be seen as features that both solutions do not share.
Consider a set of features P and a set R ⊂ S×P such that (s, p) ∈ R if solution
s presents a feature p.

Starting from an initial solution s0 ∈ S, tabu search consists of generating
a sequence of solutions s1, s2, . . . such that si+1 = arg mins∈N ′(si)f(s), where
N ′(si) is a subset of N(si) described below. In each iteration of this algorithm,
a movement from si to si+1 is performed and some feature of si is stored in a tabu
list L ⊂ P . This list indicates whether a movement is allowed or forbidden: a
solution s can be reached in the future only if s does not present any feature from
L (this rule avoids from visiting a solution previously visited), except when s is
better than the best solution found so far. This exception is called aspiration and
the aspiration criterion is usually to check if the objective value of s is less than
the value of currently-known best solution. Now, the set of allowed movements
from si, N

′(si), is defined as

N ′(s) = {s′ ∈ N(s) : f(s′) < f(s∗) ∨ (s′, p) /∈ R ∀ p ∈ L},



where s∗ is the best solution found so far.

However, after several iterations, old features are no longer needed and it is
better to remove them from the tabu list. This mechanism is usually implemented
by assigning a “time of live” to each feature of the tabu list. Consider live : L→
Z and let live(p) be the number of remaining iterations that p belongs to L.
When a new feature p is inserted into L, live(p) is assigned a value referred to
as tabu tenure t. Then, in each iteration, the value of live(p) is decreased by one
unit until it reachs zero and p is removed from L. Above, we sketch a generic
tabu search algorithm.

Data: initial solution s0
Result: best solution found s∗

begin

L← ∅

s, s∗ ← s0
while stopping criterion is not met do

for p ∈ L do

live(p)← live(p)− 1
if live(p) = 0 then L← L\{p}

end

N ′(s)← {s′ ∈ N(s) : f(s′) < f(s∗) ∨ (s′, p) /∈ R ∀ p ∈ L}
choose a feature p ∈ P such that (s, p) ∈ R
L← L ∪ {p}
live(p)← t
s← arg mins′∈N′(s)f(s

′)

if f(s) < f(s∗) then s∗ ← s

end

end

Algoritmo 1: TabuSearch

In order to implement a tabu search algorithm, some decisions must be taken:
neighborhood of a solution, features of a solution, stopping criterion, how to
choose the feature p to be stored in the tabu list and how to compute the tabu
tenure t. In particular, the value of tabu tenure directly impacts diversification
of the algorithm. A tabu search with low tenures behaves as a standard local
search, where it frequently get trapped in local minima. On the other hand, a
tabu search with high tenures tends to wander across solution space without
converging towards the optimal solution.

TabuCol, the first tabu search algorithm designed for solving GCP, was
proposed by Hertz and de Werra [16]. For a given graph G = (V,E) and number
k ∈ {1, . . . , n}, where n = |V |, the goal of this algorithm is to find a k-coloring
of G. In order to obtain a coloring that uses as few colors as possible, it is usual
to embed TabuCol in a routine that, once a k-coloring is found, the algorithm



can be restarted with k ← k − 1 and so on, until some criterion is met. Details
of TabuCol are given below:

– Search space and objective function. A solution s is a partition (V1, V2, . . . , Vk)
of the set of vertices. Let E(Vi) be the set of edges of G with both endpoints
in Vi. The objective function is defined as

f(s) =
k
∑

i=1

|E(Vi)|.

Clearly, s is a k-coloring if and only if f(s) = 0.
– Stopping criterion. The algorithm stops when f(s) = 0 or when a maximum

number of iterations is reached. Sometimes, a time limit is imposed.
– Initial solution. It is generated randomly. A suitable procedure given in [17] is

the following. Start with empty sets V1, V2, . . . , Vk and, at each step, choose
a non-considered vertex v randomly and put it into Vi with the smallest
possible i such that E(Vi) is not incremented. If it is not possible, choose a
random number j ∈ {1, . . . , k} and put v into Vj .

– Set of features. It is P = V ×{1, . . . , k}. A solution s presents a feature (v, i)
if and only if v ∈ Vi, i.e. if v is assigned color i.

– Neighborhood of a solution. Let C(s) be the set of conflicting vertices of a
solution s, i.e.

C(s) = {v ∈ V : v is incident in some edge of E(V1) ∪E(V2) ∪ . . . ∪ E(Vk)}.

From a solution s = (V1, V2, . . . , Vk), a neighbor s′ = (V ′

1 , V
′

2 , . . . , V
′

k) is
generated as follows. Choose a conflicting vertex v ∈ C(s). Let i be the color
of v in s. Next, choose a color j ∈ {1, . . . , k}\{i} and set

V ′

j = Vj ∪ {v}, V ′

i = Vi\{v}, V ′

l = Vl ∀ l ∈ {1, . . . , k}\{i, j}.

In other words, s′ is a copy of s except that v is moved from class color Vi to
Vj . We denote such operation with s′ = s(i

v
−→ j). Note that objective value

can be computed in linear time from f(s):

f(s′) = f(s) + |{vw ∈ E : w ∈ Vj}| − |{vw ∈ E : w ∈ Vi}|.

Note also that searching all the neighbors of s requires exploring (k−1)|C(s)|
solutions. Original TabuCol only explores a random subset of N(s) while
newer versions explore N(s) completely.

– Selection of feature to add in the tabu list. Once a movement from s to
s(i

v
−→ j) is performed, p = (v, i) is stored on tabu list and live(p) is set to a

fixed tabu tenure t = 7.

Later, Galinier and Hao [13] improved TabuCol by using a dynamic tabu
tenure that depends on the quality of the current solution, encouraging diver-
sification of the search when solution is far from optimal. They proposed to
assign a tenure of t = α|C(s)| + Random(β) where Random(β) returns an in-
teger randomly chosen from {0, . . . , β − 1} with uniform distribution. Based on
experimentation, they suggest to use α = 0.6 and β = 10. Other variants of
TabuCol are discussed in [14, 17].



3 TabuEqCol: A tabu search for ECP

In this section, we present a new tabu search algorthm for ECP based on Tabu-

Col with dynamic tabu tenure, which we call TabuEqCol.
Given a graph G = (V,E) and a number k ∈ {1, . . . , n}, where n = |V |, the

goal of TabuEqcol is to find a k-eqcol of G.
Solution space consists of partitions of V into k sets V1, V2, . . . , Vk such that

they satisfy the equity constraint, i.e. for any pair of classes Vi and Vj ,
∣

∣|Vi| −

|Vj |
∣

∣ ≤ 1. Objective function f is the same as in TabuCol, so any solution s
such that f(s) = 0 is indeed an equitable coloring. Also, set of features P is the
same as in TabuCol.

Stopping criterion depends on the experiment carried out. Usually, a time
limit is imposed.

Let s ∈ S. Denote W+(s) = {i : |Vi| = bn/kc + 1} and W−(s) = {i :
|Vi| = bn/kc}, where Vi are the color classes of s. Since s satisfies the equity
constraint, we have that W+(s) and W−(s) determine a partition of {1, . . . , k}
and, in particular, |W+(s)| = r where r = n − kbn/kc. From now on, we just
writeW+ andW−. These sets will be useful in the development of the algorithm.

We propose two greedy procedures for generating initial solution s0.

Procedure 1. Start with empty sets V1, V2, . . . , Vk and an integer r̃← 0 (this value
will have the cardinal of W+). At each step, define set I = {i : |Vi| ≤ M − 1},
where M is the maximum allowable size of a class:

M =

{

bn/kc+ 1, if r̃ < r

bn/kc, if r̃ = r

(once we already have r class of size bn/kc+1, the size of the remaining classes
must not exceed bn/kc). Then, choose a non-considered vertex v randomly and
put it into a class Vi such that i ∈ I is the smallest possible and E(Vi) is not
incremented. If it is not possible, i is chosen ramdonly from I. To keep r̃ up
to date, each time a vertex is added to a set Vi such that |Vi| = bn/kc, r̃ is
incremented by one unit.

The previous procedure works fine for generating initial solutions from scratch.
However, at this point it is common to know a (k + 1)-eqcol (i.e. in the cases
where we previously ran tabu search with k + 1 and reached an equitable col-
oring) and we can exploit this coloring in order to improve the quality of the
initial solution as follows.

Procedure 2. Let p : {1, . . . , k+1} → {1, . . . , k+1} be a bijective function (i.e. a
random permutation) and let V ∗

1 , V
∗

2 , . . . , V
∗

k , V
∗

k+1 be the color classes of the
known (k + 1)-eqcol. Set Vi = V ∗

p(i) for all i ∈ {1, . . . , k}, and r̃ = |W+|. Then,
run Procedure 1 to assign a color to the remaining vertices which are those be-
longing to V ∗

p(k+1).



Regarding neighborhood of a solution s ∈ S notice that, if n does not divide
k,W+ 6= ∅ and it is possible to move a vertex from a class ofW+ toW−, keeping
equity. That is, for all v ∈ ∪i∈W+Vi and all j ∈ W−, we have s(i

v
−→ j) ∈ S.

However, the number of allowed movements is rather limited when r is very low
(for instance, r = 1) or very high (r = k − 1), so we need to add supplementary
movements. Swapping the colors of two vertices simultaneously seems to work
fine and as well can be used when n divides k.

From a solution s = (V1, V2, . . . , Vk), a neighbor s′ = (V ′

1 , V
′

2 , . . . , V
′

k) is
generated with two schemes:

– 1-move (only applicable when n does not divide k). Choose a conflicting
vertex v ∈ C(s) ∩ (∪i∈W+Vi). Let i be the color of v in s. Next, choose a

color j ∈ W−. We have s′ = s(i
v
−→ j). Searching all the neighbors of s with

this scheme requires exploring (k − r)|C(s) ∩ (∪i∈W+Vi)| solutions.
– 2-exchange. Choose a conflicting vertex v ∈ C(s). Let i be the color of v in

s. Next, choose another vertex u such that either i < j or u /∈ C(s), where
j is the color of u in s (the condition imposed to u prevents from evaluating
2-exchange on u and v twice). Then, set

V ′

j = (Vj\{u})∪{v}, V ′

i = (Vi\{v})∪{u}, V ′

l = Vl ∀ l ∈ {1, . . . , k}\{i, j}.

Note that objective value can be computed in linear time from f(s):

f(s′) = f(s) + |{uw ∈ E : w ∈ Vi\{v}}| − |{uw ∈ E : w ∈ Vj}|

+ |{vw ∈ E : w ∈ Vj\{u}}| − |{vw ∈ E : w ∈ Vi}|.

Searching all the neighbors of s with this scheme requires exploring a quadratic
number of solutions.

Now, let s′ be the next solution in the sucession; s′ is obtained by applying
either 1-move or 2-exchange to s, where vertex v ∈ Vi in s and v /∈ V ′

i in s′. In
both schemes, p = (v, i) is stored on tabu list and live(p) is set to a dynamic
tabu tenure t = α|C(s)| + Random(β) where α and β are parameters to be
determined empirically. This is one of the purposes of the next section.

4 Computational experiments and conclusions

This section is devoted to perform and analyze computational experiments. They
were carried out on an Intel i5 CPU 750@2.67Ghz with Ubuntu Linux O.S. and
Intel C++ Compiler. We considered graphs from [18], which are benchmark
instances difficult to color.

First, we test different combinations of values for parameters α and β from
the dynamic tabu tenure in order to determine the combination that makes
TabuEqCol perform better. Then, we report the behaviour of TabuEqCol

over known instances by using the best combination previously found. We also
compare its performance against tabu search algorithm given in [10].



Tuning parameters

We run TabuEqCol over 16 instances with a predetermined value of k and
an initial solution s0 generated with Procedure 1. The same initial solution is
used in all executions of TabuEqCol for the same instance.

Results are reported in Table 1. First column is the name of the graph G.
Second and third columns are the number of vertices and edges of G. Fourth
and fifth columns are known lower and upper bound of χeq(G) (obtained by
other means). The remaining columns are the time elapsed in seconds by the
execution of TabuEqCol when a k-eqcol is found within the term of 1 hour,
for each combination. In the case TabuEqCol is not able to find a k-eqcol,
f(s∗) is displayed between braces where s∗ is the best solution found. Three
last rows indicate the sum of objective function f(s∗) over non-solved instances,
percentage of instances TabuEqCol solved successfully and the average time
elapsed for these instances to be solved.

For the sake of simplicity, we refer to each combination with a capital letter.

Note that combination D has the least average time, however it has solved
less instances than other combinations and the sum of objective values is also
worse. We discard A, B, C, D, E and H with this criterion. By comparing the
three remaining combinations, we have that G is faster than the other two.
Even if we restrict the comparison to those 11 instances the 3 combinations
solve simultaneously, we have 807 seconds for F, 562 seconds for G and 730
seconds for I, so G is still better.

We consider combination G (α = 0.9 and β = 5) for TabuEqCol.

Testing tabu search heuristic

For each instance, the following process is performed. First, execute Naive

algorithm (described in [5]) in order to find an initial equitable coloring c of the
current instance. Suppose that k+1 is the number of colors of c. Then, obtain an
initial solution s0 of k color classes generated from c with Procedure 2, and run
TabuEqcol with parameters α = 0.9 and β = 5. If a k-eqcol is found, start over
the process with k − 1 color classes by running Procedure 2 and TabuEqcol

again. This process is repeated until 1 hour is elapsed or a χeq-eqcol is reached,
and the best coloring found so far is returned.

In Table 2 we report results over 76 benchmark instances with at least 50
vertices (75 from [18] and one Kneser graph used in [10]). First 5 columns have
the name of the graph G, number of vertices and edges, and best known lower
and upper bound of χeq(G). Sixth column displays the number of colors of the
initial equitable coloring c. Seventh and eighth columns display the value k of
the best k-eqcol found after 30 seconds of execution of our algorithm and the
time elapsed in seconds until such k-eqcol is reached. If the coloring is optimal,
k is displayed in boldface. Next two columns show the same information after 1



hour of execution, but if the best coloring is found within the first 30 seconds,
these columns are left empty.

Time spent by Naive is not considered in the computation. However, Naive

rarely spent more than 1 sec. (and never more than 4 sec.).

Last two columns show the same information for the tabu search described
in [10]. If such information is not available, these columns are left empty. We
recall that the values provided in [10] were computed on a different platform (1.8
Ghz AMD-Athlon with Linux and GNU C++ compiler).

Note that our approach reachs optimality in 29 instances and a gap of one
unit between χeq and the best solution in 7 instances. In other words, it reachs
a gap of at most one unit in roughly a half of the evaluated instances. Note also
that TabuEqcol improves the initial solution given by Naive in most cases
(precisely, 63 instances).

On those instances the value of the best solution given by tabu search of
[10] is known, our algorithm gives the same value or a better one. Despite the
difference between platforms, it seems that our approach also runs faster.

An interesting fact is that each execution of TabuEqCol needs no more than
500000 iterations to reach the best value since the largest number of iterations
performed was 493204 and took place when TabuEqcol found a 18-eqcol of
DSJC125.5.

In the same sense, TabuEqCol needs no more than 30000 iterations in each
execution and the overall process needs no more than 30 seconds to reach the best
value on 56 instances; justly those ones such that columns 9 and 10 are empty.
On these instances, the largest number of iterations performed was 28791 and
took place when TabuEqcol found a 10-eqcol of queen9 9.

Conclusion

The Equitable Coloring Problem is a variation of the Graph Coloring Prob-
lem that naturally arises from several applications where the cardinalities of
color classes must be balanced. Just like Graph Coloring, the need to solve ap-
plications associated to this new NP-Hard problem justifies the development of
exact and approximate algorithms. On large instances, known exact algorithms
are unable to address them and heuristics such as Naive delivers poor solutions.
Our tabu search heuristic based on TabuCol has shown to improve these solu-
tions and presented a fairly good performance, even if a limit of 30 seconds is
imposed. In addition, an iteration limit of 30000 (for a time limit of 30 seconds)
and 500000 (for a time limit of 1 hour) can be imposed in order to save time.
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17. Blöchliger I., Zufferey, N.: A graph coloring heuristic using partial solutions and a
reactive tabu scheme. Comput. Oper. Res. 35(3), 960-975 (2008)

18. Graph Coloring Benchmark Instances.
http://www.cs.hbg.psu.edu/txn131/graphcoloring.html



α = 0.3 α = 0.6 α = 0.9
Instance |V | |E| χeq k β = 5 β = 10 β = 15 β = 5 β = 10 β = 15 β = 5 β = 10 β = 15

A B C D E F G H I

DSJR500.1 500 3555 12 12 {3} 1 1 1 1 1 1 1 1
DSJR500.5 500 58862 120 131 {14} {3} {1} {8} {3} 3242 {5} {3} {1}
DSJR500.1c 500 121275 126 195 {4} {1} 427 {3} 78 747 66 8 11
DSJC500.1 500 12458 5 13 {2} 55 41 38 63 47 39 83 57
DSJC500.5 500 62624 13 62 61 530 {1} {1} {1} {2} {1} {2} {1}
DSJC500.9 500 112437 101 148 {1} 106 104 94 91 80 100 90 121
DSJC1000.1 1000 49629 5 22 767 411 509 551 423 858 710 691 1059
DSJC1000.5 1000 249826 15 112 543 968 623 518 999 {2} 1853 {2} {1}
DSJC1000.9 1000 449449 126 268 1850 1751 1822 1926 1725 1250 1808 1723 983
inithx.i.1 864 18707 54 54 {8} {8} {8} {8} {7} {7} {8} {8} {7}

latin square 10 900 307350 90 131 1182 1080 1013 796 782 946 895 1298 778
flat300 28 0 300 21695 11 37 238 {1} {1} 143 {1} {1} {1} {2} {2}
flat1000 76 0 1000 246708 14 112 228 548 1255 154 600 1681 245 780 3298
abb313GPIA 1557 53356 8 9 {27} {44} {15} {2} {10} 2801 1796 {1} 1304
qg.order40 1600 62400 40 40 26 31 17 25 26 20 24 25 26

wap01a 2368 110871 41 47 {21} 477 501 {6} 451 446 499 744 397

Sum of objective values 80 57 26 28 22 12 15 18 12
Success 50% 69% 69% 63% 69% 75% 75% 63% 69%

Average Time 612 542 574 425 476 1010 670 544 730

Table 1. Execution of TabuEqCol with different combination of values



≤ 30 sec. ≤ 1 hour [10]
Instance |V | |E| χeq χeq Naive k Time k Time k Time

miles750 128 2113 31 31 33 31 0.0 35 13
miles1000 128 3216 42 42 47 43 0.1 49 13
miles1500 128 5198 73 73 74 73 0.0 77 13
zeroin.i.1 211 4100 49 49 51 51 0.0 74 22
zeroin.i.2 211 3541 36 36 51 51 0.0 95 22
zeroin.i.3 206 3540 36 36 49 49 0.0 97 21
queen8 8 64 728 9 9 18 9 1.2 10 7
jean 80 254 10 10 10 10 0.0 10 3
anna 138 493 11 11 11 11 0.0 13 14
david 87 406 30 30 40 30 0.0 30 9

games120 120 638 9 9 9 9 0.0 11 6
kneser9 4 126 315 3 3 4 3 0.0 6 2
2-FullIns 3 52 201 5 5 9 5 0.0 8 1
3-FullIns 3 80 346 6 6 7 6 0.0 9 2
4-FullIns 3 114 541 7 7 12 7 0.1 11 5
5-FullIns 3 154 792 8 8 9 8 0.0 13 8
2-FullIns 5 852 12201 4 7 15 7 2.5
3-FullIns 5 2030 33751 5 8 13 8 25
4-FullIns 4 690 6650 6 8 14 8 0.4
4-FullIns 5 4146 77305 6 9 21 14 20 9 254

1-Insertions 6 607 6337 3 7 14 7 0.2
2-Insertions 5 597 3936 3 6 6 6 0.0
3-Insertions 5 1406 9695 3 6 8 6 1.2

homer 561 1628 13 13 13 13 0.0
huck 74 301 11 11 11 11 0.0

latin square 10 900 307350 90 130 460 169 30 130 1301
DSJC125.1 125 736 5 5 8 5 0.8
DSJC125.5 125 3891 9 18 27 19 0.1 18 788
DSJC125.9 125 6961 42 45 66 45 0.4
DSJC250.1 250 3218 4 8 13 9 0.1 8 32
DSJC250.5 250 15668 11 32 65 33 7.2 32 69
DSJC250.9 250 27897 63 83 136 83 1.2
DSJR500.1 500 3555 12 12 12 12 0.0
DSJR500.5 500 58862 120 131 135 133 0.1
DSJR500.1c 500 121275 126 195 349 257 0.3
DSJC500.1 500 12458 5 13 23 14 3.5 13 33
DSJC500.5 500 62624 13 62 128 63 11
DSJC500.9 500 112437 101 148 284 182 0.7
DSJC1000.1 1000 49629 5 22 38 26 26 22 500
DSJC1000.5 1000 249826 15 112 265 128 27 112 2261
DSJC1000.9 1000 449449 126 268 575 329 20
flat300 20 0 300 21375 11 34 81 38 9.2 34 463
flat300 28 0 300 21695 11 36 65 39 3.3 36 3222
flat1000 76 0 1000 246708 14 112 223 127 24 112 1572
fpsol2.i.1 496 11654 65 65 85 78 0.1
fpsol2.i.2 451 8691 47 47 62 60 0.0
fpsol2.i.3 425 8688 55 55 80 79 0.0
inithx.i.1 864 18707 54 54 70 66 0.1
inithx.i.2 645 13979 30 93 158 93 7.2
le450 15b 450 8169 15 15 17 16 0.3 15 107
le450 15d 450 16750 15 16 30 22 9.6 16 599
le450 25b 450 8263 25 25 25 25 0.0
le450 25d 450 17425 25 27 31 27 29
le450 5b 450 5734 5 5 12 7 7.2
le450 5d 450 9757 5 8 18 8 15
mug100 25 100 166 4 4 4 4 0.0
mug88 25 88 146 4 4 4 4 0.0

mulsol.i.1 197 3925 49 49 63 50 0.0
mulsol.i.2 188 3885 31 48 58 48 0.1
myciel6 95 755 7 7 11 7 0.0
myciel7 191 2360 8 8 12 8 0.1

qg.order40 1600 62400 40 40 64 42 22 40 47
qg.order60 3600 212400 60 60 64 64 0.0 60 267
queen8 12 96 1368 12 12 20 12 0.1
queen9 9 81 1056 10 10 15 10 9.2
queen10 10 100 1470 10 11 18 12 0.1 11 143
school1 385 19095 15 15 49 15 12

school1 nsh 352 14612 14 14 40 14 14
wap01a 2368 110871 41 46 48 46 15
wap02a 2464 111742 40 44 49 47 18 44 83
wap03a 4730 286722 40 50 58 57 18 50 464

abb313GPIA 1557 53356 8 9 17 13 28 10 283
ash331GPIA 662 4181 3 4 8 4 2
ash608GPIA 1216 7844 3 4 10 4 12
ash958GPIA 1916 12506 3 4 10 5 11 4 41
will199GPIA 701 6772 7 7 9 7 2.2

Table 2. Execution of TabuEqCol over benchmark instances


